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Anisotropy in the equation of state of strongly magnetized quark matter within the
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In this article, we calculate the magnetization and other thermodynamical quantities for strongly magnetized
quark matter within the Nambu–Jona-Lasinio model at zero temperature. We assume two scenarios: chemically
equilibrated charge neutral matter present in the interiors of compact stars and zero-strangeness isospin-symmetric
matter created in nuclear experiments. We show that the magnetization oscillates with density but in a much more
smooth form than what was previously shown in the literature. As a consequence, we do not see the unphysical
behavior in the pressure in the direction perpendicular to the magnetic field that was previously found. Finally,
we also analyze the effects of a vector interaction on our results.
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I. INTRODUCTION

Understanding dense and/or hot matter in the presence of
strong magnetic fields is one of the most important chal-
lenges of nuclear physics today. At low chemical potentials,
extremely high magnetic fields have been estimated to be
briefly created in relativistic heavy-ion collisions [1–5], with
strengths of up to 1019 and 1020 G expected to be generated
during noncentral heavy-ion collisions at the BNL Relativistic
Heavy Ion Collider (RHIC) and at European Organization for
Nuclear Research (CERN), respectively. In this regime, the role
played by magnetic fields in quark deconfinement and chiral
symmetry restoration can, to some extent, be extracted from
lattice QCD data.

At low temperatures, high magnetic fields have been mea-
sured on the surface of neutron stars and extremely high
magnetic fields have been inferred to exist in their interiors.
More specifically, measurements using anharmonic precession
of star spin-down have estimated surface magnetic fields to be
of the order of 1015 G for the sources 1E 1048.1 − 5937 and
1E 2259+586 [6], and data for slow phase modulations in star
hard x-ray pulsations (interpreted as free precession) suggest
internal magnetic fields to be on the magnitude of 1016 G
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for the source 4U 0142+61 [7]. Together, these estimates have
motivated a large amount of research on the issue of how
magnetic fields modify the microscopic structure (represented
in the equation of state) and the macroscopic structure (ob-
tained from the solution of the Einstein-Maxwell equations)
of neutron stars. Unfortunately, in this regime, there is no
guidance from lattice QCD concerning the effect of magnetic
fields on deconfined quark matter.

At high enough baryonic chemical potential/density a de-
confinement transition to quark matter takes place and, when
the temperature is low enough, other more complex phases
such as color superconducting phases or inhomogeneous chiral
condensates become energetically favorable. Much effort has
been made to understand the physics of these phases in the
presence of strong magnetic fields [8]. The most favored
phase of QCD at high densities is the color-flavor-locked
(CFL) superconducting phase [9] and, for a magnetic field
strength of the order of the quark energy gap, a magnetic-CFL
phase is preffered [10–14]. For field strengths comparable to
the magnetic masses of charged gluons, the formation of a
gluon-vortex state can take place [15,16] and, as explained in
[10], the vortex formation corresponds to a phase transition
from a magnetic-CFL to a paramagnetic-CFL phase. There
are many other effects produced by a strong magnetic fields
in combination with superconductivity [17–22], such as the
BEC-BCS crossover [1,23–26] and the modification of chiral
inhomogeneous phases [27–30].

For simplicity, in this article we make use of the Nambu–
Jona-Lasinio (NJL) model without pairing to describe zero
strangeness isospin-symmetric matter (such as that created
in nuclear experiments) and chemically equilibrated charge
neutral matter (such as that present in the interiors of compact
stars) to study how magnetic fields influence cold quark
matter. We find that, unlike what was previously stated in the
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literature for this version of the model [31,32], strong magnetic
fields do not generate unphysical behavior of thermodynamical
quantities, such as the magnetization and pressure in the
direction perpendicular to the magnetic field. In addition, we
verify that our conclusions hold even when vector interactions
(which allow us to reproduce astrophysical constraints) are
added to the model.

II. THE MODEL

The description of matter in this work includes three-
flavored quark matter and leptons (electrons and muons).
While the leptons are described by a free Fermi gas under the
influence of magnetic fields (which includes the quantization of
Landau levels; see Ref. [33] and references therein for details),
the description of strongly interacting quarks is much more
complicated. The Lagrangian density for the SU(3) NJL model
reads [34–36]:

Lf = LDir + Lsym + Ldet, (2.1)

where the different terms stand for the Dirac, symmetric (four-
point interaction), and ’t Hooft (six-point interaction) terms:

LDir = ψ̄f [γμ

(
i∂μ − q̂f Aμ

) − m̂c]ψf , (2.2)

Lsym = G

8∑
a=0

[(ψ̄f λaψf )2 + (ψ̄f iγ5λaψf )2], (2.3)

Ldet = −K{detf [ψ̄f (1 + γ5)ψf ] + detf [ψ̄f (1 − γ5)ψf ]},
(2.4)

where ψf = (u,d,s)T represents the three-flavored quark field,
while m̂c = diagf (mu,md,ms) and q̂f = diag(qu,qd,qs) are
the quark mass and charge matrices. The interaction with the
electromagnetic field appears in the Dirac term through the
vector potential Aμ. The coupling constants G and K are to
be determined, λ0 = √

2/3I with I being the unit matrix in
the three flavor space, and 1 < λa � 8 denote the Gell-Mann
matrices. For the leptons, we use the mass values me = 0.511
MeV and mμ = 105.66 MeV.

As the NJL model is nonrenormalizable, we apply a sharp
ultraviolet cutoff � in three-momentum space. The parameters
of the model, �, G, and K , and the current quark masses,
mu = md and ms , are determined by fitting fπ , mπ , mK ,
and mξ ′ to their empirical values. In this work, we adopt
the parametrization proposed in Ref. [37] with � = 631.4
MeV, G = 1.835/�2, K = 9.29/�5, mu = md = 5.5 MeV,
and ms = 135.7 MeV.

The thermodynamical potential for the quark sector at zero
temperature reads

	 = −P = E −
∑
f

μf ρf , (2.5)

where P (also referred to as P‖) is the pressure in the direction
of the magnetic field, E the energy density, μf the quark flavor
chemical potential, and ρf the quark flavor number density. A
similar expression can be written for the leptonic sector. In the
following results, normalization terms are implied in order to
have 	 = 0 (and also 	l = 0 for the leptons) when the quark
and leptonic chemical potentials are set to zero.

It is important to stress that in this work, as a result of the
normalization described above, we do not account for the pure
electromagnetic contribution in the Lagrangian density or in
other thermodynamical quantities. The pure electromagnetic
contribution is independent of any matter contribution, unless
one is concerned with equilibrium configurations of macro-
scopic properties of stars and it is included solving Einstein’s
equations coupled to Maxwell’s equations, which is not the
case in this work. For detailed analyses that compare pure
magnetic field contributions with the ones from magnetized
matter inside individual stars, see Refs. [38,39].

A. Number density

In the mean field approximation, the quark number density
for one quark flavor at zero temperature in the presence of
an external magnetic field with strength B in one direction is
simply

ρf =
νf,max∑
ν=0

αν

|qf |BNc

2π2
pf , (2.6)

where the sum over Landau levels ν goes until νf,max, defined as
the largest integer less than or equal to (μ2

f − M2
f )/(2|qf |B).

The degeneracy factor for each Landau level is α0 = 1,
αk>0 = 2. Nc is the number of colors and the energy dispersion

is given by μf =
√

p2
f + sf (ν,B)2, with pf being the Fermi

momentum in the direction of the magnetic field and sf (ν,B) =√
M2

f + 2|qf |Bν the quark effective mass modified by the

magnetic field.

B. Pressure

In the mean field approximation, the quark thermodynami-
cal pressure can be written as

P = θu + θd + θs − 2G(φ2
u + φ2

d + φ2
s ) + 4Kφuφdφs,

(2.7)

where the free terms containing the quark momenta and
effective masses are

θf = − i

2
tr

∫
d4p

(2π )4
ln

(−p2 + M2
f

)
, (2.8)

while the scalar condensates are

φf = 〈ψ̄f ψf 〉 = −i

∫
d4p

(2π )4
tr

1

( �p − Mf + iε)
, (2.9)

with traces taken over three colors and Dirac space (but not
flavors). The quark effective masses can be obtained self
consistently from

Mi = mi − 4Gφi + 2Kφjφk, (2.10)

with (i,j,k) being any permutation of flavors (u,d,s).
We can rewrite Eq. (2.8) in terms of a vacuum, a medium,

and a magnetic contribution [40,41],

θf = θvac
f + θmed

f + θ
mag
f , (2.11)
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which at zero temperature are given by

θvac
f = − Nc

8π2

{
M4

f ln

[
(� + ε�)

Mf

]
− ε� �

(
�2 + ε2

�

)}
,

(2.12)

where ε� =
√

�2 + M2
f ,

θmed
f =

νf,max∑
ν=0

αν

|qf |BNc

4π2

[
μf

√
μ2

f − sf (ν,B)2

− sf (ν,B)2 ln

(μf +
√

μ2
f − sf (ν,B)2

sf (ν,B)

)]
,

(2.13)

and

θ
mag
f = Nc(|qf |B)2

2π2

[
ζ ′(−1,xf ) − 1

2
(x2

f − xf ) ln xf + x2
f

4

]
,

(2.14)

where we have xf = M2
f /(2|qf |B) and ζ ′(−1,xf ) =

dζ (z,xf )/dz|z=−1, with ζ (z,xf ) being the Riemann-Hurwitz
zeta function.

We can also rewrite Eq. (2.9) in terms of a vacuum, a
medium, and a magnetic contribution [40,41], where the four-
dimensional integrals gave rise to the sum over Landau levels
in the medium contribution,

φf = φvac
f + φmed

f + φ
mag
f , (2.15)

which at zero temperature are given by

φvac
f = −Mf Nc

2π2

[
�ε� − M2

f ln

(
� + ε�

Mf

)]
, (2.16)

φmed
f =

νf,max∑
ν=0

αν

Mf |qf |BNc

2π2

×
⎡
⎣ln

⎛
⎝μf +

√
μ2

f − sf (ν,B)2

sf (ν,B)

⎞
⎠

⎤
⎦, (2.17)

φ
mag
f = −Mf |qf |BNc

2π2

[
ln �(xf )

− 1

2
ln(2π ) + xf − 1

2

(
2xf − 1

)
ln(xf )

]
. (2.18)

In the direction perpendicular to the magnetic field, the
pressure receives an extra contribution due to the quantization
of the charged particles into the Landau levels [33,42]:

P⊥ = P + MB, (2.19)

where the magnetization M is going to be calculated in the
following section.

For charge neutral β-equilibrated matter, an additional
contribution to the pressure due to the leptons (electrons and
muons) is added:

Pl = θmed
l =

νf,max∑
ν=0

αν

B

4π2

[
μl

√
μ2

l − sl(ν,B)2

− sl(ν,B)2 ln

(μl +
√

μ2
l − sl(ν,B)2

sl(ν,B)

)]
, (2.20)

where in the latter expression sl =
√

m2
l + 2eBν. Note that

only medium terms contribute to the pressure when a degen-
erate free gas of leptons is considered.

C. Vector interaction

One of the options for including a vector interaction in the
NJL model gives the following extra term to be added to the
Lagrangian [43–48]:

Lvec = −GV (ψ̄γ μψ)2, (2.21)

which was chosen because it reproduces a stiffer equation of
state (EoS) and, consequently, more massive compacts stars
[49]. The constant GV was chosen to be equal to G in order to
maximize the effects of the vector interaction and allow one to
test their effects in the presence of magnetic fields.

The pressure receives the following extra term due to the
chosen vector interaction:

Pvec = GV (ρu + ρd + ρs)
2, (2.22)

where ρ = ρu + ρd + ρs = 3ρB is the total quark density. As
explained in Ref. [50], in the mean field approximation, the
role of the vector interaction is to introduce a shift in the quark
chemical potential μf producing an effective quark chemical
potential, μ̃f = μf − 2GV ρ, to be taken into account in all
thermodynamical quantities.

III. MAGNETIZATION

In this section, we discuss the calculation of the magne-
tization emphasizing some fundamental points, which have
been inappropriately considered in some recent publications
[31,32]. As explained in detail in Refs. [33,42,51–54], the
magnetization can be calculated simply by taking the partial
derivative of the parallel pressure or, equivalently, minus the
thermodynamical potential with respect to B:

M = ∂P

∂B
= −∂	

∂B
. (3.1)

Next, we consider the magnetization calculation for the
SU(3) NJL quark model including a vector interaction, since
the extension to the simpler cases SU(2) and GV = 0 are trivial.
As discussed in the previous section, the introduction of a
vector interaction in the SU(3) NJL model within the mean field
approximation is achieved by replacing the quark chemical
potential μf by the corresponding quark effective chemical
potential μ̃f = μf − 2GV ρ. Thus, the grand potential for the
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quarks 	(T ,{μf },B; {φf },ρ) can be rewritten using Eq. (2.22):

	 =
∑

f =u,d,s

	f + 2G
(
φ2

u + φ2
d + φ2

s

) − 4Kφuφdφs + GV ρ2,

(3.2)

with each flavor contribution 	f (T ,Mf ,μ̃f ,B) given by

	f = −[
θvac
f + θmed

f + θ
mag
f

]
. (3.3)

The thermodynamically consistent solutions (discussed in
Ref. [36]) correspond to the stationary solutions of 	 as a
function of φf and ρ and are the key for the correct calculation
of the magnetization, as shown in the following. It is easy to
verify that one of the stationary solutions of the grand potential,
Eq. (3.2), is

∂	

∂φf

= 0, (3.4)

where the condensate is given by

φf = ∂	

∂mf

= ∂	

∂Mf

, (3.5)

with the corresponding gap equation, Eq. (2.10). Due to
presence of the vector interaction, the grand potential becomes
an explicit function of the total quark density and, once more,
in order to assure thermodynamical consistency [36,50], we
have to impose a second stationary condition:

∂	

∂ρ
= 0 =

∑
f =u,d,s

∂	

∂μ̃f

∂μ̃f

∂ρ
+ 2GV ρ, (3.6)

where we have used Eq. (3.2) and

ρf = − ∂	

∂μf

= − ∂	

∂μ̃f

. (3.7)

The constraint in the latter equation simply means that the total
quark density has to satisfy the condition ρ = ρu + ρd + ρs in
equilibrium. Both the gap equation and the latter constraint
have to be simultaneously and self-consistently solved.

From Eq. (3.1), one may write

M = − ∂	

∂B

∣∣∣∣
{φf },ρ

− ∂	

∂φf

∂φf

∂B
− ∂	

∂ρ

∂ρ

∂B
, (3.8)

which can be simplified using Eq. (3.3) and the constraints
given by Eqs. (3.4) and (3.7), yielding the following expres-
sion:

M =
∑
f

[
∂θmed

f

∂B
+ ∂θ

mag
f

∂B

]
. (3.9)

This expression shows that only two terms contribute to the
magnetization. Note that in Refs. [31,32] the derivatives of
the φ’s were incorrectly taken as being nonzero. Hence, a
spurious increase of orders of magnitude was found in the
magnetization in these references, which generated incorrect
results for the perpendicular pressure, leading the authors to
erroneously conclude that strong anisotropy effects could exist
for magnetic fields as small as 1017 Gauss.

The (nonzero) derivatives θ ′ at T = 0 are as in Ref. [31]:

θ ′med
f = θmed

f

B
− NcB|qf |2

2π2

νmax∑
ν=0

αν

× ln

⎛
⎝ μ̃f +

√
μ̃2

f − s2
f

sf

⎞
⎠ν, (3.10)

θ
′mag
f = 2

θ
mag
f

B
− Nc|qf |M2

f

4π2

[
ln �(xf ) − 1

2
ln(2π )

+ xf −
(

xf − 1

2

)
ln(xf )

]
. (3.11)

Note that, for the calculation within the SU(2) NJL model, we
have only to take the summation over the flavors u and d in the
magnetization expression, Eq. (3.9).

For charge neutral β-equilibrated matter, the presence of
the free gas of leptons gives an additional contribution to the
magnetization, θ ′

l :

θ ′med
l = θmed

l

B
− B

2π2

νmax∑
ν=0

ανν ln

⎛
⎝μl +

√
μ2

l − s2
l

sl

⎞
⎠,

(3.12)

where only the medium term appears.

IV. RESULTS AND DISCUSSION

To exemplify the differences that appear when taking the
derivatives of the φ’s as (correctly) being zero, we remake
some of the figures from Refs. [31,32] and point out the
differences we find. In each figure we show different quantities
as a function of baryon number density ρB = ∑

f ρf /3.
In different figures we show results for zero-strangeness

isospin-symmetric matter and charge neutral β-equilibrated
neutron-star matter with leptons. In the first case,
zero-strangeness is enforced at zero temperature simply
by not including the strange quark. Isospin-symmetric matter
is enforced by using the same chemical potential for up and
down quarks, μu = μd = μB/3, where μB is the baryon
chemical potential. In the second case, charge neutral matter
is enforced by ∑

i

qiρi = 0, (4.1)

where the index i runs over quarks and leptons.
Beta-equilibrium allows us to rewrite the fermion chemical
potentials as a function of the chemical potentials related to
the conserved quantities in the system, baryon and charge
chemical potentials:

μu = 1
3μB + 2

3μq, (4.2)

μd = 1
3μB − 1

3μq, (4.3)

μs = 1
3μB − 1

3μq, (4.4)

μe = μμ = −μq, (4.5)
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ρB [fm-3]
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10-2

10-1

100

101

ρ f [f
m

-3
]

u, B=1017 G
u, B=1018 G

u,d

FIG. 1. Number density of each quark flavor for zero-strangeness
isospin-symmetric matter. The different curves show density-
independent magnetic field strengths of 1017 and 1018 G. All curves
overlap.

In different figures we show results for a density-
independent magnetic field of strength 1017 G, a density-
independent magnetic field of strength 1018 G, and a realistic
(polar) stellar chemical potential-dependent field [55]

B∗(μB) =
(
a + bμB + cμ2

B

)
B2

c

μ, (4.6)

with the baryon chemical potential μB given in MeV and
the dipole magnetic moment μ in A m2 in order to produce
B∗ in units of the critical field of the electron Bc = 4.414 ×
1013 G. The value of the coefficients for a star with baryon
mass MB = 1.6M
 (that gives a gravitational mass ∼1.4M
)
are a = −1.02 G2/(Am2), b = 1.58 × 10−3 G2/(Am2 MeV),
and c = −4.85 × 10−7 G2/(Am2 MeV2). We choose μ = 2 ×
1032 Am2, which reproduces field strengths between 1.03 ×
1017 and 5.31 × 1017 G in a MB = 1.6M
 star in the presence
of a vector interaction.

Figures 1 and 2 show the number density of each quark
flavor (and leptons) for isospin-symmetric matter and neutron-
star matter. In both cases, the effect of realistic magnetic
fields (we did not include the case of a density-independent
magnetic field with 1019 G) practically cannot be seen in the
plots, in agreement with Refs. [31,32]. As expected, in the
zero-strangeness isospin-symmetric matter case, the amount
of up and down quarks is the same for any baryon number
density.

Figures 3 and 4 show the magnetization of the system
for isospin-symmetric matter and neutron-star matter. In both
cases, the effect of realistic magnetic fields produce magneti-
zations about three orders of magnitude lower in strength than
in Refs. [31,32] and that oscillate (as in Ref. [56]) but much less
than in Refs. [31,32]. The oscillations in the magnetization are
unavoidable as Eqs. (3.10) and (3.11) have positive and neg-
ative terms. Note that even a free-Fermi gas produces oscilla-
tions in the magnetization with positive and negative values (for
large enough magnetic field strength and density; see Refs. [33]

0 0.2 0.4 0.6 0.8 1
ρB [fm-3]

10-6

10-5

10-4

10-3

10-2

10-1

100

101

ρ f [f
m

-3
]

d

u

ee

s

B = 1017 G
B = 1018 G
B (μB)

FIG. 2. Same as Fig. 1 but for charge neutral β-equilibrated
neutron-star matter with electrons (the muons do not appear), also
showing a realistic stellar chemical-potential-dependent magnetic
field from Ref. [55].

and references therein for details). Note that the magnetization
for the chemical-potential-dependent profile in Fig. 4 lies
between the ones for fixed values B = 1017 G and B = 1018 G.

Figures 5 and 6 show the parallel pressure of the system
for isospin-symmetric matter and neutron-star matter. In both
cases, the effect of realistic magnetic fields cannot be seen in
the plots. This is in agreement with results from Refs. [31,32],
except for the case with density-independent magnetic field
with strength of 1019 G (not shown in our plots), in which case
we would see the unphysical behavior of pressure going up and
down with the increase of baryon number density or energy
density, which means that the NJL model is unstable under
those unphysical conditions. The reduction in the increase of
pressure around 0.7 fm−3 in Fig. 6 is related to the appearance
of the strange quarks in the system. The negative pressures at
low densities in Figs. 5 and 6, on the other hand, indicate the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
ρB [fm-3]

-0.4

0.0

0.4

0.8

1.2

[1
0-2

fm
-2

]

B = 1017 G
B = 1018 G

FIG. 3. Magnetization for zero-strangeness isospin-symmetric
matter. The different curves show density-independent magnetic field
strengths of 1017 and 1018 G.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
ρB [fm-3]

-0.4

0.0

0.4

0.8

1.2

 [1
0-2

 fm
-2

]

B = 1017 G
B = 1018 G
B(μB)

FIG. 4. Same as Fig. 3 but for charge neutral β-equilibrated
neutron-star matter with electrons, also showing a realistic stellar
chemical potential-dependent magnetic field from Ref. [55].

presence of coexisting phases and associated phase transitions
at those densities or, in other words, a crust is required for star
stability [57].

The perpendicular pressure of the system for isospin-
symmetric matter and neutron-star matter is almost equal to the
respective parallel pressures (Figs. 5 and 6), when using realis-
tic magnetic fields (as already shown in Ref. [58] using the bag
model). This is in disagreement with results from Refs. [31,32],
in which case the perpendicular pressures are different for
different magnetic field strengths, different from the respective
parallel pressures, and, most importantly, discontinuous.

Figure 7 shows that for magnetic field strengths slightly
larger than of 1018 G, the pressure in the direction of the
magnetic field (parallel) and perpendicular to it start to be
different at any baryon number density. As already discussed
in detail in Refs. [38,39,55], self-consistent general-relativity

0 0.2 0.4 0.6 0.8 1
ρB [fm-3]

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P || ; 
P

⊥
[f

m
-4

]

B = 1017 G
B =  1018 G

FIG. 5. Parallel and perpendicular pressures for zero-strangeness
isospin-symmetric matter. The different curves show density-
independent magnetic field strengths of 1017 and 1018 G. All curves
overlap.

0 0.2 0.4 0.6 0.8 1 1.2
ρB [fm-3]

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P || ; 
P

⊥
[f

m
-4

]

B = 1017 G
B =  1018 G
B = B (μB)

FIG. 6. Same as Fig. 5 but for charge neutral β-equilibrated
neutron-star matter with electrons, also showing a realistic stellar
chemical potential-dependent magnetic field from Ref. [55]. All
curves overlap.

calculations assuming poloidal magnetic fields do not present
solutions for stars that posses central magnetic fields beyond
1 or 2 times 1018 G. In this case, there would be no difference
in using an EoS with magnetic field effects as input for
those calculations (unlike what was stated in Refs. [31,32]).
Note, however, that there are no consistent general relativity
calculations of such kind using the NJL model with a vector
interaction, in which case a much stiffer EoS might allow larger
stellar central magnetic fields. This issue will be addressed in
a future publication.

Next, we present some results for charge neutral β-
equilibrated matter including a vector interaction. These results
are of special importance for magnetars and, to our knowledge,
the magnetization study in this case has not yet been done in
the literature. The change in the population due to the inclusion
of a vector interaction is very small as can be seen in Fig. 8
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FIG. 7. Parallel (solid lines) and perpendicular (dotted lines)
pressures for charge neutral β-equilibrated neutron-star matter with
electrons as a function of magnetic field strength. The different curves
show the pressures at different baryon number densities.
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FIG. 8. Same as Fig. 2 but including a vector interaction.

(when compared with Fig. 2). Once more, the effect of all
magnetic field strengths analyzed in this work practically does
not modify the population. The changes in the magnetization
with the inclusion of a vector interaction, on the other hand, are
considerable, as can be seen in Fig. 9 (when compared with
Fig. 4). The interaction leads the magnetization to oscillate
more as a function of baryon number density, although it still
has a low magnitude.

As already discussed in the beginning of the section, when
calculated correctly, the parallel and perpendicular pressures
are almost equal when considering realistic magnetic fields.
This does not change with the inclusion of a vector interaction
as seen in Fig. 10. When compared with Fig. 6, it can be
seen that the interaction makes the EoS of neutron-star matter
much stiffer, which is exactly why it is necessary to reproduce
massive neutron stars. Note, however, that it has been shown
that, for small chemical potentials, zero or a small vector
interaction in quark matter is required in order to be in
agreement with lattice QCD and perturbative QCD concerning
baryon number susceptibilities [59–61]. Nevertheless, whether
or not those constraints are required at large chemical potentials
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FIG. 9. Same as Fig. 4 but including a vector interaction.

0.0 0.2 0.4 0.6 0.8 1.0
ρB [fm-3]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

P || ; 
P

⊥
[f

m
-4

]

B = 1017 G
B =  1018 G
B = B (μB)

FIG. 10. Same as Fig. 6 but including a vector interaction.

is still an open question. Finally, we note that our results for
the parallel pressures are in agreement with the results from
Ref. [49], which includes magnetic field effects but does not
calculate the magnetization.

V. CONCLUSIONS AND OUTLOOK

In this work, we showed that the inclusion of magnetic fields
in quark matter within the Nambu–Jona-Lasinio formalism
does not generate the unphysical behavior previously found in
Refs. [31,32] for the magnetization and pressure in the direc-
tion perpendicular to the magnetic field. We showed this for re-
alistic magnetic fields, for zero-strangeness isospin-symmetric
and neutron-star (chemically equilibrated and charge neutral)
matter, including or not a vector interaction. We found that
up to magnetic field strengths of 1018 G, there is no change
in population and there is no pressure anisotropy generated
by the magnetic field (the pure electromagnetic contribution is
not accounted for due to the normalization of the pressure).
Although the magnetization oscillates with baryon number
density, its magnitude is very small. A careful discussion on the
calculation of the magnetization is presented and, in particular,
the case where a vector interaction is present is analyzed, since,
to our knowledge, this has not been done in the literature and
is very important for the study of magnetars.

In a future publication, we are going to include our results
with a strong vector interaction in a fully self-consistent
general-relativity calculation to investigate if the interaction
can increase the maximum stable stellar central magnetic field
strength. A magnetic field strength of about 3 × 1018 G will
already generate effects of the magnetic field in the equation
of state.
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