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Beth-Uhlenbeck approach for repulsive interactions between baryons in a hadron gas

Volodymyr Vovchenko,1,2,3 Anton Motornenko,1,2 Mark I. Gorenstein,2,4 and Horst Stoecker1,2,5

1Institut für Theoretische Physik, Goethe Universität, D-60438 Frankfurt am Main, Germany
2Frankfurt Institute for Advanced Studies, Giersch Science Center, D-60438 Frankfurt am Main, Germany

3Department of Physics, Taras Shevchenko National University of Kiev, 03022 Kiev, Ukraine
4Bogolyubov Institute for Theoretical Physics, 03680 Kiev, Ukraine

5GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany

(Received 11 October 2017; published 6 March 2018)

The quantum mechanical Beth-Uhlenbeck (BU) approach for repulsive hard-core interactions between baryons
is applied to the thermodynamics of a hadron gas. The second virial coefficient a2—the “excluded volume”
parameter—calculated within the BU approach is found to be temperature dependent, and it differs dramatically
from the classical excluded volume (EV) model result. At temperatures T = 100–200 MeV, the widely used
classical EV model underestimates the EV parameter for nucleons at a given value of the nucleon hard-core
radius by large factors of 3–4. Previous studies, which employed the hard-core radii of hadrons as an input into
the classical EV model, have to be re-evaluated using the appropriately rescaled EV parameters. The BU approach
is used to model the repulsive baryonic interactions in the hadron resonance gas (HRG) model. Lattice data for
the second- and fourth-order net baryon susceptibilities are described fairly well when the temperature dependent
BU baryonic excluded volume parameter corresponds to nucleon hard-core radii of rc = 0.25–0.3 fm. Role of the
attractive baryonic interactions is also considered. It is argued that HRG model with a constant baryon-baryon EV
parameter vNN � 1 fm3 provides a simple yet efficient description of baryon-baryon interaction in the crossover
temperature region.
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I. INTRODUCTION

The properties of QCD at high densities and temperatures
are studied experimentally and theoretically using relativistic
heavy-ion collisions. Lattice QCD simulations, hydrodynamic
and transport models are among the tools employed. Lattice
QCD observables at zero chemical potential, μB = 0, and at
moderate temperatures, T � 150 MeV, are reasonably well
described by the ideal hadron resonance gas (HRG) model
[1–7].

The standard HRG model assumes that microscopic system
states consist of noninteracting hadrons and resonances [8]. In
accord with the arguments based on the S-matrix approach
[9–11], this HRG model includes attractive interactions be-
tween hadrons which lead to the formation of resonances. The
resonances in HRG can also be treated within the K-matrix
approach [12–14], in particular for the case of the overlapping
resonances [14,15]. More realistic hadronic models take into
account the presence of both, attractive and repulsive interac-
tions between the constituent hadrons. Repulsive interactions
in the HRG model had previously been considered in the
framework of the relativistic Mayer’s (cluster) and virial expan-
sions [10], via repulsive mean fields [16,17], and via excluded
volume (EV) corrections [18–24]. In particular, the effects of
EV interactions between hadrons on HRG thermodynamics
[25–32] and on observables in heavy-ion collisions [33–42]
had extensively been studied in the literature. Recently, repul-
sive interactions have received renewed interest in the context
of lattice QCD data on fluctuations of conserved charges. It was

shown that large deviations of several fluctuation observables
from the ideal HRG baseline could well be interpreted in terms
of repulsive baryon-baryon interactions [43–46].

The total system volume of the thermodynamic systems
is substituted in the EV model by the total available volume,
i.e., V → V − v N , where v is the excluded volume parameter
of a single particle. The microscopic background of the EV
model corresponds to repulsive hard-core interactions. v is
connected to the microscopic hard-core radius rc of a particle
as v = 16π

3 r3
c in the single-component EV model [47,48]. In

the context of hadronic physics applications it is, however,
often overlooked that the above relation between v and rc is
inherently classical, i.e., all quantum mechanical effects on
the hard-core interaction are ignored. Such an approximation
may be justified when the thermal de Broglie wavelength of the
constituent particles is much smaller as compared to their hard-
core radius, i.e., λdB � rc, which is the case for the EV model
applications in classical physics. When λdB � rc, however, the
classical approximation breaks down, as shown in Refs. [49,50]
for the case of spinless particles. A simple estimate for nucleons
(mN

∼= 938 MeV is assumed in this paper) yields a de Broglie
wavelength λdB = √

2π/(mNT ) � 1.3 fm at T = 150 MeV.
This value is much larger than typical nucleon hard-core radii,
with values of about rc = 0.2–0.8 fm often employed by
practitioners of the EV model [26,29,33–40]. These λdB values
are even larger at smaller temperatures. Thus, the hard-core
interactions between hadrons are expected to be significantly
affected by quantum mechanical effects at these temperatures.
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The present paper explores quantum mechanical effects on
the second virial coefficient in systems of baryons with hard-
core interactions in the framework of the Beth-Uhlenbeck (BU)
approach [51]. The results are contrasted with the classical EV
model. The classical EV model, as well as its virial- and cluster
expansions, are elaborated in Sec. II. Section III describes,
within the BU approach, the effects of hard-core interactions
on the second virial coefficient in the system of nucleons.
The applications of the BU approach to the HRG model with
repulsive baryon-baryon interactions are discussed in Sec. IV.

II. CLASSICAL EXCLUDED-VOLUME MODEL

Short-range repulsive interactions are modeled in the classi-
cal EV model by substituting the total volume by the available
volume, i.e., V → V − vN , where N is the total number of
particles. This substitution results in the well-known van der
Waals equation of state

pev(T ,n) = T n

1 − vn
, (1)

in which the attractive van der Waals interactions are omitted.
Here, n ≡ N/V is the particle number density.

The pressure function, p(T ,n), can be written in form of the
virial expansion [47,52,53]

p(T ,n) = T

∞∑
k=1

ak(T ) nk. (2)

Here, ak are the virial coefficients. These virial coefficients are
temperature independent in the classical EV model, as follows
from Eq. (1):

aev
k = vk−1. (3)

The second virial coefficient can be related to the hard-core
radius rc of a given constituent. If quantum mechanical effects
are neglected, a2(T ) is related to the two-body interaction
potential by

a2(T ) = 1

2

∫
d3r

{
1 − exp

[
−U (r)

T

]}
. (4)

A repulsive hard-core potential reads

U (r) =
{∞, if r < 2rc

0, if r > 2rc.
(5)

Substituting U (r) from Eq. (5) into Eq. (4) yields

aev
2 = v = 16πr3

c

3
. (6)

Let us discuss the Mayer’s cluster expansion of the pressure
in the EV model. This expansion is in terms of the powers of the
fugacity, λ = eμ/T . It will be used below for the comparison
with the BU approach. The cluster expansion is written as
[47,52,53]

p(T ,μ) = T

∞∑
k=1

bk(T ) [g φ(T ; m) λ]k = T

∞∑
k=1

bk(T ) zk.

(7)

Here, z ≡ g φ(T ; m) λ is the absolute activity, which can be
considered as the density of the ideal gas with Boltzmann
statistics at a given T -μ pair, and bk(T ) are the cluster
integrals, i.e., the coefficients of the Mayer’s cluster expansion
in fugacities (see, e.g., Chap. 10 in Ref. [47]). Function φ(T ; m)
is expressed via the modified Bessel function K2,

φ(T ; m) = m2 T

2π2
K2

(m

T

)
, (8)

where we assumed the relativistic dispersion relation ε(k) =√
m2 + k2.
The pressure of the EV model in T -μ variables

is given in terms of the transcendental equation
pev(T ,μ) = pid(T ,μ − v pev). Expansion of the EV model
pressure around the ideal gas pressure pid(T ,μ) yields

pev(T ,μ) = pid(T ,μ − v pev)

= pid(T ,μ) − nid(T ,μ) v pev(T ,μ) + · · ·
= T g φ(T ; m) λ − T v [g φ(T ; m)]2 λ2 + O(λ3),

(9)

where g is the internal degeneracy factor (for nucleons gN =
4). Note, that the effects of quantum statistics were neglected
in the final line in Eq. (9). Only the behavior of the second
cluster or virial coefficients is analyzed in the present work,
therefore, the expansion in Eq. (9) is written only up to the
second order.

Comparison of Eqs. (9) and (7) yields

bev
2 = −v = −aev

2 . (10)

Thus, the second cluster integral is straightforwardly connected
to the excluded volume parameter v.

III. BETH-UHLENBECK APPROACH

A. Formalism

Both the virial (2) and the cluster (7) expansion can be
applied to describe interactions in a quantum system. If
particles interact elastically and do not form bound states, the
second cluster integral is given by the generalized BU formula
[9,10,49]1

b2(T ) = [g φ(T ; m)]−2 T

2π3

∫ ∞

2m

dε ε2 K2(ε/T )

×
∑
Q

gQ

dδQ(ε)

dε
. (11)

Here, the integral runs over all values of the invariant mass ε
of two particles in the center-of-mass frame. The sum in the
integrand is taken over all relevant channels of all two-particle
states, which are characterized by a set of quantum numbers
Q. The specific definition of Q depends on a particular system
studied (see below). δQ(ε) is the corresponding scattering

1The ideal quantum gas contribution to b2(T ), found to be negligible
for the applications considered in the present paper, is neglected for
simplicity.
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phase shift for channel Q. Equation (11) assumes relativistic
dispersion relation ε(k) = √

m2 + k2 between energy and
momentum.

Let us consider a system of interacting nucleons. For
nucleon-nucleon scattering, the corresponding set of quantum
numbers is Q = (T ,S,L,J ): isospin T = 0,1; spin S = 0,1;
orbital momentum L; total angular momentum J , which takes
the values |L − S| < J < (L + S). The value of the orbital
momentum L determines the symmetry of the coordinate part
of the two-nucleon wave function with respect to the exchange
of the coordinates of two nucleons: For even values of L, it is
symmetric, while for odd values of L, it is antisymmetric. The
total two-nucleon wave function is antisymmetric with respect
to the exchange of their indices. Thus, L takes odd values if
the spin-isospin part is symmetric, and even values otherwise.
The sum in Eq. (11) goes over all possible (T ,S,L,J ) values
that are consistent with the above restrictions.

The scattering phase shifts are well known for the hard-
sphere scattering potential (5). They depend on the orbital
angular momentum L and are given by [55]

δhc
L (ε) = arctan

[
jL(2rc q)

nL(2rc q)

]
. (12)

Here, q ≡ q(ε) is the momentum of a constituent particle
in the c.m. frame, jL and nL are spherical Bessel functions.
Relativistic dispersion relation is employed in the present
work, therefore q(ε) = 1

2

√
ε2 − (2mN )2. Thus, the expression

for the second cluster integral for the nucleon system with a
hard-core interaction can be written as

bNN
2 (T )

= [gN φ(T ; mN )]−2 T

2π3

∫ ∞

2mN

dε ε2 K2(ε/T )

×
∑

T =0,1

∑
S=0,1

∑
L

L+S∑
J=|L−S|

(2 T + 1) (2 J + 1)
dδhc

L (ε)

dε
.

(13)

Integration by parts yields

bNN
2 (T )

= [gN φ(T ; mN )]−2 1

2π3

∫ ∞

2mN

dε ε2 K1(ε/T )

×
∑

T =0,1

∑
S=0,1

∑
L

L+S∑
J=|L−S|

(2 T + 1) (2 J + 1) δhc
L (ε).

(14)

Let us denote the BU approach with hard-core interaction
potential as BU-HC. As follows from Eq. (10), the BU-HC
approach predicts a temperature dependent excluded volume
parameter vNN (T ) = −bNN

2 (T ), at least on the level of the
second-order virial expansion.

The coefficient bNN
2 contains contributions from proton-

proton, proton-neutron, and neutron-neutron scatterings. It
is also possible to calculate, separately, the second cluster
integral b

pp
2 for a pure proton system. It coincides with the bnn

2
coefficient of the pure neutron system due to isospin symmetry.

The isospin quantum number is then not needed, and b
pp
2 reads

b
pp
2 (T ) = [(gN/2) φ(T ; mN )]−2 1

2π3

∫ ∞

2 mN

dε ε2 K1(ε/T )

×
∑

S=0,1

∑
L

L+S∑
J=|L−S|

(2 J + 1) δhc
L (ε). (15)

It is also useful to consider the original, nonrelativistic BU
formula [51],

b
NN,nr
2 (T )

= [gN φnr(T ; mN )]−2 (2 mN )2

2π3

√
πT

4mN

× exp

(
−2 mN

T

) ∫ ∞

0
dε exp(−ε/T )

×
∑

T =0,1

∑
S=0,1

∑
L

L+S∑
J=|L−S|

(2 T + 1) (2 J + 1) δhc
L (ε),

(16)

where

φnr(T ; m) =
(

mT

2π

)3/2

exp
(
−m

T

)
. (17)

A comparison of the nonrelativistic BU-HC result (16) with the
classical result (6) provides an important cross-check. For high
temperatures the quantum effects in the BU-HC model become
unimportant, thus, the results (16) and (6) should coincide.

B. Calculation results

Figure 1 depicts the temperature dependence of the nucleon-
nucleon excluded volume parameter vNN , calculated using

FIG. 1. The temperature dependence of the nucleon-nucleon ex-
cluded volume parameter vNN (solid black line), the proton-proton
excluded volume parameter vpp (dashed red line), and the proton-
neutron excluded volume parameter vpn ≡ 2 vNN − vpp (dashed red
line), as calculated within the relativistic Beth-Uhlenbeck approach
for a hard-core potential with the nucleon hard-core radius of rc =
0.3 fm. The dashed horizontal line shows the prediction of the classical
EV model (6) with the same value of rc = 0.3 fm.
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Eq. (14) for the nucleon hard-core radius of rc = 0.3 fm for
temperatures up to T = 300 MeV. The temperature depen-
dences of the proton-proton eigenvolume vpp and of the proton-
neutron eigenvolume vpn = 2 vNN − vpp are depicted as well.
The classical result (6) is depicted by the dashed horizontal
line. The numerical evaluation of Eq. (14) considers the terms
with L � 10, and disregards the terms with L > 10. The higher
order terms with L > 10 give a negligible contribution to
bNN

2 for temperatures up to T = 300 MeV, as follows from
numerical checks.2

Figure 1 shows that the classical EV model [Eq. (9)]
underestimates the value of the nucleon-nucleon excluded
volume parameter by large factors of 3–4, at temperatures T =
100–200 MeV. These temperature values are rather typical for
the phenomenological applications of the EV model in the
context of heavy-ion collisions and (lattice) QCD equation of
state. Strong increase of vNN at low temperatures correlates
with an increase of the thermal wavelength λdB .

This result is quite remarkable: the hard-core radii of
hadrons are often used as an input into the classical EV-HRG
model, to describe repulsive interactions between hadrons at
high densities (see, e.g., Refs. [26,27,29,31,33–37,39,56,57]).
A value rc = 0.3 fm was sometimes taken based on the
properties of nucleon-nucleon scattering [26,27]. The large
discrepancy between the classical EV model and the BU
approach suggests that the former can only be considered
as a simplified effective approach, when used in hadronic
physics applications. This means that the parameter aev

2 of
the EV model should not be connected to the values of the
hard-core radii via Eq. (6). Note that similar concerns were
voiced before, based on BU calculations for spinless particles
[49,50]. More accurate analyses shall also take into account
interaction-channel dependent hard-core radii [49,58].

The classical EV model result [Eq. (9)] is only valid
when both, quantum mechanical and relativistic effects, can
be neglected. Formally, the nonrelativistic BU-HC formula
(16) is expected to converge to the classical result (9) at
high temperatures. This expectation was proven for spinless
particles with a hard-core interaction [49,50]. The numerical
check for spin-1/2 nucleons is depicted in Fig. 2: The tem-
perature dependence of the nucleon-nucleon excluded volume
parameter vNN , as calculated in the nonrelativistic (solid black
line) and relativistic (dash-dotted red line) BU-HC approach,
for rc = 0.3 fm, is shown on a logarithmic temperature scale,
in the range T = 101–106 MeV. Note that, in the present work,
the difference between the relativistic and non-relativistic BU
approaches is only in the dispersion relation between energy
and momentum. At very high temperatures, T ∼ 105 MeV, the
excluded volume parameter of the nonrelativistic BU formula
approaches the classical limit (dashed line) from above, as
expected. These unrealistically high temperatures, however,
are not relevant for any practical applications since nucleons
are expected to already melt into partons there.

2In our figures the results are presented up to rather high tempera-
tures. This is done to see better a connection between different model
formulations. In reality, hadrons are not expected to be the dominant
constituents of the strongly interacting matter at T > 200 MeV.

FIG. 2. The temperature dependence of the nucleon-nucleon ex-
cluded volume parameter vNN calculated using the non-relativistic
(solid black line) and relativistic (dash-dotted red line) dispersion
relations in the Beth-Uhlenbeck approach for hard core interaction
potential, shown on the logarithmic temperature scale. Nucleon hard-
core radius of rc = 0.3 fm is assumed. The dashed horizontal line
shows the prediction of the classical EV model (6) with the same
value of rc = 0.3 fm.

The behavior of vNN (T ) in the relativistic BU-HC ap-
proach (dash-dotted red line) is similar to the nonrelativistic
BU-HC approach. However, the relativistic approach yields
systematically smaller values of vNN (T ). The limiting value of
vNN (T ) is slightly below the classical limit in the relativistic
BU-HC approach. Note that a relativistic formulation of the
hard-core interaction problem is not fully consistent: The
whole concept of a hard-core interaction is inconsistent with
causality. Nevertheless, nucleons are not affected that strongly
by relativistic effects at temperatures which are discussed for
the hadronic physics applications. Therefore, the treatment of
the hard-core repulsion between nucleons within the relativis-
tic BU approach is considered satisfactory.

We note that scattering phase shifts can also be employed
to study the non-equilibrium properties of interacting hadrons
[54]. Therefore, one can study in a similar fashion the dif-
ference between classical and quantum mechanical hard-core
repulsion for the various kinetic properties, such as the scat-
tering cross section and transport coefficients. Similarly large
differences could be expected there as well. These extensions
will be considered elsewhere.

C. Other estimates and the role of attraction

The results of the present approach can be compared to
other estimates of the second virial coefficient for nucleons.
These other estimates are not based on a hard-core interaction
potential, at least not directly. The second virial coefficient
should not be identified exclusively with an eigenvolume
parameter in such a case, therefore we use the notation aNN

2
instead of vNN for this comparison. The comparison illustrates
the relevance of the hard-core repulsion for thermodynamics
of a nucleon gas.

For the hard-core repulsion, the empirical values of the
nucleon hard-core radius rc are considered in the range
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FIG. 3. The temperature dependence of the second virial coeffi-
cient a2(T ) of nucleon-nucleon interaction, calculated within different
approaches. The calculations within the relativistic Beth-Uhlenbeck
approach for the system of nucleons with a hard-core interaction
are depicted by the blue band, which results from the variation of
the nucleon hard-core radius in the range 0.25 < rc < 0.30 fm. The
calculations of Ref. [45] within the S-matrix formalism, employing
the empirical phase shifts of NN scattering, are depicted by the yellow
line with a band. The red line depicts the second virial coefficient of
nucleon-nucleon interaction in the quantum van der Waals model
of nuclear matter [61]. Lattice QCD results for the second virial
coefficient of “baryon-baryon interaction” [46], obtained from simu-
lations at an imaginary baryochemical potential, are depicted by black
symbols with error bars.

rc = 0.25–0.30 fm, as suggested by the analysis of NN -
scattering phase shift data [59]. The corresponding BU result
is depicted in Fig. 3 by the blue band. Decreasing rc from 0.3
fm to 0.25 fm results in about 30% decrease of aNN

2 (T ) at a
given temperature.

The present BU-HC approach accounts for the contribution
of the short range repulsive hard-core interactions to the
second virial coefficient. However, nucleon-nucleon interac-
tions are also attractive at an intermediate range. Attrac-
tive interactions give sizable negative contributions to aNN

2 .
Especially at low temperatures, T < 20 MeV, calculations
[60], based on empirical phase shift data, do suggest that
attractive interactions give the dominant contribution to aNN

2 .
Thus, the large positive contribution of the hard-core repulsion
at low temperatures, as seen in Figs. 1–3, is compensated
by a similarly large, but negative contribution from the
attraction.

A simple model which takes into account both attractive
and repulsive interactions between nucleons is the quantum
van der Waals (QvdW) model [61]. The QvdW model takes
into account effects of Fermi statistics, important in the nuclear
matter region at small temperatures and large baryon densities.
The repulsive and attractive interactions between nucleons are
characterized by the temperature independent vdW parameters
b and a, respectively. A fit to the nuclear ground state properties
at T = 0 yields values of b = 3.42 fm3 and a = 329 MeV fm3

for nucleons [61]. The second virial coefficient in this QvdW

model reads3 a2(T ) = b − a/T . The temperature dependence
of aNN

2 (T ) in the QvdW model is depicted in Fig. 3, red
line. aNN

2 is negative at small temperatures, crosses zero at
T = a/b � 96 MeV, and increases monotonically at large
temperatures. This sign change of aNN

2 (T ) is expected for
any system of interacting particles with short-range repulsion
and intermediate range attraction. At the same time, continued
increase of aNN

2 (T ) at high temperatures in the QvdW model
appears to be at odds with results of the BU-HC formalism.
This takes place because of the large, temperature independent
value of the excluded-volume parameter b in the QvdW
model. Assuming b = 16πr3

c /3 one finds rc
∼= 0.59 fm. This is

essentially larger than rc = 0.2–0.3 fm for the BU-HC results
presented in Fig. 3.

The second virial coefficient of the nucleon-nucleon inter-
action can be estimated in theS-matrix approach, by employing
the empirically known phase shifts of NN -scattering. This had
recently been done in Ref. [45] for temperatures 100 < T <
165 MeV. The result is depicted by the yellow band in Fig. 3.
The band itself results from the uncertainty in the contributions
of the inelastic NN channels to aNN

2 (T ). The S-matrix result
of Ref. [45] lies below our BU calculation, as expected,
as the S-matrix calculation reflects the net contribution of
attraction and repulsion between the nucleons to aNN

2 (T ).
The BU-HC calculation overestimates aNN

2 , as in the present
work it manifests the repulsive hard-core interactions between
nucleons only. The difference between the present calculation
and the S-matrix calculation of Ref. [45] is reduced at higher
temperatures: this reflects the fact that the short-range repulsive
interactions dominate at higher temperatures.

For completeness, the recent imaginary-μB lattice QCD
results on the partial pressure of QCD in the baryon number
|B| = 2 sector [46] are also shown in Fig. 3 by black circles.
A purely hadronic description, reasonable at moderate tem-
peratures, yields partial pressure proportional to an “average”
second virial coefficient aBB

2 for baryon-baryon interactions.
The error bars of the lattice estimations for aNN

2 are rather large
at T < 160 MeV. The lattice results lie somewhat below the
results of the BU calculations.

The comparisons shown in Fig. 3 suggest that the BU-HC
calculation for aNN

2 with rc = 0.25 fm is quite consistent
with other estimates in the crossover temperature region,
T ∼ 150 MeV. The BU-HC approach overestimates aNN

2 at
smaller temperatures due to the missing attractive interactions.
Therefore, modifications of the BU-HC approach are desirable
for applications at these temperatures.

IV. APPLICATIONS TO THE HADRON RESONANCE
GAS MODEL

The BU-HC formalism is also useful to model the repulsive
baryonic interactions in the HRG model. Reference [43] con-
sidered an extension of the ideal HRG model where repulsive
interactions act only between pairs of baryons and between
pairs of antibaryons. The system hence consists of three

3Once again, here we neglect the small ideal Fermi gas contribution
to a2(T ).
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independent subsystems: noninteracting mesons, interacting
baryons, and interacting antibaryons. Thus, the pressure is
given as the sum, p = PM + PB + PB̄ . It is assumed that
the second virial coefficient, vBB(T ), which characterizes the
baryon-baryon interactions, is the same for all (anti)baryon
pairs at a given temperature. The nucleon-nucleon values,
vNN (T ), are taken for all baryon-baryon and antibaryon-
antibaryon pairs, i.e., vBB(T ) ≡ vNN (T ). This simplifying
assumption is supported by lattice QCD simulations [62],
which do suggest that repulsive core is qualitatively similar
between different baryon-baryon pairs. The model probably
overestimates the repulsive effects at high temperatures, where
the high thermal pressure squeezes all hadron volumes [63,64].

The partial pressure of the baryonic and the antibaryonic
subsystems in the BU-HC approach reads

P BU
B (T ,μB) = T φB(T ) λB − T vBB(T ) [φB(T )λB]2,

(18a)

P BU
B̄

(T ,μB) = T φB(T ) λ−1
B − T vBB(T )

[
φB(T )λ−1

B

]2
,

(18b)

where λB = exp(μB/T ) and

φB(T ) =
∑
i∈B

∫
dm ρi(m)

di m2 T

2π2
K2

(m

T

)
(19)

is the baryonic spectrum, with di and ρi being, respectively,
the degeneracy and a properly normalized mass distribution for
hadron type i, and where the sum goes over all baryons in the
system. We include all baryon states, which are listed as “con-
firmed” in the Particle Data Tables [65]. The function ρi takes
into account the nonzero widths of the resonances integrating
over their Breit-Wigner shapes, following Refs. [66,67].

The model given by Eq. (18) is dubbed BU-HRG, the
baryonic pressures (18a) and (18b) contain only quadratic
interaction terms, which are proportional to the second cluster
integral. At large enough values of temperature and/or fugacity,
the baryonic pressure will become negative, due to the negative
sign of the quadratic term. Thus, this pure BU approach is
expected to break down at some point, namely when the
higher order terms of the cluster expansion are no longer
negligible. It is instructive to consider the EV-HRG model
with an effective temperature dependent excluded volume
parameter. The partial pressure of baryons and of antibaryons
in such a model reads4

P ev
B (T ,μB) = T φB(T ) λB exp

(
−vBB(T ) P ev

B (T ,μB)

T

)
,

(20a)

P ev
B̄

(T ,μB) = T φB(T ) λ−1
B exp

(
−vBB(T ) P ev

B̄
(T ,μB)

T

)
.

(20b)

4The Fermi statistics effects are small in the considered temperature
region and at μB = 0.

It can be easily seen that the pressure (20) of the EV-HRG
model is consistent with the BU approach (18) up to the second
order of the cluster expansion. However, the EV-HRG model
also contains nonzero higher order coefficients in the cluster
expansion. Hence, large differences between the two models
may indicate that the second-order cluster expansion is not
applicable any longer.

Consider the temperature dependence of the baryon suscep-
tibilities at μB = 0: the nth order baryon susceptibility χB

n is
defined as

χB
n = ∂n(p/T 4)

∂(μB/T )n

∣∣∣∣
μB=0

. (21)

These higher-order susceptibilities are a sensitive measure
of the response of the system to changes in the μB/T values,
and are especially sensitive to the various baryon-baryon
interactions. Consider the effects of the repulsive hard-core
interactions between baryons on these observables: The BU-
HC calculations of vNN (T ) for nucleons with rc = 0.25–0.3
fm, presented in the previous section and depicted by the blue
band in Fig. 3, are used for vBB(T ) in Eqs. (20a) and (20b).

The resulting χB
2 (T ) and χB

4 (T )/χB
2 (T ) are depicted in

Fig. 4. The red bands correspond to the BU-HRG model
(18a),(18b), the blue bands depict the EV-HRG model
(20a),(20b), and the ideal HRG model results are shown by
the dashed lines. The lattice QCD results of the Wuppertal-
Budapest [4,6] and HotQCD [68,69] collaborations are shown
by the full and open symbols, respectively. At low tempera-
tures, T � 110 MeV, the effect of the repulsive interactions
on χB

2 (T ) and χB
4 (T )/χB

2 (T ) is negligible. This is in spite
of the strong increase of the excluded-volume parameter in
the BU-HC approach at low temperatures. The effect is small
because of an exponential decrease of the density of baryons,
which renders the influence of baryonic interactions negligible
at low temperatures and μB = 0. Repulsive baryon-baryon
interactions suppress baryon susceptibilities at higher tem-
peratures, as compared to the ideal HRG result. At moderate
temperatures, T � 150 MeV for χB

2 , and T � 130 MeV for
χB

4 /χB
2 , this suppression is described nearly identically in BU-

HRG and EV-HRG models. The total densities of baryons and
of antibaryons at μB = 0 increase strongly as the temperature
is increased. Higher terms of the cluster expansion are therefore
non-negligible at higher temperatures. This is reflected in
larger differences between the predictions of the BU-HRG and
the EV-HRG models at T � 160 MeV. It is seen from Fig. 4(a)
that χB

2 is negative at T � 190 MeV in the BU-HRG model.
By definition, χB

2 characterizes the width of the fluctuations
of the net baryon number. The negative values of χB

2 in the
BU-HRG model are unphysical—they simply characterize
the breakdown of the second-order virial expansion at high
temperatures.

In contrast, the EV-HRG model predicts a reasonable be-
havior of the baryon number susceptibilities even at high tem-
peratures. The EV-HRG calculations with vBB(T ) = vNN (T )
calculated within BU-HC approach for rc = 0.25 fm give an
overall satisfactory description of the lattice data up to T �
175–180 MeV. The deviations of the ideal HRG model from
lattice QCD data for the baryon susceptibilities in the vicinity
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FIG. 4. The temperature dependence of (a) χB
2 and (b) χB

4 /χB
2 net baryon number susceptibilities at μB = 0, as calculated within the

I-HRG model (dashed black lines), the BU-HRG model (red bands), and the EV-HRG model (blue bands) with the temperature dependent
baryon excluded volume parameter, using for all (anti)baryons the Beth-Uhlenbeck value for nucleons. The bands result from the variation of
the nucleon hard-core radius in the range rc � 0.25–0.3 fm. The lattice QCD results of the Wuppertal-Budapest [4,6] and HotQCD [68,69]
collaborations are shown by the full and open symbols, respectively. Solid lines correspond to the EV-HRG model with vBB = 1 fm3.

and even somewhat above the pseudocritical temperature can
be understood in terms of the repulsive baryonic interactions.
This conclusion was reported previously in Refs. [43–45].

The underestimation of the lattice data at T ∼
150–160 MeV is attributed to the missing attractive
interactions between baryons in the BU-HC calculation of
vNN (T ), as discussed in the previous section. A possible way
to take into account the residual attraction between baryons is
to rescale vNN (T ) to smaller values, and then use these values
in the EV-HRG model. Calculations of χB

2 and χB
4 /χB

2 within
the EV-HRG model with a constant temperature independent
value vNN = 1 fm3, motivated by the aNN

2 estimates in Fig. 3,
are depicted in Fig. 4 (solid lines). This further improvement of
the description of the lattice data in the crossover region by the
EV-HRG model with vNN = 1 fm3 provides effectively a good
approximation of the quantum description of baryon-baryon
interactions in the crossover temperature region. Thus, this
model can be used for interpretation of the lattice QCD
data; the model is also quite reasonable for the thermal
analysis of baryon-related observables in heavy-ion collision
experiments. Note that the value vNN = 1 fm3 was also
suggested in the recent analysis of the lattice QCD data at
imaginary baryochemical potential [46].

V. SUMMARY

The quantum mechanical Beth-Uhlenbeck treatment of the
hard-core interactions between nucleons/baryons presented
here has proven to be a clear progress as compared to the simple
classical approach, as it remedies many of the formerly not
understood discrepancies between lattice QCD calculations
and the common ideal hadron resonance gas model.

The Beth-Uhlenbeck approach yields a strongly tempera-
ture dependent second virial coefficient of nucleon-nucleon in-
teractions, which can be interpreted as a temperature dependent
excluded volume parameter. The classical EV model under-
estimates the value of the nucleon-nucleon excluded volume
parameter by factor 3–4 at temperatures T = 100–200 MeV

for a given value of the nucleon hard-core radius rc. Such
temperature range values are typical in in the EV model
applications for fitting the heavy-ion collision data and study-
ing the QCD equation of state. These large discrepancies
suggest that the classical EV model is only an effective
approach—when used in hadronic physics applications, the
effective radius parameters are strongly modified. Attempts to
connect the values of the second virial coefficients of various
hadron-hadron interactions in any EV-type approach, to the
corresponding hard-core radii of hadrons must consider these
discrepancies. In particular, those EV models which fix the
radii parameters on the basis of the empirical knowledge of
the hard-core radius of nucleon-nucleon interaction [26,27,35]
should be re-evaluated.

The temperature dependent excluded volume parameter
for nucleons is calculated in the Beth-Uhlenbeck approach,
assuming hard-core radii of rc = 0.25–0.3 fm, as suggested by
the empirical data. This parameter range is then used to model
the repulsive baryonic interaction in the hadron resonance gas
model. The predictions for net baryon number susceptibilities
are compared to the lattice QCD calculations. It is found that
this modified Beth-Uhlenbeck approach describes fairly well
the deviations of the lattice data from the ideal HRG model at
T � 160 MeV. The model breaks down at higher temperatures
due to the absence of the non-negligible higher-order terms
of the cluster expansion. The excluded volume HRG model
with the temperature dependent baryonic eigenvolume, on
the other hand, extends the agreement with the lattice data
for baryon number susceptibilities even to the temperatures
beyond 160 MeV.

Finally, one should note that the intermediate range at-
tractive baryonic interactions, neglected in the present Beth-
Uhlenbeck calculations, influence the thermodynamics of a
hadron gas. Effects of attractive interactions are strong at
low temperatures and residual at high temperatures. Present
analysis implies, that the excluded volume HRG model with
a constant effective baryonic “excluded-volume” parameter
vBB = 1 fm3 provides a simple yet efficient description of
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the net effect of the repulsive and attractive baryon-baryon
interactions on the hadronic equation of state in the crossover
temperature region.
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