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A self-consistent thermodynamic T -matrix approach is deployed to study the microscopic properties of
the quark-gluon plasma (QGP), encompassing both light- and heavy-parton degrees of freedom in a unified
framework. The starting point is a relativistic effective Hamiltonian with a universal color force. The input
in-medium potential is quantitatively constrained by computing the heavy-quark (HQ) free energy from the
static T -matrix and fitting it to pertinent lattice-QCD (lQCD) data. The corresponding T -matrix is then applied to
compute the equation of state (EoS) of the QGP in a two-particle irreducible formalism, including the full off-shell
properties of the selfconsistent single-parton spectral functions and their two-body interaction. In particular, the
skeleton diagram functional is fully resummed to account for emerging bound and scattering states as the critical
temperature is approached from above. We find that the solution satisfying three sets of lQCD data (EoS, HQ free
energy, and quarkonium correlator ratios) is not unique. As limiting cases we discuss a weakly coupled solution,
which features color potentials close to the free energy, relatively sharp quasiparticle spectral functions and weak
hadronic resonances near Tc, and a strongly coupled solution with a strong color potential (much larger than the
free energy), resulting in broad nonquasiparticle parton spectral functions and strong hadronic resonance states
which dominate the EoS when approaching Tc.

DOI: 10.1103/PhysRevC.97.034918

I. INTRODUCTION

Heavy-ion collision experiments at Relativistic Heavy Ion
Collider (RHIC) and the Large Hadron Collider (LHC) create
the hottest matter ever made by mankind, with temperatures
more than 8 orders of magnitude larger than the surface
temperature of the sun [1]. It is widely accepted that this
matter evolves through a quark-gluon plasma (QGP), a de-
confined phase of nuclear matter where the spontaneously
broken chiral symmetry is restored. The success of relativistic
hydrodynamics in describing light-hadron spectra [2–4], and
the surprisingly large modification of heavy-flavor (HF) meson
spectra [5] have revealed the hot QCD medium to be a strongly
coupled system [6]. However, it currently remains an open
issue what the microscopic mechanisms underlying the small
viscosity-to-entropy density ratio and HF diffusion coefficient
are, and what relevant degrees of freedom of the medium go
along with it. It is quite conceivable that the nearby transi-
tion from quark-gluon to hadronic matter plays an essential
role, and that large collision rates lead to nontrivial spectral
functions of the matter constituents. These features are not
readily captured by perturbative or quasiparticle approaches;
see, e.g., Refs. [7,8] for reviews. On the other hand, the
use of lattice-QCD (lQCD) motivated potentials, specifically
the heavy-quark (HQ) internal energy, has led to the idea
of a bound-state QGP [9,10] as a “transition” medium, with
essential contributions from nonperturbative interactions, i.e.,
remnants of the confining force. For heavy quarks these ideas
have been implemented within a thermodynamic T -matrix
approach [11–15], thereby connecting the open and hidden HF
sectors. This framework has met fair success in understanding
pertinent low-momentum HF observables in ultrarelativistic
heavy-ion collisions (URHICs), and has reinforced the need

for a more rigorous determination of the underlying two-body
interaction, rather than bracketing it by the free and internal
energies which roughly correspond to a weakly and strongly
coupled scenario, respectively. In a lQCD-based extraction
[16], it was found that the static potential is close to the free
energy while the associated imaginary part is near expectations
from hard-thermal-loop perturbation theory. In Ref. [17] the
HQ free energy was calculated within the T -matrix formalism
where the underlying potential was defined as the driving
kernel in the corresponding integral equation. It was found
that, in the presence of large imaginary parts of the static
quarks, the lQCD data support a solution where the potential
rises well above the free energy. Furthermore, implementing
this potential in a self-consistent quantum many-body frame-
work [the Luttinger-Ward-Baym (LWB) formalism] [18–20],
a description of the equation of state (EoS) of the QGP was
achieved where parton spectral functions become very broad,
losing their quasiparticle nature at low momenta, and the
degrees of freedom change to broad hadronic states as the
transition temperature is approached from above [21].

In the present paper, we expand on our previous studies by
setting up a unified LWF formalism to investigate the micro-
scopic properties of light, heavy, and static degrees of freedom
of the QGP, and firmly root it in information available from
thermal lQCD. Our starting point is an effective Hamiltonian
in quark and gluon degrees of freedom with a color interaction
of Cornell potential-type, including relativistic corrections.
While this approach reduces to potential nonrelativistic QCD
in the HQ limit we here pursue the question in how far the
interactions encoded in the potential approximation (including
remnants of the confining force) are relevant for understanding
bulk and spectral properties of the QGP. We also note that
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the vacuum potential model using the Cornell interaction
has met with fair success in light-hadron spectroscopy (with
caveats for spontaneous chiral symmetry breaking and its
Goldstone bosons) [22–24]. We determine the input to our
Hamiltonian by systematically constraining the interaction
through the static HQ free energies, Euclidean correlators for
charmonia and bottomonia, and the EoS in the light sector with
two additional effective-mass parameters for light quarks and
gluons. As mentioned above, a key feature of this approach
is to retain the full off-shell properties of one- and two-body
spectral functions (and scattering amplitudes), which renders
the emerging microstructure of the QGP a prediction of the
formalism. Since the latter is directly formulated in real time,
transport coefficients (η/s or the HF diffusion coefficients,Ds)
[25] and other quantities of experimental interest (e.g., photon
and dilepton production rates) can be readily computed. As it
will turn out, the self-consistent solution to the 3 sets of lQCD
data is not unique. We will therefore discuss limiting cases
of the underlying force strength, elaborate on the pertinent
consequences for QGP structure and indicate ways to further
constrain the “correct” scenario.

This paper is organized as follows. In Sec. II we introduce
the effective Hamiltonian and the three-dimensional (3D)
relativistic T -matrix approach used in this work. In Sec. III
we lay out how the latter can be systematically constrained
via various quantities computed in lQCD, namely: the EoS
of the QGP using the LWB formalism (Sec. III A), including
a matrix-log technique to resum the skeleton diagram (two-
body interaction) contribution, the static HQ free energies
(Sec. III B), and quarkonium correlators (Sec. III C), including
interference effects in the imaginary part of the potential; in
Sec. III D we introduce our ansatz for the in-medium potential
(Sec. III D 1) and describe the concrete procedure for carrying
out the overall self-consistent fit (Sec. III D 2). In Sec. IV we
show and discuss the main numerical results in comparison to
lQCD data, specifically for what we will denote as a “weakly
coupled solution” (WCS, Sec. IV A) and a “strongly coupled
solution” (SCS, Sec. IV B); each of these solutions is elabo-
rated in four parts, pertaining to the potential extraction via
fits to the HQ free energy (Secs. IV A 1 and IV B 1), Euclidean
quarkonium correlator ratios, and associated quarkonium spec-
tral functions (Secs. IV A 2 and IV B 2), the fits to the EoS and
its (change in) underlying degrees of freedom (Secs. IV A 3
and IV B 3), and the resulting parton spectral functions in heavy
and light sectors with corresponding two-body T -matrices
(Secs. IV A 4 and IV B 4). In Sec. V we summarize our findings
and outline future directions and opportunities within our
approach. In the Appendix we collect further information on
more general aspects of the relativistic potential approach
(Appendix A), generalized thermodynamic relations within the
LWB formalism for an effective in-medium Hamiltonian (Ap-
pendix B), additional relations involving the static-potential
limit (Appendix C), and a discussion of interference effects in
its imaginary part (Appendix D).

II. THERMODYNAMIC T -MATRIX

Bound states are key entities of the nonperturbative physics
of a quantum system, especially in QCD where the hadrons

encode the phenomena of confinement and mass generation.
In diagram language, bound states require an infinite resumma-
tion of (ladder) diagrams, represented by an integral equation
such as the 4D Bethe-Salpeter (BS) equation [26] or a 3D
reduced T -matrix equation [27–29]. Both equations allow for
a simultaneous and straightforward treatment of scattering
states. As a resummed series, the solution of the integral
equation analytically continues to the strongly coupled region.1

This equation is therefore well suited to study the strongly
coupled QGP (sQGP) near Tc where both bound and scattering
states are expected to be important and entangled with each
other in the presence of strong quantum effects, i.e., large
scattering rates. Applications of the T -matrix approach in
media has been carried out in various contexts, mostly in
nonrelativistic many-body systems [32–34] but also in systems
where relativistic effects are relevant [35], e.g., the nuclear
many-body problem [36,37], hot hadronic matter [38], or the
QGP [10,21,25,39,40].

In the present work our starting point is a Hamiltonian with
relativistic dispersion relations and potential, which maps onto
the Thompson scheme [28] for the 3D reduction from the BS
to the T -matrix equation (as employed earlier in the HQ sector
[13]). It can be written in the form

H =
∑

εi(p)ψ†
i (p)ψi(p) + 1

2
ψ

†
i

(
P
2

− p
)

×ψ
†
j

(
P
2

+ p
)

V a
ijψj

(
P
2

+ p′
)

ψi

(
P
2

− p′
)

, (1)

where εi(p) =
√

M2
i + p2 and P is the total momentum of

the two-particle state. The summations over i,j include mo-
mentum, spin, color, and particle species (three light-quark
flavors and gluons for the bulk matter description, or charm
and bottom flavors for pertinent correlation functions). The
index “a” specifies the two-body color channels. In this paper,
we do not account for spin-dependent interaction, which are
expected to be subleading but can be included in the future.
For the potential, V , we include both color-Coulomb (VC) and
(remnants of the) confining (“string”) interaction (VS ),

V a
ij (p,p′) = RC

ijFC
a VC(p − p′) + RS

ijFS
a VS (p − p′). (2)

Relativistic effects in the vertices of the 4D theory are included
by introducing relativistic factors R [13,41],

RC
ij =

√
1 + p2

εi(p)εj (p)

√
1 + p′2

εi(p′)εj (p′)
, (3)

RS
ij =

√
MiMj

εi(p)εj (p)

√
MiMj

εi(p′)εj (p′)
, (4)

and FC,S are color factors in diagonal representation; specif-
ically, the Coulomb factors, FC , are the standard Casimir
coefficients [9,13] collected in Table I, while for the string
factors, FS , we take the absolute values of the Casimir

1The series 1 + α + α2 · · · = 1/(1 − α) is convergent for strong
coupling. Divergence at strong coupling is different from the N !
divergence of a perturbative series at small coupling [30,31].
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TABLE I. Casimir and degeneracy factors for different color
channels quoted as (Casimir factor, degeneracy).

qq qq̄ (q/q̄)g gg

( 1/2, 3) ( 1, 1) ( 9/8, 3) (9/4, 1)
(−1/4, 6) (−1/8, 8) (3/8, 6) (9/8, 16)

(−3/8, 15) (−3/4, 27)

coefficients, to ensure a positive definite string tension, which
appears to be weaker in colored channels [42]. The precise
form of VC , VS , and the parton mass values, Mi , are inputs to
the Hamiltonian that need to be constrained by the lQCD data
to be discussed in the following sections.

The finite-temperature calculations are carried out in the
Matsubara formalism, where the “bare” propagators for both
quarks and gluons are taken as

G0
i (iωn,p) = 1

iωn − εi(p)
. (5)

We resum the ladder diagrams of the Hamiltonian by the T -
matrix equation, pictorially displayed in Fig. 1. In the center-
of-mass (CM) frame it can be written as

T a
ij (z,p,p′) = V a

ij (p,p′)

+
∫ ∞

−∞

d3k
(2π )3

V a
ij (p,k)G0

ij (z,k)T a
ij (z,k,p′), (6)

where z = iEn is the two-body Matsubara frequency (or
analytical energy variable E ± iε), and p,p′ are the incoming
and outgoing 3-momenta, respectively, for each parton in
the CM frame, i.e., for total momentum P = 0; T a

ij (z,p,p′)
denotes the T -matrix between particle type i and j in color
channel a. The two-body propagator is defined in Matsubara
representation as

G0
ij (iEn,k) = −β−1

∑
ωn

Gi(iEn − iωn,k)Gj (iωn,k), (7)

and, using a spectral representation, can be written in terms of
single-particle spectral functions as

G0
ij (z,k) =

∫ ∞

−∞
dω1dω2

[1 ± ni(ω1) ± nj (ω2)]

z − ω1 − ω2

× ρi(ω1,k)ρj (ω2,k), (8)

with the single-particle propagators

Gi(z) = 1[
G0

i (z,k)
]−1 − �i(z,k)

= 1

z − εi(p) − �i(z,k)
,

ρi(ω,k) = − 1

π
ImGi(ω + iε). (9)

In Eq. (8) the ± sign refers to bosons (upper) and fermions
(lower), and ni is the Bose or Fermi distribution function

T = + +T

FIG. 1. T -matrix resummation for ladder diagrams.

for parton i. The in-medium self-energies, �i(z,k), will be
self-consistently computed through the two-body T -matrix, as
detailed below.

In vacuum it is sufficient to solve the T -matrix in the CM
frame due to Lorentz invariance. However, in medium, Lorentz
invariance is in general broken, although usually not by much
for the scattering amplitude at total momenta comparable to
the thermal scale in nondegenerate media. Thus, a standard
approximation is to assume the in-medium T -matrix to be
independent of P [13,14], which leads to a major simplification
of the calculations. We thus write

T a
ij (ω1 + ω2,p1,p2|p′

1,p
′
2) = T a

ij (Ecm,pcm,p′
cm,xcm), (10)

where Ecm, pcm, p′
cm, and xcm ≡ cos(θcm) are functions ex-

pressed via ω1 + ω2,p1,p2,p′
1,p

′
2 using momentum conserva-

tion p1 + p2 = p′
1 + p′

2 to define the transformation to the CM
frame:

Ecm =
√

(ω1 + ω2)2 − (p1+p2)2,

son = (ε1(p1) + ε2(p2))2 − (p1+p2)2,

pcm =
√(

son − M2
i − M2

j

)2 − 4M2
i M2

j

4son
,

cos(θcm) = pcm · p′
cm

pcmp′
cm

. (11)

For p′
cm, we simply change son(p1,p2) to son(p′

1,p
′
2). The

reason for using the on-shell s for pcm is to keep the an-
alytical properties of the T -matrix after the transformation.
Also, this transformation recovers Galilean invariance in the
nonrelativistic limit for the off-shell case. The relation for
pcm can be derived by solving the equations originating from
Lorentz invariants ε1(p1)2 − p2

1 = M2
1 , ε2(p2)2 − p2

2 = M2
1

and ε1[(p1) + ε2(p2)]2 − (p1+p2)2 = [ε1(pcm) + ε2(pcm)]2 in
the CM and the moving frame. We note that this procedure does
not work for the CM angle in the off-shell case. However, since
we only need forward scattering amplitudes for our present
purposes, we do not discuss this issue any further here.

Rotational symmetry in the CM frame implies that a partial-
wave expansion remains intact, given by

X(p,p′) = 4π
∑

l

(2l + 1)Xl(p,p′)Pl[cos(θ )], (12)

where X = V,T . The partial-wave expanded scattering equa-
tion becomes

T
l,a
ij (z,p,p′) = V

l,a
ij (p,p′) + 2

π

∫ ∞

−∞
k2dkV

l,a
ij (p,k)G0

ij (z,k)

× T
l,a
ij (z,k,p′), (13)

where l denotes the angular-momentum quantum number. The
set of now 1D integral equations can be solved by discretizing
the 3-momenta p,p′,k,

Vmn ≡ V (km,kn), Ĝ
0
(2)(z)mn ≡ 2k

π
k2
mG0

(2)(z,km)δmn (14)

and invert the pertinent matrix equation [43],

T(z)mn = T (z,km,kn),T(z) = [
1 − VĜ

0
(2)(z)

]−1
V. (15)
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The integral over k in Eq. (13) is encoded in a matrix
multiplication with measure dk. Here and in the following,
we (occasionally) use the subscript “(2)” as an abbreviation
for “ij” to denote two-body quantities.

Once the T -matrices have been computed, we calculate
the single-particle self-energies by summing over all partial
waves and the pertinent two-body flavor and color channels
in interactions with light medium partons. Closing the T -
matrix with an in-medium single-parton propagator (± for
boson/fermion) in the Matsubara formalism,

�(iwn) = ±−1

β

∑
νn

T (iωn + iνn)G(iνn), (16)

one can use spectral representations to carry out the summation
over discrete frequencies to obtain

�i(z,p1) =
∫

d3p2

(2π )3

∫ ∞

−∞
dω2

dE

π

−1

z + ω2 − E

1

di

∑
a,j

dij
s dij

a

× ImT a
ij (E,p1,p2|p1,p2)ρj (ω2,p2)

× [nj (ω2) ∓ nij (E)], (17)

which involves the forward-scattering amplitude, i.e., p′
1 = p1

and p′
2 = p2 and thus xcm = x = 1; nij refers to the Bose or

Fermi distribution appropriate for the two-body state ij , but
the “−/+” sign refers to the bosonic/fermionic single-parton
state i. The d

ij
a,s are color and spin degeneracy factors of the

two-body system, summarized in Table I. Here, we enforce
two physical polarizations for the gluons; di is the spin-color
degeneracy of the single parton i. The energy, z = ω1 + iε, is
taken to be retarded in this work. Within the CM transformation
defined via Eqs. (11), the integrations in Eq. (17) are restricted
to the timelike two-body phase, i.e., real values for Ecm [we
have verified that ImT a

ij (
√

E2 − P 2) is strongly suppressed
when approaching the spacelike region]. The above self-energy
expression does not include the purely real thermal Fock term
[44], which we add explicitly by calculating

�i(p1) = ∓
∫

d3p2

(2π )3

∫ ∞

−∞
dω2V

1
iī

(p1 − p2)ρi(ω2,p2)ni(ω2).

(18)

Finally, we recall that Eq. (17) can be expressed a functional
equation of �,

� = T (�)G(�) = T (�)
1

(G0)−1 − �
. (19)

It is equivalent to an integral equation for the full Green
function, G, as � = (G0)−1 − G−1. The T -matrix depends
on the self-energy, T (�), through the two-body propagator,
see Eq. (8), in which the spectral function depends on the
single-parton self-energy; see Eq. (9). Although it is a nonlinear
functional equation, it usually can be solved self-consistently.
The self-energy as the solution of Eq. (19) satisfies conserva-
tion laws for the Green function [19].

III. CONSTRAINTS FROM LATTICE QCD

The Hamiltonian given in Eq. (1) is the input to our approach
that needs to be constrained by independent information. To

achieve this, we will make extensive use of first-principles
lQCD computations, where we treat the pertinent data as “ob-
servables” in imaginary time. Specifically, we will utilize the
QGP EoS [45,46], HQ free energies [42,47,48], and Euclidean
quarkonium correlators [49–52]. In this section, we elaborate
on the concrete procedure to do that, which includes theoretical
developments to best take advantage of the comparisons within
the T -matrix approach. In Sec. III A we briefly recapitulate the
LWB formalism [18–20] to compute the in-medium single-
and two-body interaction contributions to the EoS for the
effective Hamiltonian and lay out the corresponding matrix-log
technique to resum the pertinent skeleton diagrams [21,25]. In
Sec. III B we recall the formalism to calculate the static-quark
free energy from the T -matrix, where large imaginary parts
turn out to play a critical role [17]. In Sec. III C we briefly
review the formalism to calculate quarkonium correlator ratios
based on Refs. [11,13,14], thereby introducing an effective way
to account for interference effects in the complex potential for
quarkonium spectral functions.

A. Equation of state

The equation of state (EoS) usually refers to the pressure
as a function energy density, or, alternatively, as a function of
temperature and chemical potential of a many-body system,
P (T ,μ). It characterizes the macroscopic dynamics of the
bulk which are ultimately driven by the relevant microscopic
degrees of freedom of the medium. Although the EoS depends
on the interactions in the system, it is usually most sensitive
to the masses of the prevalent degrees of freedom in the
medium (which, however, may be generated dynamically
through the interactions, e.g., via bound-state formation).
Therefore, comparing the calculated EoS with lQCD results
is expected to primarily constrain the “bare” parton masses in
the Hamiltonian, Eq. (1).

For a homogeneous grand canonical ensemble, the EoS is
encoded in the grand potential (per unit volume), � = −P ,
which can be calculated using diagrammatic techniques within
the LWB formalism [18–20] (for recent application to QCD
matter, see also Refs. [7,53,54]) as spelled out in Sec. III A 1.
Since the QGP near Tc can be expected to be a mixture of
interacting partons and their bound states, a nonperturbative
ladder resummation for the two-body amplitudes is in order.
Some care needs to be exerted since the ladder resummation
to calculate � is not the same as for the T -matrix, due to a
double-counting when closing the external legs of the latter.
This will be carried out using a matrix-logarithm resummation
technique [21,25] detailed in Sec. III A 2.

1. Properties of the LWB formalism

The diagram language of the LWB formalism leads to the
following expression for grand potential:

� = ∓−1

β

∑
n

Tr{ln(−G−1) + [(G0)−1 − G−1]G} ± �,

(20)
where we combined spin, color, flavor, and momentum sum-
mations in the trace operation, “Tr”, while explicitly writing
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the Matsubara frequency sum,
∑

n. Here,

� =
∞∑

ν=1

�ν (21)

denotes the Luttinger-Ward functional (LWF), and

�ν = −1

β

∑
n

Tr

{
1

2ν

(−1

β

)ν

[(−β)ν�ν(G)]G

}
(22)

and �ν(G) are the LWF and self-energy at νth order of
the potential in the “skeleton” expansion [18]. These three
quantities should be understood as functionals of the full
single-particle propagator, G. The full self-energy is the sum
of all self-energies of order ν, �(G) = ∑

ν �ν(G). The extra
factor 1/ν in Eq. (22) complicates the resummation of �(�ν)
for ladder diagrams, to be discussed in the next section.
The factor (−1/β)ν(−β)ν aims to separate out the −1/β
temperature dependence from loop integrals in the self-energy,
such as −1/β

∑
n X1(ωn)X2(zm − ωn). At νth order, there

are ν loops, with the pertinent factor (−1/β)ν . After this
separation, [(−β)ν�ν(G)] only has a temperature dependence
stemming fromG and the interaction kernel,V . This separation
procedure is convenient for proving thermodynamic relations
involving temperature derivatives, cf. Appendix B.

The skeleton diagram expansion for the self-energy can be
obtained via a functional derivative of �,

�(G) = δ�

δG
. (23)

The functional derivative is equivalent to cut open one G line
in a closed loop [18]. Since there are ν equivalent G lines at
νth order, this cancels the factor 1/ν and recovers the full self-
energy. With the help of Eq. (23) one finds the thermodynamic
potential to reach an extremum,

δ�

δG
= 0, (24)

when the functional relation

�(G) = (G0)−1 − G−1 (25)

is satisfied. In this sense, G acts like a functional order param-
eter for the thermodynamic potential to reach an extremum.

In a slight variation of the standard LWB formalism, the
“bare” masses [or dispersion relations, ε(p)] and potential
of our effective Hamiltonian depend on temperature T and
chemical potential μq of the medium. These dependencies
represent a macroscopic average over the microphysics that we
do not treat explicitly (such as remaining gluonic condensates
in the QGP that can induce mass terms and the nonperturbative
string term in the potential). This leads to modified expressions
for several thermodynamic relations, e.g., more complicated
relations for energy and entropy to reconstruct the pressure;
this is elaborated in Appendix B.

2. Matrix logarithm resummation of skeleton diagrams

The main challenge in calculating the grand potential, �, is
to evaluate the LWF, �. In our derivation we limit ourselves
to the case of a 3D reduced T -matrix, rather than the more

general 4D BS equation discussed in Ref. [25], expanding on
what we indicated earlier in Ref. [21].

Using the notation
∫

dp̃ ≡ −β−1 ∑
n

∫
d3p/(2π )3 with

p̃ ≡ (iωn,p), the νth order of the self-energy appearing in
Eq. (20) in ladder approximation can be formally written as

�ν(G) =
∫

dp̃
[
V G0

(2)V G0
(2) · · · V

]
G, (26)

containing ν factors of V . Thus, the LWF functional � can be
expressed as

� = 1

2

∑
Tr

{
G

[
V + 1

2
V G0

(2)V + . . .

+ 1

ν
V G0

(2)V G0
(2) . . . .V + . . .

]
G

}
, (27)

where “Tr” denotes, as before, a 3-momentum integral and the
summation over discrete quantum numbers, while

∑
denotes

the sum over Matsubara frequencies including β factors. The
part in brackets, [· · · ], has a structure very similar to the T -
matrix resummation,

T = V + V G0
(2)V + . . . + V G0

(2)V G0
(2) . . . V + . . .

=
[ ∞∑

ν=0

(
V G0

(2)

)ν

]
V = [1 − V G0

(2)]
−1V, (28)

except for the extra coefficients 1/ν. However, we can write

V + 1

2
V G0

(2)V + · · · + 1

ν
V G0

(2)V G0
(2) . . . V + · · ·

=
[ ∞∑

ν=1

1

ν

(
V G0

(2)

)ν

][
G0

(2)

]−1

= − ln
[
1 − V G0

(2)

][
G0

(2)

]−1 ≡ Log T , (29)

where the (natural-base) logarithm is to be understood as a gen-
eral matrix operation (in a discrete space of quantum numbers,
including spin, color, flavor as well as energy-momentum),
defined through its power series.2 It can also be tested in the
case of a separable potential for which the analytical result is
known [57]. At large coupling, the perturbative series does not
converge (in the present context, we have checked this, e.g.,
for the HQ friction coefficient discussed in Ref. [25]) and does
not capture the formation of bound states which are expected
to become important at low temperatures, cf. also footnote 1.

The similarity between the T -matrix and the Log T oper-
ation further allows us to migrate the partial-wave expansion,
Eq. (13), and CM approximation, Eq. (6), from the T -matrix to
the LWF. With the numerical discretization of the 3-momentum
integrals as in Eqs. (14) and (15), we can define Log T

l,a
ij in a

given channel as

LogT(z)mn ≡ Log T (z,km,kn),

LogT(z) = −Log
[
1 − VĜ

0
(2)(z)

][
Ĝ

0
(2)(z)

]−1
. (30)

2A similar expression is known for the ground-state energy at zero
temperature [55] and for cold-atom systems [56].
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Compared to the T -matrix Eq. (15), the only change is replac-
ing the inverse matrix (with an extra factor V) by the “matrix-

Log” operation, LogT (with an extra factor [Ĝ
0
(2)(z)]−1).

Standard software like Mathematica can compute this matrix
function at a speed similar to a matrix inversion. With the
result in a given channel, we first sum over partial waves using
Eq. (12) and then transform back from the CM to an arbitrary
frame using Eq. (10) with Ecm, pcm, p′

cm, and x ′
cm defined in

Eq. (11),

LogT a
ij (ω1 + ω2,p1,p2|p′

1,p
′
2) = LogT a

ij (Ecm,pcm,p′
cm,xcm).

(31)

Upon closing two external lines of this quantity with a thermal
single-particle propagator, G, and, in resemblance of Eq. (17),
defining

Log � ≡
∫

dp̃Log T G, (32)

we obtain

Log�i(z,p1) =
∫

d3p2

(2π )3

∫ ∞

−∞
dω2

dE

π

−1

z + ω2 − E

× 1

di

∑
a,j

dij
s dij

a Im
[
LogT a

ij (E,p1,p2|p1,p2)
]

× ρj (ω2,p2)[nj (ω2) ∓ nij (E)]. (33)

Recalling Eq. (27) and the definition of Log� and LogT , we
can express the LWF as

� = 1

2

∫
dp̃GLog�

= 1

2

∑
j

dj

∫
dp̃Gj (p̃)Log�j (p̃). (34)

Therefore, the grand potential in Eq. (20) can be expressed in
closed form as

� =
∑

j

∓dj

∫
dp̃

{
ln(−Gj (p̃)−1)

+
[
�j (p̃) − 1

2
Log�j (p̃)

]
Gj (p̃)

}
. (35)

The final sum over Matsubara frequencies in Eq. (35) can be
carried out with usual contour techniques utilizing a spectral
representation of the expression in “{ }” as a whole. Through
this resummation we include the contributions of the diagrams
shown in Fig. 2 to the grand potential �.

+ + + +

FIG. 2. Examples of diagrams that are resummed by the general-
ized T -matrix for EoS.

B. Static Q Q̄ free energy

The HQ free energy, FQQ̄(r,T ), is commonly defined as
the change in free energy of a system when adding to it a
static quark and antiquark, separated by a distance r [not
including the (infinite) HQ masses]. In the vacuum, this simply
corresponds to the potential energy between them. In medium,
the free energy and the potential are still related to each other,
but no longer identical [9,17,58], as the former includes the
response of the medium to the static charges, encoded in
the generally complex HQ self-energies. However, one can
calculate the free energy from an underlying potential within
the same T -matrix approach that we discussed for the EoS
above, by taking the limit MQ → ∞ [17]. This opens the
possibility to extract (or at least constrain) the driving kernel
of the Hamiltonian through a fit to high-precision lQCD data
for FQQ̄(r,T ). In particular, since the free energy incorporates
the response of the medium to the external source, we need
to couple the static quarks with the light partons of the QGP
medium consistently. This is achieved by the HQ self-energy in
the QGP which we compute from the in-medium heavy-light
T -matrix with the same underlying driving kernel. In the
following, we first recall some basic relations for the free
energy, in particular, how it is related to the driving kernel
of the static T -matrix (Sec. III B 1). Second, we discuss the
self-consistent extraction of the potential which makes contact
with the QGP bulk medium (Sec. III B 2). In Appendix C we
collect several additional relations implied by the formalism,
and in Appendix D we elaborate on the connection between
interference effects and the “imaginary part of potential.”

1. Heavy-quark free energy and potential

In this section, we recall the derivation to relate FQQ̄(r,T )
with the color-singlet potential in the static limit, V (r,T ) [17]
where we suppress color-flavor indices for simplicity in this
section.

The static limit introduces simplifications which renders
the relation between free energy and the potential rather
straightforward. The source of this simplification is the one-
particle propagator in the infinite-mass limit [59],

GQ

(
z,r′) =

∫
d3p′

(2π )3
eip′ ·r′ 1

z − εp′ − �Q(z,p′)

≈
∫

d3p′

(2π )3
eip′ ·r′ 1

z − M − �Q(z)
= δ(r′)GQ(z).

(36)

The δ function signifies that the particle is static and GQ(z) =
1/[z − M − �Q(z)] is simply the propagator in momentum
space in the static limit, i.e., it is localized at its position. At
vanishing quark chemical potential, GQ = GQ̄. The two-body
(four-point) Green’s function inherits the δ-function structure
[59],

G>
QQ̄

(−iτ,r1,r2|r′
1,r

′
2)

≡ δ(r1 − r′
1)δ(r2 − r′

2)G>
QQ̄

(−iτ,r), (37)

where r = |r1 − r2|. Here, G>
QQ̄

(−iτ,r) denotes the reduced
Green function with the spatial δ functions factored out. The
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static QQ̄ free energy, FQQ̄, can be defined in terms of the QQ̄
Green function as [59]

FQQ̄(r,β) = − 1

β
ln[G>

QQ̄
(−iβ,r)]. (38)

The remaining task is to calculate the Euclidean time Green
function, G>

QQ̄
(−iτ,r), in Eq. (37) using the T -matrix, Eq. (6),

with the propagators GQ(z) and potential V (z,p1 − p′
1), which

in coordinate space is denoted as V (z,r). We here keep a
dependence of the potential on the total energy, z, of the
2-particle system, which can arise, e.g., from interference
effects as illustrated in Appendix C.

To proceed, we first use GQ,Q̄(z) to obtain the noninteract-
ing two-body propagator figuring in the T -matrix,

G0
QQ̄

(z) =
∫ ∞

−∞
dω1dω2

ρQ(ω1)ρQ̄(ω2)

z − ω1 − ω2
, (39)

where ρQ/Q̄(ω1) are the spectral functions of the static
quark/antiquark, as before. Inserting this propagator together
with V (z,p1 − p′

1) into Eq. (6), one has

TQQ̄(z,p,p′) = V (z,p − p′)

+
∫

d3k
(2π )3

V (z,p − k)G0
QQ̄

(z)TQQ̄(z,k,p′).

(40)

Since G0
QQ̄

(z) is independent of momentum, Fourier trans-
forming the above equation from p → r and p′ → r′, where
r = r1 − r2 and r′ = r′

1 − r′
2, one arrives at

TQQ̄(z,r,r′) = V (z,r)δ(r − r′)

+V (z,r)G0
QQ̄

(z)TQQ̄(z,r,r′). (41)

This is an algebraic equation with a solution TQQ̄(z,r,r′) =
TQQ̄(z,r)δ(r − r′) explicitly given by

TQQ̄(z,r) = V (z,r)

1 − V (z,r)G0
QQ̄

(z)
. (42)

We have factored out the δ function as was done in Eq. (37).3

The Green function in frequency space in the static limit can
be expressed as

GQQ̄(z,r) = G0
QQ̄

(z) + G0
QQ̄

(z)TQQ̄(z,r)G0
QQ̄

(z). (43)

While in the nonstatic case, additional convolution integrals in
coordinate space appear, the simple form in the static limit
is due to the “δ(r)” functions that can been integrated out
(or stripped off). Upon inserting Eq. (42) into Eq. (43) we
arrive at our final expression for GQQ̄ in energy-coordinate
space,

GQQ̄(z,r) = 1[
G0

QQ̄
(z)

]−1 − V (z,r)
. (44)

3Only one δ function here is related to stripping off δ(p1 + p2 −
p′

1 − p′
2). Note that X(p1 − p2)δ(p1 + p2 − p′

1 − p′
2) Fourier trans-

forms into the form X(r1 − r2)δ(r1 − r′
1)δ(r2 − r′

2).

To obtain G>(−iτ,r), we need to transform back to imagi-
nary time using (−β)−1 ∑

n GQQ̄(iEn,r)e−τ (iEn); employing a
spectral representation and contour technique, the Matsubara
sum can be carried out yielding

G>
QQ̄

(−iτ,r) =
∫ ∞

−∞
dE′ρQQ̄(E′,r)

eE′(β−τ )

eβE′ − 1
. (45)

Since the strength of the two-particle spectral function,
ρQQ̄(E′,r), is located in the vicinity of the large-mass two-
particle threshold, 2MQ, we can approximate eβE′ 	 1 and
eE′(β−τ )/(eβE′ − 1) = e−E′τ to obtain

G>
QQ̄

(−iτ,r) =
∫ ∞

−∞
dE′ρQQ̄(E′,r)e−E′τ . (46)

The quantity G>(−iτ,r) still depends on the infinitely large
mass, MQ (numerically taken as 2 × 104 GeV), which needs
to be “renormalized.” This can be done by multiplying
G>(−iτ,r) with a factor e2MQβ and redefining the energy
arguments of the propagators and spectral functions by a
shift of 2MQ. For simplicity, we will keep the same notation,
i.e., from here on, unless otherwise noted, the static limits
of G>

QQ̄
(−iτ,r), GQ(z), GQQ̄(z), and ρQQ̄(z) will refer to

the original ones shifted as G>
QQ̄

(−iτ,r)e2βMQ , GQ(z + MQ),
GQQ̄(z + 2MQ), and ρQQ̄(z + 2MQ). Inserting Eqs. (44) and
(46) into Eq. (38) with τ = β establishes our basic relation
between the HQ potential and the free energy within the
T -matrix formalism.

To be more explicit, we specify [G0
QQ̄

(z)]−1 as

[
G0

QQ̄
(z)

]−1 = z − 2MQ − �QQ̄(z), (47)

with medium-induced Fock mass term MQ (for each quark)
determined by V (r) as further discussed in Sec. III D, and
an analytic self-energy part, �QQ̄(z), labeled as a two-body
self-energy in this work. In practice, we can use Im[[G0

QQ̄
(E +

iε)]−1] = −Im�QQ̄(E + iε) to find the imaginary part and
reconstruct Re�QQ̄(E + iε) by a dispersion relation. The
energy-dependent potential, V (z,r), can also be decomposed
into a static nonanalytic part, V (r), and an analytic part,
VA(z,r), so that V (z,r) = V (r) + VA(z,r). As elaborated in
Appendix D, V (r) is the input potential and VA(z,r) is re-
lated with interference effects induced by many-body physics,
similar to �QQ̄(z). Therefore, we separate the input static
potential V (r) and regroup VA(z,r) into a “interfering” two-
body self-energy as �QQ̄(z,r) ≡ �QQ̄(z) + VA(z,r) [note that
�QQ̄(z,∞) = �QQ̄(z) since VA(z,∞) = 0]; i.e.,

V (z,r) = V (r) + [�QQ̄(z,r) − �QQ̄(z)]. (48)

Equation (44) can then be recast as

GQQ̄(z,r) = 1

z − 2MQ − V (r) − �QQ̄(z,r)
. (49)

With this expression, �QQ̄(z,r) is analytic and 2MQ + V (r)
is a nonanalytic static part. In this scheme, the final compact
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form for the free energy reads

FQQ̄(r,β) = −1

β
ln

[ ∫ ∞

−∞
dE e−βE −1

π

× Im

[
1

E + iε − Ṽ (r) −�QQ̄(E + iε,r)

]]
,

(50)

where Ṽ (r) ≡ 2MQ + V (r) is introduced for brevity.

2. Self-consistent extraction of the potential

To use Eq. (50) to extract the potential, V (r), we need to
evaluate �QQ̄(z,r). Toward this end, we first calculate the one-
body self-energy, �Q(z). Taking the heavy-light T -matrix in
Eq. (17) in the “half-static” limit where the p1 dependence in
Eq. (10) is suppressed due to an infinite mass of particle-1, we
obtain

�Q(z) =
∫

d3p2

(2π )3

∫ ∞

−∞
dω2

dE

π

−1

z + ω2 − E

1

dQ

∑
a,j

dQj
s dQj

a

× T a
Qj (E,p2|p2)ρj (ν,p2)nj (ν). (51)

The CM transformation in the static limit, ω1 + ω2 	 |p1 +
p2|, can be derived as

Ecm = ω1 + ω2, pcm = p2, cos(θcm) = cos(θ ). (52)

The nij is suppressed due to infinite mass of two-body states.
The self-consistent Eq. (19) also applies in the static limit.
For the two-body self-energy, �QQ̄(z), we first use Eq. (39)
to obtain the two-body propagator, G0

QQ̄
(z), and then use the

procedure laid out after Eq. (47) to arrive at �QQ̄(z).
In the Brueckner type setup of our approach, the r-

dependent part of the two-body “interfering” self-energy,
�QQ̄(z,r), is not self-consistently generated, as this would
require to include 3-body interactions.4 For now, we model
�QQ̄(z,r) with a factorizable ansatz,

�QQ̄(z,r) = �QQ̄(z,∞)φ(xer) ≡ �QQ̄(z)φ(xer), (53)

which preserves the analyticity of �QQ̄(z,r). The function
φ(xer) is motivated by the imaginary part of the potential in
a perturbative approximation [59,60] and will be constrained
in our context by a functional fit (within its short- and long-
distance limits of one and zero, respectively). Here, xe is
a dimensionless parameter acting as a screening mass that
shrinks the range of φ(xer) as temperature increase (our pivot
point at the lowest temperature considered here is set to
xe = 1). Inserting Eq. (53) into Eq. (50) gives

FQQ̄(r,β) = −1

β
ln

[ ∫ ∞

−∞
dE e−βE −1

π

× Im

[
1

E + iε − Ṽ (r) −�QQ̄(E + iε)φ(xer)

]]
,

(54)

4Ideas to self-consistently generate this part are presented in Ap-
pendix III C 2.

where the input functions V (r) and φ(xer) are to be tuned to
reproduce lQCD data. In our previous work [17], �QQ̄(E +
iε) was modeled by a functional ansatz with few parameters
and as such was the major source of the uncertainties in the
approach. In the present work, �QQ̄(E + iε) is controlled self-
consistently by the single heavy-quark/antiquark self-energy,
�Q/�Q̄, as outlined above.

C. Quarkonium correlator ratios

The Euclidean correlator can be understood as “Fourier
transform” of the spectral function to imaginary-time space,
where it is computable in lattice QCD. Its ratio to correlator
with a vacuum reference function is utilized to highlight the
medium modifications in the spectral functions, and it also
has the advantage of reducing systematic lattice uncertainties.
Since the quarkonium correlator is defined by a local operator,
the two-body Green function/spectral function is propor-
tional to the wave function overlap at the origin, Gij (E) =∑

n |φEn
(0)|2/(E − En). Thus, the correlator is quite sensitive

to short-range physics, which is useful to, e.g., constrain the
strong coupling constant αs in the Coulomb term. The spectral
function and the correlator can be readily calculated in the T -
matrix approach with heavy quarks. There are several previous
studies of these quantities in this approach [11,13,14] which
we will briefly review. Here, we are now able to significantly
go beyond those by consistently coupling the heavy quarks to
an off-shell light-parton plasma.

1. Review of established formalism

The correlator in the Euclidean time that can be computed
in lQCD [49–51] is defined by

G>(−iτ,P) =
∫

d3r eiP·r〈JM (−iτ,r),J †
M (0,0)〉 (55)

and usually evaluated at vanishing total 3-momentum, P, of
the QQ̄ pair,

G>(−iτ ) ≡ G>(−iτ,P)|P=0. (56)

The mesonic states are created by the local operator

JM (−iτ,r) = ψ̄(t,r)�Mψ(t,r), (57)

where ψ (ψ̄) denotes the (conjugate) Dirac spinor field op-
erator. The Dirac matrix �M ∈ {1,γμ,γ5,γμγ5} projects the
operators into scalar, vector, pseudoscalar, and pseudovector
channels, respectively. In a fully relativistic treatment, ψ can
create an antiparticle or annihilate a particle. However, in the
context of this paper, we separately treat particle annihilation
and antiparticle creation (and vice versa) by two field operators
ψQ and ψ

†
Q̄

, respectively, schematically written as ψ = ψQ +
ψ

†
Q̄

(here and in the following, we also use Q to denote c and b

quarks). Inserting this into Eqs. (57) and (55) (suppressing the
�M structure and pertinent relativistic corrections), a leading
term of the 16 possibilities for this correlator is the 4-point
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Green function

G>
QQ̄

(−iτ,P) =
∫

d3r eiP·rG>
QQ̄

(−iτ,r,r|0,0)

=
∫

d3r eip·r〈ψQ̄(−iτ,r)ψQ(−iτ,r)

×ψ
†
Q(0,0)ψ†

Q̄
(0,0)〉, (58)

which characterizes the propagation of a two-body state and
can be solved by the T -matrix as shown in the previous section.
Another important term for the same correlator is the density-
density correlation function,

〈nQ(−iτ,r)nQ(0,0)〉
= 〈ψ†

Q(−iτ,r)ψQ(−iτ,r)ψ†
Q(0,0)ψQ(0,0)〉, (59)

which is usually referred to as the zero-mode contribution (or
Landau cut) and closely related to the transport properties of
the medium [14]. Other terms are either included automatically
through the Matsubara formalism as hole excitations, or they
are suppressed in the HQ limit. For the purpose of this paper,
we choose the simplest quantity to be compared with lQCD
data, i.e., the pseudoscalar channel, �M = γ5, which does not
develop a zero mode. It corresponds to the mesonic ηc and ηb

channels (including, of course, their full excitation spectrum).
Since we focus on the Euclidean time correlator at total

momentum P = 0, it simply corresponds to the T -matrix in
the CM frame. The additional locality in the relative coordinate
leads to one integration over 3-momentum.5 Thus, the 4-point
Green function in frequency space for the pseudoscalar channel
takes the form

GQQ̄(z) = dQ

∫
d3p

(2π3)
G0

QQ̄
(z,p)

+ dQ

∫
dpdp′

π3
RS

QQ̄
G0

QQ̄
(z,p)T l

QQ̄
(z,p,p′)

×G0
QQ̄

(z,p′). (60)

It includes the relativistic effects due to the projector �M ,
encoded in the RS

ij defined in Eqs. (2), (3), and (4), cf.
Refs. [11,13,14] for more details (in those works the R factor
is part of the propagator, but the expressions are equivalent to
the ones used here); dQ = 6 denotes the spin-color degeneracy
of a heavy quark. The spectral function for this Green function
is defined as

ρQQ̄(E,T ) = − 1

π
ImGQQ̄(E + iε), (61)

and the pertinent correlator is given by

G>
QQ̄

(−iτ,Tref,T ) =
∫ ∞

0
dEρQQ̄(E,Tref)K(τ,E,T ), (62)

with the kernel

K(τ,E,T ) = cosh[E(τ − β/2)]

sinh[E(β/2)]
, (63)

5f (r1 − r2) = ∫
d3p

(2π )3 eip·(r1−r2)f (p) → f (0) = ∫
d3p

(2π )3 f (p).

which can be obtained using the contour techniques with proper
treatment of the retarded symmetry for spectral function for
negative E. Finally, the correlator ratio is defined as

RQQ̄(τ,Tref,T ) =
G>

QQ̄
(−iτ,T ,T )

G>
QQ̄

(−iτ,Tref,T )
. (64)

In this ratio the denominator and the numerator carry the exact
same kernel, K(τ,E,T ), so that the only difference is the
spectral function, thus exhibiting the medium effects relative
to a reference spectral function (usually taken as one at small
temperature).

2. Interference effect for two-body spectral function

As discussed in Appendix D, the r-dependent imaginary
part of the potential is a manifestation of interference effects
between the two quarks when interacting with the medium;
e.g., in the singlet channel a small size QQ̄ state will effectively
become colorless thus suppressing any interaction with the
colored medium partons. Therefore, this effect is expected to
become significant for deeply bound heavy quarkonia with
a tight wave function. Although a full many-body treatment
will require nontrivial 3-body diagrams, we will suggest a
way to include the effects in the T -matrix approach, which
seems viable for the case of two-body spectral functions and
correlators. However, we will only include the interference
effects for heavy-heavy and static-static channels.

We start from the nonrelativistic Schrödinger equation,[
− ∂2

r

M
+ Ṽclx(r)

]
ϕ(r) = Eϕ(r). (65)

In previous works [60,61], an energy-independent complex
“potential” has been introduced; in our context we write it
as Ṽclx(r) = V (r) + i�I

QQ̄
φ(xer), where we introduced the

generic notation �I ≡ Im�. Transforming it to momentum
space leads to

Ṽclx(p − p′) = i�I
QQ̄

(2π )3δ(p − p′)

+ i�I
QQ̄

φN (p − p′) + V (p − p′), (66)

where φN (p − p′) is the Fourier transform of φ(xer) − 1,

φN (p) =
∫

d3r eip·r[φ(xer) − 1]. (67)

The Schrödinger equation in momentum space then reads∫
d3p′

(2π )3

{[
p2

M
+ i�I

QQ̄

]
(2π )3δ(p − p′)

+ i�I
QQ̄

φN (p − p′) + V (p − p′)
}
ϕ(p′) = Eϕ(p). (68)

One can now follow the standard track to derive the Lippmann-
Schwinger equation (LSE). The terms in the brackets “[ ]”
figure in H0, which is combined with E on the right-hand
side as (E − H0)ϕ = V ϕ. Then, inverting the left-hand side
and adding a free solution, we obtain the general solution as
ϕ = ϕ0 + (E − H0 + iε)−1V ϕ. Multiplying it by V , we arrive
at the T -matrix equation T = V + (E − H0 + iε)−1V T using
V φ = T φ0. The part local in momentum with a δ function in
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Eq. (66) enters the free propagator, while the part nonlocal in
momentum space becomes the true potential.

To generalize the Schrödinger framework to be compatible
with the T -matrix approach discussed in previous sections
(in particular in Sec. III B 1), a few extensions are required.
Specifically, the energy-momentum dependence and analytic
properties of the uncorrelated in-medium two-particle propa-
gator need to be accounted for. Toward this end, motivated by
the relation Eq. (47) in the static limit, we augment the constant
imaginary part to an energy-dependent complex quantity,
�QQ̄(z,p), whose local part (with a 3-momentum δ function)
encodes the dynamical single-quark self-energies, while its
nonlocal part accounts for interference effects (as a coefficient
to the “interference” function, φ),

Ṽclx(z,p − p′) = (2π )3δ(p − p′)�QQ̄(z,p)

+�QQ̄(z,p′)φN (p − p′) + V (p − p′). (69)

Thus, the modified potential figuring as a kernel in the T -matrix
equation takes the form

Vclx(p − p′) = �QQ̄(z,p′)φN (p − p′) + V (p − p′), (70)

which is then subjected to a standard partial-wave expansion.
The resulting spectral function does not depend on using
�QQ̄(z,p) or �QQ̄(z,p′) in the above equation since φN is
symmetric under the exchange of p and p′. With this setup, the
T -matrix is still analytic but no longer positive-definite. The
latter feature causes complications when utilized in many-body
calculations of single-particle self-energies. It is indicative of a
nonconserving approximation [19]. However, when restricted
to the calculation of the quarkonium spectral functions and
correlators, the former remains strictly positive definite. In
addition, this scheme precisely recovers the implementation
of VI in the static limit. In Sec. IV, we will elaborate on the
interference effects for the spectral functions obtained from
this implementation.

D. Potential ansatz and numerical procedure

1. Screened Cornell potential and bare parton masses

For the Hamiltonian introduced in Eq. (1), the inputs are the
two-body potential and bare particle masses which both depend
on temperature. As an ansatz for the potential, we employ a
generalized in-medium Cornell potential [62,63],

V (r) = VC + VS = −4

3
αs

e−mdr

r
− σe−msr−(cbmsr)2

ms

, (71)

which recovers the well-established vacuum form while
implementing in-medium screening of both the shot-range
Coulomb and long-range confining interaction (“string term”)
in a transparent and economic way. The respective screening
masses are denoted by md and ms . An additional quadratic
term, −(cbmsr)2, in the exponential factor of the string term
accelerates the suppression of the long-range part, mimicking
a string-breaking feature. It can also be considered as the next
term in a power expansion in r .

Since the screening originates from the coupling of the
bare interaction to medium partons, both ms and md are
functions of the parton density and thus they are not totally

independent. The 1/r and r dependence of the potential leads
to static propagators in momentum space, Dc(q) = 1/q2 and
Ds = 1/q4, respectively, which, upon multiplication with the
respective coupling constants, −4/3αs and −8πσ in singlet
channel, constitutes the bare potential in the Hamiltonian. The
screening effects at leading order can therefore be expected to
be of a generic form,

Dc(r) = 1

p2 + Aαs�
, (72)

Ds(r) = 1

p4 + Bσ�
, (73)

with a medium-induced polarization tensor � representing
light-parton loops,6 which are only related with medium
properties. Thus, they are the same for Coulomb and string
terms. However, the same � can lead to different screening
behavior since Coulomb and string potentials couple to �
differently. Here, we simply assume that this difference can
be represented by temperature-independent parameters A and
B related to spin/color and relativistic structures which are not
precisely known in our context. From dimensional analysis a
“propagator” of the form 1/(pn + mn

x) = m−n
x /[(p/mx)n + 1]

has a screening mass proportional to mx . Thus, we have md ∝
(Aαs�)1/2 and ms ∝ (Bσ�)1/4. This yields the constraint
ms = (csm

2
dσ/αs)1/4 where cs is depending on A and B and

other temperature-independent constants. In a Debye-Hückel
approach [61] one obtains the same temperature scaling rela-
tion for string and Debye masses except for the coefficient cs .
However, the resulting screening behavior of the above model
and the Debye-Hückel approach can be different. Thus, we do
not directly use the above propagators or the Debye-Hückel
approach as our ansatz but simply use scaling rules with cs

as a parameter for the Coulomb or string screening masses,
which show indications of model independence. The above
potential is in the quark-antiquark color-singlet channel, while
the potentials in other channels will be modified by Eqs. (3)
and (4) and Table. I.

In our fit procedure, we first constrain the infinite-distance
limit of the input potential V (r) by using FQQ̄(∞,β) (they
are not the same). Then, the “interference function”, φ(xer)
defined Eq. (53), is constrained via Eq. (54), which is a
functional fit. The solution for φ(xer) is unique once V (r) is
fixed (it will turn out to have a shape similar to the perturbative
limit in Ref. [60], as will be shown in Figs. 3 and 8, in
Secs. IV A 1 and IV B 1).

For the quark mass correction, we have previously defined
Ṽ (r) by adding twice the Fock term, MQ = Ṽ (∞)/2, to the
genuine interaction part of V (r), i.e.,

Ṽ (r) = VC(r) + VS (r) + 2MQ, (74)

where

MQ = −1

2

∫
drρ(r)V (r) = 1

2

(
− 4

3
αsmd + σms

)
(75)

is the classical static in-medium self-energy of a point charge,
ρ(r) = δ(r), in its own field, subtracting the divergent vacuum

6The leading-order polarization is just a particle-hole loop.
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FIG. 3. Results of a weakly coupled solution for the self-consistent fit to extract the static HQ potential: single HQ and QQ̄ self-energies,
�X(ω,∞) (first row), and spectral functions, ρX(z,∞) (second row), potential Ṽ (r) and free energies (third row), and interference function,
φ(xer) (fourth row), in the first four columns corresponding to different temperatures. The last column shows the temperature dependence of
the fitted screening masses (top panel) and the scale factor, xe (bottom panel), figuring in the interference function. The free-energy lQCD data
are from Ref. [48].

term. The minus sign arises because the charge repels itself.
Similar physics is discussed in Ref. [64] in the perturbative con-
text. Using Eq. (75) in momentum space with explicit indices,
the Fock mass can be obtained by the self-energy from a poten-
tial including the relativistic and color factors, Eqs. (3) and (4),

Mq = −1

2

∫
d3p

(2π )3
V 1

qq̄(p) + Mfit,

(76)

Mg = −1

2

∫
d3p

(2π )3
V 1

gg(p) + 3

2
Mfit,

where Mfit is a residual mass (utilized as a fit parameter to the
lQCD data for the EoS), which encodes physics that we do not
treat explicitly here (e.g., perturbative self-energies or gluon
condensate effects).7 The nonperturbative gluon-quark mass
ratio in the static limit is Mg/Mq = CA/CF = 9/4, while
in the perturbative limit at high T one has Mg/Mq = 3/2.
The above implementation gives a smooth transition from
the nonperturbative to the perturbative regime. However,

7Neglecting the relativistic factor in Eq. (76), the relation is Mq =
Ṽ (∞)

2 + Mfit,Mg = 9
4

Ṽ (∞)
2 + 3

2 Mfit.

the mass dependence in the relativistic factor still requires a
self-consistent procedure. We have checked that our default
the mass fitting scheme, using Eq. (76), and the scheme
described in the footnote below, give very similar results, with
a maximum difference of 1% for the resulting quark masses,
up to 15% for the gluon masses, 10% for the self-energy
near T ≈ 0.2 GeV, and at the 5% level for gluon masses and
self-energies at T ≈ 0.3 GeV. In either case the influence on
the emerging spectral properties is not significant. Preliminary
results show that the quark-number susceptibilities are rather
sensitive to the masses and can provide additional constraints;
this will be elaborated in future work.

2. Numerical fit procedure for lQCD data

Let us briefly lay out the numerical procedure we use to
search for solutions of our approach that are compatible with
the lQCD data for the QGP EoS, quarkonium correlators and
static QQ̄ free energies. At each temperature, we start with trial
values for the potential and two light parton masses, and we
use them to calculate the nonperturbative off-shell scattering
matrices (T -matrices) for light partons. Within the formalism
laid out in Sec. II, we keep six partial waves to include two-
body channels with angular momentum up to l = 5 (which is
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more than sufficient for convergence); with four color channels
in the qq and qq̄, three in the qg and three in the gg sector
[9], a total of 6 × 10 = 60 different light-parton T -matrices
are computed. These T -matrices are then used to calculate
the self-energies and spectral functions for single partons.
Next, the parton propagators are reinserted back into the T -
matrices, forming a self-consistency problem [recall Eq. (19)],
which is solved by numerical iteration; this forms the “inner”
light-parton self-consistency loop of the overall procedure. The
pertinent outputs are then used to compute the EoS and LWF
as discussed in Sec. III A. If the resulting pressure disagrees
with the lQCD value at the given temperature, the light-parton
masses (Mfit) are retuned, the inner self-consistency loop car-
ried out, and repeated until the EoS is reproduced, constituting
the “intermediate” mass fitting loop of the overall procedure.
After obtaining the masses to reproduce the lQCD EoS, we
proceed to the self-consistent calculation of the self-energy of
a static quark (again a self-consistency loop), which involves
another 42 static-light T -matrices (six partial waves and a total
of seven color channels for Qq, Qq̄, and Qg). These are input
to the formalism laid out in Sec. III B to compute the static-
quark free energy, FQQ̄, and compare it to pertinent lQCD
data. If the calculated free energy disagrees with the lQCD
data, we retune the potential (most notably md ), recalculate the
EoS with retuned light-parton masses, and recompute the free
energy, which corresponds the “outer” potential fitting loop
of the procedure. These loops involve automated (numerical)
adjustments of Mfit and md to best reproduce the EoS and
free-energy data while other parameters are tuned manually.
After obtaining a solution, we proceed to the self-consistent
calculations of charm- and bottom-quark properties which
involve another 42 heavy-light T matrices each. With the full
off-shell HQ spectral functions, we proceed to evaluate two
more T -matrices to compute charmonium and bottomonium
spectral functions and correlator ratios in the pseudoscalar
color-singlet S-wave channel, and compare the latter to lQCD
data as discussed in Sec. III C. If they do not match, we
manually retune the potential (mostly the Coulomb term) and
redo the whole process until a satisfactory result is obtained.
Usually, the fits to the correlator ratio are automatically “satis-
factory” with the assumption that αs does not strongly depend
on temperature. The numerical machinery is carried out with
Mathematica software and typically takes several hundreds of
CPU hours to arrive at a solution at four temperatures.

IV. SELFCONSISTENT NUMERICAL RESULTS

In this section, we discuss the results and insights from the
above framework. For each solution at a given temperature,
all quantities in both HQ and light-parton sectors, i.e., the
QGP EoS, free energy, one- and two-body spectral functions,
and T -matrices are all calculated from a single Hamiltonian,
Eq. (1), with the potential ansatz described in Sec. III D, and
then using the T -matrix approach with one set of parameters.
The interference effect discussed in Sec. III C 2 is only included
when evaluating static-static and heavy-heavy spectral func-
tions and correlators/free energies.

As it turns out, the constraints provided by the currently
used set of lQCD data (free energies, quarkonium correlators,

and EoS) does not yet allow for a unique solution. To explore
this feature, we will focus on two putatively limiting cases,
which we denote by a weakly coupled solution (WCS) where
the potential is close to the free energy (Sec. IV A) and which
has already been discussed in the literature in perturbatively
inspired frameworks [16,59,61], and a strongly coupled solu-
tion (SCS), which is characterized by a long-range potential
which “maximally” rises above the free energy (Sec. IV B), first
pointed out in Ref. [17]. Although both solutions can explain
the chosen set of lQCD data, they predict, as we will see, a
rather different microscopic structure of the QGP at moderate
temperatures.

A similar discussion has been presented before in
phenomenological applications heavy-flavor observables,
both for HQ diffusion [13,65] and quarkonium transport
[66–69]. In these instances the internal and free energies have
been employed as potential proxies for strongly and weakly
coupled scenarios of the in-medium QCD force. A general
tendency for preferring the internal energy was found. Such
studies can, of course be repeated with our more rigorously
deduced potential solutions.

One of the virtues of our approach is that it is carried
out in real-time, allowing us to retain and keep track of
the microscopic quantum many-body information about the
system in a direct way while being intimately connected to the
macroscopic properties of the QGP. This includes the predicted
spectral functions of all involved partons (static, heavy and
light quarks as well as gluons) and the more than one-hundred
in-medium two-body T -matrices, fully off-shell. This informa-
tion readily allows to calculate transport coefficients, Wigner
functions for one- or two-body states, etc., in a nonperturbative
framework, and to make contact with experimental observ-
ables. Thus, the approach is not only rooted in lQCD data, but
also unravels real-time microscopic physics which predicts a
wide variety of phenomena that can be tested by experiments
in a transparent, quantitative and interpretable way.

A. Weakly coupled solution

In this section we first report and discuss the results of
our fits for a weakly coupled solution (WCS), starting from
the HQ free energy and the extraction of the underlying
potential, which is the key quantity determining the interaction
strength in the QGP (Sec. IV A 1) and pivotal for calculating
essentially all other quantities. In Sec. IV A 2 we elucidate the
extra information that can be gained by the fits of Euclidean
quarkonium correlators, and we discuss the resulting charmo-
nium and bottomonium spectral functions. We then proceed to
our fit to the QGP EoS, which involves the two light-parton
masses as additional fit parameters (Sec. IV A 3). We finally
give a comprehensive overview of the emerging light and
heavy-parton spectral functions and their two-body T matrices
(Sec. IV A 4) and a discussion of the pertinent QGP structure,
including its degrees of freedom.

1. Free energy, potential, and static self-energies

When searching for a WCS, we start by using the free
energy as potential. The strength of the potential slightly
increases in the iteration procedure, mostly due to relatively
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FIG. 4. Weakly coupled solution for charmonium (ηc, left panels) and bottomonium (ηb, right panels) spectral functions (upper panels) and
correlators ratios (middle panels) with (first and third column) and without (second and fourth column) interference effects in the imaginary
part of the potential. The lQCD data for ηc [51] and ηb [52] correlator ratios are shown in the first and third bottom panel, respectively, while
the second and fourth bottom panel display the temperature dependence of the charm- and bottom-quark mass, respectively.

small imaginary parts that develop and figure in the static QQ̄
spectral function, Eq. (54). Thus, the solution found in this
way can be regarded as a lower limit of the potential. The
parameters of the potential for the converged solution are given
by αs = 0.27, σ = 0.21 GeV2, cb = 1.3 and a temperature
dependent Coulomb Debye mass, md , as shown in the upper
right panel of Fig. 3. With cs = 0.1 the screening mass of
the string term, ms = (csm

2
dσ/αs)1/4, also follows as shown

in the same panel. The fit of the interference function, shown
in the lowest row of Fig. 3, is quite similar to the perturbative
function found in Ref. [60]; it shrinks in range as a result of the
increase in screening with temperature. The resulting potential
is displayed in the third row of Fig. 3 and indeed found to
exceed the free energy, by up to 0.07 GeV at T = 0.194 GeV
and 0.16 GeV at T = 0.4 GeV. The calculated free energy fits
the lQCD data well.

With this potential, the self-consistent self-energy and spec-
tral function of a static quark follow from T -matrix approach as
shown in the first two rows of Fig. 3, respectively. In practice,
the static limit has been calculated with a numerically large
bare HQ mass (2 × 104 GeV), and the energy scales for the
one- (and two-) body quantities have been plotted relative
to (twice) that bare mass. At low T = 0.194 GeV, the peak
value of Im�Q ≈ −0.05 GeV corresponds to a width of the
spectral function which is around 0.1 GeV. For comparison,
the hard-thermal-loop (HTL) perturbative width [59,60,64] is
4
3αsT ≈ 0.07GeV. For the QQ̄ quantities, the peak value of
Im�QQ as defined in Eqs. (47) and (53) is approximately
two times of the peak value of Im�Q, and the width of the

two-body spectral function is around two times that of the
single static-quark spectral function. The peak value of Im�Q

and the width of the static quark spectral functions increase
with temperature at an approximately linear rate.

2. Quarkonium correlators and spectral functions

Next we turn to the Euclidean quarkonium correlators for
realistic bottom- and charm-quark masses, concentrating on
the pseudoscalar channel where extra complications due to
zero modes do not figure; see Fig. 4. The bare masses of charm
and bottom quarks (Q=c,b) are determined as in Ref. [13], by
fitting the vacuum charmonium and bottomonium ground-state
masses using mQ = mbare

Q + Ṽ (∞)/2 with the vacuum value
of Ṽ at a typical string breaking scale of r=1-1.1 fm, resulting
in mbare

c,b =1.264, 4.662 GeV.
The widths of the quarkonium spectral functions are caused

by collisions of individual heavy quarks within the bound state
with medium partons (the so-called quasifree process [70]),
as encoded in the HQ self-energies. Since the potential is
relatively weak, these self-energies are small, and so is the
width of quarkonium. The ηc is still a well-defined state at
T = 200 MeV, but is essentially dissolved at T = 260 MeV.
The ηb(1S) survives to significantly higher temperatures,
beyond 260 MeV, and even to 400 MeV when interference
effects are included (as described in Sec. III C 2). The latter
generally reduce the quarkonium widths, more so the tighter
the states are bound (by up to 75%). The width reduction
is consistent with simple estimates using the φ(xer) function
(Fig. 3) with pertinent size estimates. Even for the case without
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FIG. 5. Weakly coupled solution for the QGP bulk medium: fit results for the input masses for quarks and gluons (left panel), the QGP
pressure in comparison to lQCD data [46] (middle panel; solid line: total, dashed line: LWF contribution), and the ratio of LWF contribution
to total pressure (right panel).

interference, the width of the QQ̄ states is smaller than two
times the HQ width at vanishing momentum, due to the energy-
momentum dependence of the HQ self-energies as obtained
from the heavy-light T -matrices. As usual, the dissolution
of the quarkonia is due to a combination of the increasing
screening and collision widths.

The correlator ratios are generated by using the reference (or
“reconstructed”) correlator at the lowest temperature consid-
ered (T = 194 MeV), as was done in the lQCD calculations that
we compare to Refs. [51,52]. Without interference effects the
calculated correlator ratios deviate from the lQCD data by up
to ∼10%. Despite the melting of the bound states, the increase
in width effects (over-) compensates the loss of low-energy
strength in the spectral functions and leads to a 5–10% increase
in the correlators ratios with increasing Euclidean time, τ .
This increase is tamed by the inclusion of interference effects,
which, as discussed above, reduce the bound-state widths; the
resulting correlator ratios agree within ∼5% with the lQCD
data. Furthermore, the correlator ratios are quite sensitive to the
strong coupling constant, αs (approximately proportional to it,
reflecting its short distance nature as a local operator related to
the wave function overlap at the origin (recall the discussion
in Sec. III C). Thus, the deviations between our results and the
lQCD data could be further mitigated by a fine-tuning of αs ,
slightly decreasing with temperature at a few-percent level.
In our fits we did not explore such a dependence, given other
uncertainties that can affect the correlator ratios at a similar
level (e.g., spin-dependent interactions). In turn, one could
argue that the fact that the lQCD correlator ratios are quite
close to 1 at all temperatures suggest that αs is not strongly
running with temperature.

3. QGP equation of state

Next, we turn to the self-consistent results for the QGP bulk
properties, i.e., our fit to the lQCD data for the pressure. Here,
the two main fit parameters are the bare light-parton masses
in the Hamiltonian [including the Fock term, recall Eq. (76)],
which are shown in the left panel of Fig. 5. The resulting masses
are rather stable with temperature, with a slight increase toward
Tpc dictated by the decreasing pressure (not unlike in quasipar-
ticle models, but less pronounced, especially for quarks). The
quark-to-gluon mass ratio is different from the perturbative
thermal mass ratio due to the nonperturbative ingredients of the
interaction as discussed in Sec. III D. The fitted mass parameter,

Mfit, starts to exceed Mq for temperatures above 300 MeV due
the negative Coulomb contribution to the Fock term (which is
also enhanced by relativistic corrections); the string term gives
a strictly positive contribution (which is, however, suppressed
by relativistic corrections).

The lQCD data for the pressure can be well reproduced,
see middle panel of Fig. 5. It is interesting to decompose
the pressure into contributions from quasiparticles (�qp ∝
ln(−G−1) + �G) [57] and the two-body interaction charac-
terized by the resummed LWF [� ∝ 1/2 log(1 − V GG)]. The
latter turns out to be generally small, no more than 15% of
the total and slightly increasing with the temperature, cf. right
panel of Fig. 5. This suggests that there are no marked changes
in the interaction strength or degrees of freedom in the WCS
for the QGP in the considered temperature range.

4. Spectral structure of QGP

Finally, let us inspect the spectral structure of the QGP
within the WCS. The spectral properties of single partons are
summarized in Fig. 6 in terms of their self-energies (real and
imaginary parts) and spectral functions. The widths (or scatter-
ing rates) of the partons, � = −2Im�, are significantly smaller
than their masses, implying that they remain well-defined
quasiparticles at all momenta and over the full temperature
range. At the lowest temperature, T =194 MeV, the light-parton
width is around 0.11 GeV, which is larger than the perturbative
expectation, 4

3αsT ≈ 0.07 GeV, but lower than, e.g., the most
recent dynamical quasiparticle model results [71], which are
around 0.2 GeV. Similar to the static case, the width rises
slightly stronger than linear with temperature, which is closer
to the perturbative than the dynamical quasiparticle approach.
The 3-momentum dependence of the width is quite strong at
low temperature and quite weak at high temperature. This is
probably so because partons at different thermal momenta
will probe different regimes of the potential, in particular
since at high temperature the string term (which is responsible
for an appreciable long-range force) is heavily screened.
In the infrared region, the confining interaction behaves as
1/m4

s while the Coulomb one as 1/m2
d . Thus, the increase

of ms implies a larger decrease of the strength of the string
relative to the Coulomb force (the latter is also augmented
by the relativistic Breit correction that reduces the momentum
dependence). The width of the different quark species are quite
similar whereas the gluon width is almost twice larger due to

034918-14



T -MATRIX APPROACH TO QUARK-GLUON PLASMA PHYSICAL REVIEW C 97, 034918 (2018)

Legends: p 0GeV p 1GeV p 2GeV p 3GeV

FIG. 6. Weakly coupled solution for parton spectral properties of the QGP. The figure is organized into four 3-by-4 panels of 12 plots, with
each panel for a given temperature (upper left: T = 0.194 GeV, upper right: T = 0.258 GeV, lower left: T = 0.320 GeV and lower right: T

= 0.400 GeV). Each panel contains four rows corresponding to different parton species (light quarks (q), gluons (g), charm quarks (c), and
bottom quarks (b) in the first, second, third, and fourth row of each panel, respectively). Each row contains three panels showing (from left to
right) the energy dependence of the pertinent real and imaginary part of the self-energy and the resulting spectral functions, for four different
values of the single-parton 3-momentum (p) in the thermal frame.
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FIG. 7. Weakly coupled solution for the imaginary part of the color-singlet S-wave T -matrices (without interference effects) in the
bottomonium (bb̄; first column), charmonium (cc̄; second column), D-meson (cq̄; third column), light-quark (qq̄; fourth column), and glueball
(gg, last column) channels. The four rows correspond to different temperatures, T = 0.194 GeV, T = 0.258 GeV, T = 0.320 GeV, and
T = 0.400 GeV from top down; in each panel, the T -matrix is displayed for four different values of the single-parton 3-momentum (pcm) in
the two-body CM frame.

the color Casimir factor. The quark width first increases with
mass and then decreases again. Usually a larger mass has a
stronger scattering amplitude in the CM frame (cf. Fig. 7), but
the CM transformation, Eq. (11), effectively shrinks the phase
space. This competition leads to the nonmonotonic behavior.

The underlying two-body correlations are illustrated by
the (imaginary part of the) pertinent T -matrices, used to
calculate the single-parton self-energy, in Fig. 7. They exhibit
a sequential dissociation according to the reduced mass of the
bound state. If we use a vanishing binding energy (relative to
the constituent two-body mass threshold) to distinguish bound
and scattering states (for total momentum P = 0), light mesons
are melted at T = 0.194 GeV while the heavy-light meson,
glueball, and quarkonium still survive. The D-meson and first-
excited bottomonium state (ϒ2S) melt near T = 0.258 GeV,
the charmonium around T = 0.320 GeV and the ground-state
bottomonium ϒ1S above T = 0.400 GeV. Even after melting,
a resonance structure can still survive to somewhat higher
temperatures, albeit with typically much reduced strength
in the T matrix. As an alternative way to characterize the
resonance correlation one can inspect their robustness with

increasing single-parton CM momentum (essentially going
off-shell), the light, heavy-light, and first-excited bottomonium
states disintegrate for pcm � 1 GeV. We finally note that the
qq̄ bound-state mass at the lowest temperature, Mqq̄ � 1 GeV,
is significantly larger than the vacuum mass of the light
vector mesons, mρ,ω � 780 MeV (we recall that we do not
include spin-spin or topologically induced interactions, e.g.,
instanton-induced ones, which are believed to play a key role
for dynamical chiral symmetry breaking and its associated
Goldstone bosons).

B. Strongly coupled solution

In this section we discuss our self-consistent set of results
for a strongly coupled solution (SCS). The section structure
parallels the one of the WCS, namely starting from the
determination of the underlying potential through fits of lQCD
results for the static QQ̄ free energy (Sec. IV B 1), followed
by the quarkonium correlator analysis (Sec. IV B 2), the fit to
the QGP EoS (Sec. IV B 3) and a discussion of the one- and
two-body spectral properties (Sec. IV B 4).
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FIG. 8. Results of a strongly coupled solution for the self-consistent fit to extract the static HQ potential: single-quark and QQ̄ self-energies,
�X(ω,∞) (first row), and spectral functions, ρX(z,∞) (second row), potential Ṽ (r) and free energies (third row), and interference function,
φ(xer) (fourth row), in the first four columns corresponding to different temperatures. The last column shows the temperature dependence of
the fitted screening masses (top panel) and the scale factor, xe (bottom panel), figuring in the interference function. The free-energy lQCD data
are from Ref. [48].

1. Free energy, potential, and static self-energies

When searching for a SCS within our framework, we start
from a trial potential significantly larger than the free energy,
together with large imaginary parts in the static-quark self-
energies. The converged self-consistent parameters take the
values αs = 0.27, σ = 0.225 GeV2, cb = 1.3, and cs = 0.01.
The strong coupling constant and the “string-breaking” coeffi-
cient, cb, are essentially the same as for the WCS, and the string
tension is only about ∼5% larger. The key difference lies in the
coefficient, cs , for the screening mass of the string term, which
is a factor of ∼10 smaller. Consequently, the temperature-
dependent screening mass, ms = (csm

2
dσ/αs)1/4, turn out to

be smaller than in the WCS, mostly at low temperatures, by up
to about 1/3, cf. upper right panel Fig. 8. At the same time, the
Coulomb Debye mass, md , for the SCS is comparable to the
one in the WCS at low temperature, but increases more strongly
(and essentially linear) with temperature. The key feature of the
SCS in-medium potential is thus a rather long-range remnant
of the confining force, as shown by the red lines in the third
row of Fig. 8. In particular, at intermediate and large distances,
the potential rises markedly over the free energy (green lines),
by up to 0.6 GeV at the lowest temperature (T = 0.194 GeV)
and by up to 0.3 GeV at T = 0.400 GeV. The latter is not
far anymore from the WCS. The fit to the lQCD data (black

dots) is of the same quality as for the WCS. The scale factor
of the interference function (shown in the lower right panel of
Fig. 8) is also very similar to the WCS, although its magnitude
is smaller at higher temperatures.

With the extracted potential, the self-energies and spectral
functions of the static quark generated from the static-light
T -matrices are shown in the first two rows of Fig. 8. At
low T = 0.194 GeV, the peak value of Im�Q ≈ −0.26 GeV
implies a width of the spectral function in excess of 0.5 GeV. In
fact, the full-width at half-maximum of the pertinent spectral
function amounts to about 0.7 GeV, due to additional effects
from the real part of the static-quark self-energy. This is almost
an order of magnitude larger than the leading-order HTL result
[59,60,64], ( 4

3αsT ) ≈ 0.07 GeV. In addition, the peak value of
the single-quark width, −2Im�Q, increases only slightly with
T at lower temperatures, and even decreases between 0.320 and
0.400 GeV. This remarkable feature is due to the marked loss of
long-range interaction strength which can over-compensate the
increase in parton density with temperature. For the two-body
quantities, the peak value of Im�QQ̄ defined in Eqs. (47) and
(53) is less than twice the peak value of Im�Q, and the width
of the two-body spectral function is less than twice that of the
single static-quark spectral function. This is different from the
WCS case and caused by large off-shell effects.
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FIG. 9. Strongly coupled solution for charmonium (ηc, left panels) and bottomonium (ηb, right panels) spectral functions (upper panels)
and correlators ratios (middle panels) with (first and third column) and without (second and fourth column) interference effects in the imaginary
part of the potential. The lQCD data for ηc [51] and ηb [52] correlator ratios are shown in the first and third bottom panel, respectively, while
the second and fourth bottom panel display the temperature dependence of the charm- and bottom-quark mass, respectively.

Let us also comment on a comparison of the SCS to our
previous work in Ref. [17]. The general shape and temper-
ature behavior of the SCS potential are quite similar to the
result with our previous fit ansatz [17]. However, the SCS
potential shown in Fig. 8 has a significantly smaller force
at large distances compared to the earlier result. Due to the
increasing shell volume, ∝ r2, a long-range force interacts
with increasingly more medium particles, which in principle
can generate (very) large scattering widths. However, the
self-consistency requirement ties the width to the potential
as the latter generates the self-energies through the T -matrix.
Large widths generated by long-distance forces can therefore
easily lead to free energies which fall below the lQCD data.
In this way, the self-consistency much augments the control
over the properties of the force which are especially effective
in generating large widths (in particular its large-distance
behavior).

We cannot prove that our SCS constitutes an upper limit
for the coupling strength of the QGP, given the lQCD data
that we incorporate in our fit. However, there are several
limiting factors (in addition to the one described above) which
prevent us from constructing more strongly coupled solutions.
In particular, we limited ourselves to scenarios where the string
tension does not significantly exceed the vacuum value. We
also refrained from using “unnaturally” small Coulomb Debye
masses which could provide a long-range force but would be
in conflict with the expected approach toward perturbative
behavior at high temperatures. Within these constraints the
presented SCS is the “strongest” solution we could find upon
varying our input and ansatz for the initial potential. As one

would expect from a self-consistent quantum framework, we
have evidence that our calculations respect lower quantum
bounds for transport coefficients, as has been conjectured, e.g.,
for the ratio of shear viscosity to entropy density. For example,
if we attempt to push for an extremely long-range force ansatz
(which, as explained above, leads to very large scattering
widths), the self-consistent iteration procedure in fitting the
free energy will push back toward a more weakly coupled
solution. When neglecting the requirements to agree with
lQCD data and deliberately increasing the interaction strength
in the calculation of the EoS, the self-consistent T -matrix
iteration ultimately leads to a zero-mass color-singlet glueball,
which signals condensation and at that point goes beyond our
current setup (recall that our parton fit masses encode possible
condensate gaps). Quantum self-consistency clearly plays a
key role as a limiting mechanism.

2. Quarkonium correlators and spectral function

The self-consistent charmonium and bottomonium spectral
functions and pertinent Euclidean correlators ratios (normal-
ized to the lowest-temperature one) are collected in Fig. 9
together with lQCD data for the latter and the temperature
dependence of the effective charm- and bottom-quark masses.

The large scattering rates of charm and bottom quarks in
the SCS induce significantly larger widths of the quarkonium
states than in the WCS. As before, interference effects lead
to a marked reduction of the bound-state widths. The stronger
binding compared to the WCS is counteracted by the signif-
icantly larger heavy-quark masses in medium as to generate
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FIG. 10. Strongly coupled solution for the QGP bulk medium: fit results of the input masses for quarks and gluons (left panel), the QGP
pressure in comparison to lQCD data [46] (middle panel: solid line, total; dashed line, LWF contribution), and the ratio of LWF contribution to
total pressure (right panel).

an ηc mass that is remarkably stable with temperature. This
leads to Euclidean correlator ratios which are within 2% of
unity, which agrees even better with the lQCD data than in
the WCS (although this is not necessarily significant, as we
argued in the context of the WCS results). The correlator ratios
without interference effects deviate somewhat more from the
lQCD data, possibly indicating that a moderately broadened
charmonium ground state that survives to higher temperatures
(here about T = 0.320 GeV when including interference)
may be favored by lQCD data.8 For example, the inelastic
width of the ηc at T =0.194 GeV is around 0.1 GeV for the
SCS and 0.02 GeV for the WCS (including interference).
Appreciable charmonium reaction rates with the ground state
surviving over an extended interval in temperature are favored
by the phenomenology of transport models in describing
J/ψ production at RHIC and the LHC [72], in particular to
regenerate a sufficient number of J/ψ’s at the LHC.

In the ϒ sector, the first excited state still survives at
the lowest temperature; even without interference effects, a
pertinent maximum structure in the spectral function is visible
below the nominal bb̄ threshold of 2mb, but its width is
comparable or even larger than the binding energy so that it
appears as being dissolved. The ground-state ϒ(1S) clearly
survives up to the highest temperature, T = 0.400 GeV (it is
smeared out at much lower temperature without interference
effects). The pertinent correlator ratio is in line with lQCD data
within a few percent, which again is the closest agreement
between all four scenarios considered in this paper (SCS
and WCS with and without interference effects). The slight
increase of the calculated ratio is in part caused by the lowering
of the bound-state mass, implying that the decrease in the
constituent bottom-quark masses is more relevant than the
decrease in binding energy.

8There is a small overall shift of the ground states’ peak position
to higher masses when including interference effects as compared
to neglecting them; this may depend on our specific implementation
of the interference effects which requires further investigation. On
the other hand, the reduction of the width by interference is a robust
mechanism independent of the implementation.

3. QGP equation of state

Next, we turn to the SCS for QGP bulk properties. The fitted
light-parton masses are qualitatively similar to the WCS, cf.
left panel of Fig. 10. Most notably, the gluon mass is quite a bit
larger due to the larger string-induced Fock term contribution,
recall Eq. (76), implying a much increased infinite-distance
limit relative to the WCS. This contribution is also active
for the effective quark mass. The underlying fit mass, Mfit,
is actually appreciably smaller than in the WCS, with values
of 0.16 and 0.49 GeV at T = 0.194 GeV and T = 0.400 GeV,
respectively. These values are not far from what one expects
from the perturbative (Coulomb) thermal masses,

√
1/3gT =

0.2 GeV and
√

1/3gT = 0.42 GeV, respectively. The resulting
EoS fits lQCD data well, and encodes the most important
difference between SCS and WCS, namely that the two-body
contribution to the pressure is much more prominent at low
temperatures, reaching more than 50% at T = 0.194 GeV,
compared to ∼10% in the WCS. Also, the LWF contribution
shows a more intuitive temperature behavior, in that its fraction
relative to the total appreciably decreases with increasing T
(cf. right panel of Fig. 10); here, the decrease in interaction
strength surpasses the increase in parton density, which can
be interpreted as a gradual melting of the light-parton bound
states with T (this interpretation will become even clearer
upon inspection of the spectral functions in the next section).
However, at T = 0.400 GeV, the interaction contribution still
amounts to ∼20%, indicating that even at this temperature
the QGP contains a significant nonperturbative component
(possibly driven by the gluonic sector through glueball con-
tributions). As before, the gluon sector largely decouples at
small temperatures due to the large gluon masses.

4. Spectral structure of QGP

We finally turn to the examination of the single-parton
spectral functions and their in-medium scattering amplitudes.
The width of the partons, � = −2Im�, is large, especially at
low temperatures and small 3-momenta, p � T , see the upper
four plots in the second column of Fig. 11. The quark (gluon)
width reaches up to 0.6 (1.1) GeV right around its on-shell
energy, which is larger than its effective mass and thus implies
the loss of a well-defined quasiparticle excitation. Inspection
of the pertinent p = 0 light-parton spectral functions (upper 2
panels in the third column of Fig. 11) confirms this notion, as
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Legends: p=0GeV p=1GeV p=2GeV p=3GeV

FIG. 11. Strongly coupled solution for parton spectral properties of the QGP. The figure is organized into four 3-by-4 panels of 12 plots,
with each panel for a fixed temperature (upper left: T = 0.194 GeV, upper right: T = 0.258 GeV, lower left: T = 0.320 GeV and lower right:
T = 0.400 GeV). Each panel contains four rows corresponding to different parton species (light quarks (q), gluons (g), charm quarks (c), and
bottom quarks (b) in the first, second, third, and fourth row of each panel, respectively). Each row contains three panels showing (from left to
right) the energy dependence of the pertinent real and imaginary part of the self-energy and the resulting spectral functions, for four different
values of the single-parton 3-momentum (p) in the thermal frame.
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FIG. 12. Strongly coupled solution for the imaginary part of the color-singlet S-wave T -matrices (without interference effects) in the
bottomonium (bb̄; first column), charmonium (cc̄; second column), D-meson (cq̄; third column), light-quark (qq̄; fourth column), and glueball
(gg, last column) channels. The four rows correspond to different temperatures, T = 0.194 GeV, T = 0.258 GeV, T = 0.320 GeV, and
T = 0.400 GeV from top down; in each panel, the T -matrix is displayed for four different single-parton momenta (pcm) in the two-body CM
frame.

the quark’s (gluon’s) spectral strength is spread over an energy
range of about 1(2) GeV. In fact, the rather large and attractive
real part of the self-energy at small (off-shell) energies (upper
2 panels of the first column of Fig. 11) also plays an important
part in the quark (gluon) spectral distribution, as it generates
a rather prominent collective mode at ω � 0.15(0.7) GeV,
sitting on top of the broad distribution associated with the
dissolved quasiparticle mode. The low-temperature widths
are almost an order of magnitude larger than the HTL value
of 4

3αsT ≈ 0.07 GeV, and much larger than the most recent
dynamical quasiparticle model result which is around 0.2 GeV
[71]. Interestingly, the temperature dependence of the parton
widths is nonmonotonic with increasing temperature (as was
found for static quarks discussed in Sec. IV B 1), which has
important consequences for the temperature dependence of
transport coefficients [25]. This is qualitatively different from
both perturbative and dynamical quasiparticle approaches.
The 3-momentum dependence of the width is quite strong
especially at low temperatures (less so at high temperature),
being substantially reduced with increasing p. This implies

that at higher momenta well-defined quasiparticle excitations
re-emerge at any temperature, as to be expected from a
generic transition to a weak coupling. However, since the
string term at high temperature is not screened as much as
in the WCS, the momentum dependence of self-energy at high
temperature differs from the WCS. The widths of the charm and
bottom quarks are quite similar to the light quarks, implying
that bottom quarks remain well-defined quasiparticles at all
momenta and temperatures, while the situation is borderline
for low-momentum charm quarks close to Tc.

Self-consistent T -matrices are compiled in Fig. 12. At low
temperatures appreciably bound quark-antiquark states emerge
in all channels (glueballs, light mesons, heavy-light mesons,
charmonia, and bottomonia). The light qq̄ resonance mass is
close to the vacuum mass of light vector mesons, reflecting
a realistic vacuum limit as encoded in the potential model
(instanton effects are subleading in the vector channel). This
is, however, nontrivial given its embedding in the QGP EoS
(in particular through the fitted light-quark mass). Note that
the off-shell behavior of the parton widths, i.e., their decrease
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away from the on-shell peak (recall column two in Fig. 11),
plays an important role in the formation of bound states; e.g.,
the light-meson width of ∼0.6 GeV at the lowest temperature
is well below twice the light-quark width, mostly because of
the ∼0.3 GeV binding relative to the nominal qq̄ threshold of
1.1 GeV. Compared to the WCS (recall Fig. 7), the strength
of the T -matrices in the SCS is much increased (e.g., the peak
value in the pcm=0 light-meson channel is ∼25/GeV2 in the
latter compared to ∼6 /GeV2 in the former; also, the mass of the
qq̄ bound state is smaller, ∼0.8 GeV versus ∼1 GeV). This, in
particular, makes a large difference in their contributions to the
EoS (recall Fig. 10 versus Fig. 5). At the same time, the much
larger widths in the spectral functions of light partons in the
SCS relative to the WCS causes their thermodynamic weight
to be much suppressed in the former relative to the latter. In
this sense, the SCS predicts a transition from broad parton
quasiparticles to broad hadronic states in the thermodynamics
of the QGP as Tc is approached from above. The reemergence
of parton quasiparticles and suppression of their bound states
not only occurs with increasing temperature (note the reduction
in the y-axis scale when going down in temperature row by row
in Fig. 12), but also with increasing parton CM momentum
within the bound state (not to be confused with the total
momentum, P , of the bound state in the heat bath, which is zero
throughout this paper) and delayed with increasing constituent
parton mass.

V. SUMMARY AND OUTLOOK

We have set up a self-consistent thermodynamic T -matrix
approach to study the bulk and microscopic properties of the
QGP in a unified framework, encompassing both light- and
heavy-flavor degrees of freedom. Starting from the HQ limit
of QCD, we set up an effective partonic Hamiltonian with a
universal color force, including remnants of the confining force
and relativistic corrections necessary to treat thermal partons.
We have computed one- and two-body thermodynamic Green’s
and spectral functions self-consistently, incorporating bound
and scattering states on an equal footing. Compared to earlier
works, a full off-shell treatment is implemented to account
for quantum many-body effects rigorously, in particular the
collisional widths of the QGP constituents. Moreover, our
approach enables systematic constraints on the inputs to the
Hamiltonian, i.e., the two-body potential and two effective
light-parton mass parameters, by comparing to a variety of
lattice-QCD data.

Our calculation of the equation of state has been carried
out in the LWB formalism with self-consistently computed
light-parton self-energies and T -matrices. Importantly, we
managed to resum the Luttinger-Ward functional using a
matrix-log technique, which is critical to account for the
dynamical formation of bound (or resonance) states in the
thermodynamics of the system. The main constraints on the
two-body driving kernel are derived from the HQ free energy,
FQQ̄, which we have also computed self-consistently from the
T -matrix for static quarks embedded in the QGP. Based on
a parametric ansatz for an in-medium Cornell potential, we
have fitted lattice-QCD data for FQQ̄ and further checked our
results against Euclidean correlator ratios in the bottomonium

and charmonium sectors. Together with the EoS, for which the
fit of pertinent lQCD data can be largely controlled through
the two bare light-parton masses in the Hamiltonian, this
constitutes a comprehensive quantum many-body framework
for light and heavy partons and their two-body correlations in
the QGP. We have solved this problem through a multilayered
numerical iteration procedure in our fit to the three sets of
lQCD data, where a typical accuracy at a few-percent level
can be achieved. The main predictive power of the approach
resides in the emerging spectral and transport properties of the
QGP, including the prevalent degrees of freedom in the EoS.

In our search for self-consistent solutions, it turns out that
the above set of lQCD constraints does not uniquely specify
the input for the driving kernel. We classified its possible range
by a weakly and a strongly coupled solution. In the former, the
input potential comes close to a lower limit set by the HQ free
energy itself (not unlike what has been discussed based on
direct Bayesian extraction methods [16]). The resulting light-
parton spectral functions have rather moderate widths, well
below their masses, and thus yield well-defined quasiparticles,
as well as rather sharp but loosely bound resonances when
approaching Tc from above. The latter remain subleading, at
a 10% level, in their contribution to the EoS. In contrast, the
strongly coupled solution is characterized by a potential that
appreciably exceeds the free energy (not unlike recent lQCD
extractions reported in Ref. [73]), recall the third row of Fig. 8.
The key difference to the weakly coupled solution is a long-
range remnant of the confining force (while its short-distance,
r � 0.4 fm, and high-temperature, T > 2Tc, behavior is quite
similar in both solutions). The emerging partonic spectral
widths are much enhanced; they become comparable to the
parton masses and thus dissolve quasiparticle structures for
low-momentum modes near Tc (cf. the third panel in rows 1
and 2 of Fig. 11). At the same time, broad but well-defined
two-particle bound states (mesons) emerge (last two panels
in row 1 of Fig. 12) and become the leading contribution to
the EoS (middle panel in Fig. 10), thus signaling a transition in
the degrees of freedom in the system. At high momenta, parton
quasiparticles reemerge and bound-state correlations are much
suppressed. This solution, in particular, critically hinges on a
proper treatment of the quantum effects induced by the large
scattering rates.

While we believe that the strongly coupled solution is
clearly the more attractive one (including its transition from
quarks to hadrons and a qualitatively liquid-like behavior with
interaction energies comparable to the parton masses), a more
quantitative characterization of this notion is in order. We
already indicated in our previous letter [25] that transport
coefficients, in connection with heavy-ion phenomenology,
can play a decisive role in this regard. The heavy-quark
diffusion coefficient and the viscosity-to-entropy density ratio
show promisingly small values in the strongly-coupled sce-
nario, while they are significantly larger in the weakly coupled
scenario, to an extent that creates conflicts with hydrodynamic
and heavy-flavor transport modeling of heavy-ion collisions.
The latter is currently being investigated quantitatively and will
be reported elsewhere [74]. In fact, converting the heavy-quark
diffusion coefficient into a thermalization and scattering rate,
one can straightforwardly deduce that values of 2πDs � 3

034918-22



T -MATRIX APPROACH TO QUARK-GLUON PLASMA PHYSICAL REVIEW C 97, 034918 (2018)

translate into quark scattering rates of order 1 GeV; this implies
the dissolution of light quasiparticles, fully consistent with
our numerical findings. The large widths also require the
underlying potential V to markedly exceed the free energy,
FQQ̄, independent of model details [17]. As a compact upshot,
the strongly coupled solution found in our approach may be
characterized as establishing links between: “a large string
potential” ⇔ “strong two-body resonances” ⇔ “broad (non-
quasiparticle) spectral functions” ⇔ “small viscosity/spatial
diffusion coefficients.” If the string term arises from the
nontrivial vacuum structure of QCD, then these links suggest
that the latter is in fact responsible for the remarkable features
of the sQGP.

A more ambitious line of future work is to test the predicted
spectral properties more directly; in the quarkonium sector
this presumably requires the formulation of quantum transport
approaches for heavy-ion collisions as recently discussed in
the literature, which, in turn, can take advantage of heavy-
quark diffusion properties computed with the same underlying
interaction. The most direct connection remains the dilepton
production rate, where again constraints from lQCD data
can be straightforwardly utilized. Another area accessible to
our approach is the investigation of finite chemical potential
in the QCD phase diagram, starting with the calculation of
quark susceptibilities. However, the description of phenomena
associated with dynamical chiral symmetry breaking, which
are expected to become important at temperatures below T �
0.185 GeV [75], will require an extension of the current
formalism to explicitly include condensation mechanisms.
This is more challenging but, we believe, still feasible.
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APPENDIX A: T -MATRIX APPROACH FOR LIGHT
PARTONS

In this Appendix we discuss several issues related to the
implementation of the potential approximation for light-quark
interactions. Historically, the Cornell potential has been a
successful tool for quark-based hadron spectroscopy; 3D
reductions of the 4D Bethe-Salpeter equation (BSE) are also
widely used in effective hadronic approaches to hadronic
vacuum physics, including light mesons like π -π interactions.
In particular, the Cornell potential incorporates essential non-
perturbative aspects of the QCD force, i.e., a confining force.
Our approach is a finite-temperature version of this framework,
where remnants of the confining force turn out to play a crucial
role to render a strongly coupled system. The recovery of the
vacuum vector-meson masses at low QGP temperatures in the
SCS (where the potential is close to its vacuum form) is a direct
manifestation of a “realistic” vacuum limit of the approach in
the light-quark sector. As we remarked in the text, interactions
believed to be essential for spontaneous chiral symmetry
breaking (such as instanton-induced forces) are not included,
but we recall that recent lQCD computations have found
that the effects of chiral symmetry breaking have essentially

vanished once the temperature has reached about 30 MeV
above the chiral crossover temperature, T χ

pc � 0.155 GeV [75].
There are several further considerations. The reduction of

the relativistic 4D Bethe-Salpeter equation (BSE) [26] into 3D
scattering equations has been scrutinized, e.g., in Ref. [29]. In
particular, within in the Blankenbecler-Sugar (BbS) scheme
[27], the BSE can be equivalently separated into two coupled
equations, where the kernel of the first (leading) equation is
potential-like, while the second (subleading) equation quan-
tifies the off-energy-shell corrections to the potential kernel.
The philosophy is to expand ithe BSE around the potential
solution using a parametrically small correction, R2V [27],
rather than to expand around the free-wave solution using
the coupling constant and/or velocity (as in NRQCD) as a
small parameter. In particular, such an expansion does not rely
on a nonrelativistic hierarchy. This series usually exhibits a
fast convergence [27,29], suggesting that the leading potential
solution is already close to the full solution. In many cases, the
higher-order off-shell corrections can be effectively absorbed
in an adjustment of the potential. In the present case, the
fits of the potential to lQCD data may approximately encode
such corrections. Finally, we recall that for 2 → 2 on-shell
scattering in the CM system the in- and outgoing momenta
moduli of the particles are equal; i.e., there is no energy
transfer in the collision. We also recall that while the two-body
interaction is approximated by an instantaneous force, the
many-body quantum approach fully accounts for the dynamics
(energy dependence) of the one- and two-particle propagators
(and T -matrices) in the system. Additional considerations can
be found in Refs. [9,76].

APPENDIX B: GENERALIZED THERMODYNAMIC
RELATIONS FOR THE LWB FORMALISM AT FINITE μq

The LWB formalism implies several thermodynamic re-
lations for particle, energy, and entropy densities [18,20].
However, these relations will be modified when using an
effective Hamiltonian whose “bare” single-particle masses
[encoded in the dispersion relation ε(p)], and potential, V ,
depend on temperature (T ) and chemical potential (μ). In this
Appendix we illustrate these modifications.

The strategy for the derivation is to start from the usual
relations without T or μ dependence in the dispersion relation
and potential and then generalize them to the case with T and
μ dependencies. For derivatives with respect to (wrt) T or μ
any implicit dependence through G will vanish. For ε and V
independent of T and μ, one has

N = −δ�

δμ
= ±−1

β

∑
n

Tr{G}, (B1)

since the dependence of μ through (δ�/δG)(δG/δμ) will
vanish according to Eq. (24), and the onlyμdependence figures
from G−1

(0) = iωn − (ε − μ).
For the derivation of the energy density from the grand

potential one can adopt a method in time space is given in
Ref. [20]. In frequency space, with a separation of the β
dependence arising from the loop as in Eq. (20), the entropy
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contribution can be derived as

T S = β
∂�

∂β
= −� ∓ −1

β

∑
n

Tr

{
(−iωnG) + 1

2
�(G)G

}
.

(B2)

Still, the implicit dependence on β through G will vanish.
The first term comes from the derivative wrt (−1/β) in the
frequency sum in obtaining � and �. The second term comes
from the derivative wrt (−1/β) of ωn in G−1

(0) . The third term
comes from the (−1/β)ν dependence of the loop integrals in
the self-energy and gives a factor ν that cancels the 1/ν factor
in the skeleton expansion. With the entropy contribution, the
energy U is

U = � + T S + μN = ±−1

β

∑
n

Tr

{[
ε + 1

2
�(G)

]
G

}
,

(B3)

where G−1 = iωn − (ε − μ) − � by use of Eq. (25). We can
derive Eq. (B3) from Eqs. (B2) and (B1) using GG−1 = 1
and −1

β

∑
n eiωnε1 = 0 with an ε regulation technique [44].

This completes the derivation of the standard thermodynamic
relations within the LWB formalism.

If the “bare” single-particle dispersion relation ε and the
potential V of the Hamiltonian are functions of β and μ,
the particle number, N , and internal energy, U , receive extra
contributions,

N = ±−1

β

∑
n

Tr

{[
1 − ∂ε

∂μ
− 1

2
�

(
G,

∂V

∂μ

)]
G

}
, (B4)

U = ±−1

β

∑
n

Tr

{[
ε + β

∂ε

∂β
− μ

∂ε

∂μ

+ 1

2
�(G) + 1

2
�

(
G,β

∂V

∂β

)
− 1

2
�

(
G,μ

∂V

∂μ

)]
G

}
,

(B5)

where �(G,X) ≡ ∑
ν �ν(G,X), and �ν(G,X) is defined to

replace one of the V in evaluating �ν(G) by X at each order. It
can be shown that, at least for ladder and ring diagrams, it does
not matter which V is replaced in the diagram because every
V in the connected diagram for �ν is equivalent. Thus, for the
T -matrix resummation the self-energy can be schematically
written as

�(G,X) = T (G,X)G, T (G,X) = (1 − V GG)−1X, (B6)

where X is μ∂V
∂μ

or β ∂V
∂β

. Since T (G,V ) = (1 − V GG)−1V ,
the new logarithm can be adapted from the original T -matrix
logarithm without increasing the complexity.

APPENDIX C: ADDITIONAL RELATIONS FOR
THE STATIC HQ FREE ENERGY

Based on the setup in Sec. III B, we discuss additional useful
relations that follow from this formalism.

First, we prove that a relation FQQ̄(∞,β) = 2FQ(β) is
implicit in our formalism for the Polyakov loop defined as

FQ(β) = −1

β
ln

[
−1

β

∑
νn

GQ̄(iνn)e−iνnβ

]
. (C1)

If we express Eq. (38) in frequency space,

FQQ̄(r,β) = −1

β
ln

⎡
⎣−1

β

∑
En

GQQ̄(iEn,r)e−iEnβ

⎤
⎦, (C2)

use the fact that G̃QQ̄(iEn,∞) = G0
QQ̄

(iEn) =
−β−1 ∑

νn
GQ(iEn − iνn)GQ̄(iνn) and iEn = iωn + iνn

with the identity

−1

β

∑
En

−1

β

∑
νn

GQ(iEn − iνn)GQ̄(iνn)e−iEnβ

=
(

−1

β

∑
ωn

GQ(iωn)e−iωnβ

)(
−1

β

∑
ωn

GQ̄(iνn)e−iνnβ

)
,

(C3)

and plug this into Eq. (C2), one indeed finds FQQ̄(∞,β) =
2FQ(β), which is also satisfied numerically.

Second, we found the following identity:

Ṽ (r) =
∫

dE[EρQQ̄(E,r)] = lim
t→0

i
∂

∂t
G>(t,r), (C4)

which can be proved using a contour integral (over the large
upper half circle) and the fact that �QQ̄(z,r) is analytic
(reaching 0 at large z) for

Ṽ (r) = −1

π
Im

[ ∫
dz

z

z − Ṽ (r) − �QQ̄(z,r)

]
. (C5)

We note that Ṽ (r) is different from the definition in Ref. [58],
where it is for the long-time limit. In our approach, V (r) =
Ṽ (r) − 2MQ is the fundamental potential figuring in the
Hamiltonian which will not contain an imaginary part and
reach 0 at infinite r .

Third, we propose a possible way to obtain further con-
straints on the potential from lQCD data for the Wilson line,
GQQ̄(τ,r) [16,58,77], which in our context is given by

GQQ̄(−iτ,r) =
∫ ∞

−∞
dE ρQQ̄(E,r) e−τE. (C6)

These data sets can in principle provide information beyond
the free-energy data. Ideally, ρQQ̄(E,r) can be obtained by
inverting the e−τE kernel. This leads to

G0
QQ̄

(z) =
∫

dE
ρQQ̄(E,∞)

z − E
,

V (z,r) = [
G0

QQ̄
(z)

]−1 −
[∫

dE
ρQQ̄(E,r)

z − E

]−1

. (C7)

From V (z,r), we can separate the input static potential V (r).
However, a direct inversion of the kernel e−τE in Eq. (C6)
is challenging. In our approach, we can instead calculate the
spectral function ρQQ̄ based on quantum many-body physics
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with a potential ansatz just as in the main body of this paper.
This extra information may help to narrow down the current
latitude between WCS and SCS.

APPENDIX D: INTERFERENCE EFFECTS AND Im V

In this Appendix, we illustrate the origin of r-dependent
imaginary part of the potential in terms of interference effects
at the three-body level and discuss future directions to define
�QQ̄(z,r) self-consistently embedded in the T -matrix ap-
proach. We illustrate potential conceptual problems for “Im V ”
and outline how they may be handled within the T -matrix
framework.

The interference effects are diagrammatically illustrated in
the first row of Fig. 13. A medium parton (top line) can scatter
with either of the heavy quarks (lower two lines) interacting
with each other. Therefore, the diagram equation can be
schematically represented by (MQ + MQ̄)(M†

Q + M†
Q̄

). In
analogy to squaring the usual coherent supposition of two
quantum amplitudes, it can be separated into a noninterfering
term, |MQ|2 + |M†

Q̄
|2, and an interfering term, MQM†

Q̄
+

MQ̄M†
Q. Moreover, the amplitude squared of the three-body

diagram corresponds to the imaginary part of the two-body
diagram by cutting the internal loops, which is the optical
theorem. Thus, in the second row of Fig. 13 we can identify the
first two cuts in the self-energy diagram corresponding to the
noninterfering term and the two cuts in the screening diagram
corresponding to the interference term. The r-independent
“Im V ” is the imaginary part of self-energy while the r-
dependent “Im V ” (proposed by in Ref. [60]) is the interference
term.

The originally proposed “Im V ” is based on perturbative
diagrams. Motivated by the correspondence between the di-
agrams in the first two rows of Fig. 13, and calculating the
self-energies from the T -matrix by the first two diagrams in the
third row of Fig. 13, the interference term should correspond to
the third diagram in the third row. The T -matrix configuration,

+ +

T

T T

T

FIG. 13. The first row depicts M · M† including interference
effects that can be obtained by cutting the diagrams as shown in
the second row. The third row is the T -matrix generalization of the
diagrams in the second row.

T GGT , in the HQ t-channel interaction form a BSE (i.e.,
energy-transfer dependent) kernel,

K(p̃ − p̃′) =
∫

d̃k TQq(k̃,k̃ + p̃ − p̃′)Gq(k̃ + p̃ − p̃′)

× TQq(k̃ + p̃ − p̃′,k̃)Gq(k̃), (D1)

where p̃ − p̃′ denotes the 4-momentum exchange which intro-
duces complications in the implementation. Taking advantage
of the static quarks, we can formulate it in a practically usable
form. Transforming the kernel K(p̃ − p̃′) to frequency and
coordinate space as K(ωn − ω′

n,r), the BSE decouples in
coordinate space due to the static limit and forms a matrix
equation in frequency space,

T (iEn,iωn,iω
′
n,r)

= K(iωn − iω′
n,r) − 1

β

∑
λn

K(iωn − iλn,r)

×G(iEn − iλn)G(iλn)T (iEn,iλn,iω
′
n,r). (D2)

Its solution can be obtained using matrix inversion in anal-
ogy to Eq. (15). The continuation to real time is involved
due to the complicated analytical structure of the T -matrix,
T (iEn,iωn,iω

′
n,r), and will not be discussed here. Instead,

working in imaginary time is enough for our purpose. The BSE
solves the equation for an interfering two-body propagator
with r dependence:

G
(0)
QQ̄

(iEn,r)

= G0
QQ̄

(iEn) +
(−1

β

)2 ∑
ωn,ω′

n

GQ(iωn)GQ̄(iEn − iωn)

× T (iEn,iωn,iω
′
n,r)GQ(iω′

n)GQ̄(iEn − iω′
n). (D3)

The full four-point Green’s function is solved by a T -matrix
using this propagator with a bare V (r) as kernel:

GQQ̄(iEn,r) = 1[
G0

QQ̄
(iEn,r)

]−1 − V (r)

= 1

iEn − 2MQ − V (r) − �QQ̄(iEn,r)
. (D4)

Therefore, �QQ̄(z,r) in Eq. (49) is defined and calculated by
the above setup in terms of V (r), too. With this setup, the
evaluation of FQQ̄(r,β) only depends on V (r). Everything else
will be generated through the self-consistent many-body field
theory framework. With Eq. (C2), the theoretical formalism
for the potential is in a closed form, where the only input is the
potential V (r), defining a fully constrained functional equation
for V (r). This is the example that was referred to after Eq. (44),
showing how to start from the bare V (r) to obtain a dispersive
V (z,r) or, equivalently, �QQ̄(z,r).

The incorporation of loop effects in the t-channel exchange
“potential” via a self-consistent evaluation of the self-energy
is more rigorous than just forming a closed two-body equation
as discussed in this section. The proper procedure should
be based on a conserving approximation [19,20] formed by
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the � derivative. This is not guaranteed for the kernel K ,
and this is why in the main part of this paper we have only
used it to investigate the four-point Green’s function, not to
implement it to calculate the self-energy. As we have illustrated
in Fig. 13, interference effects are inherently three-body pro-
cesses. Therefore, the self-consistent treatment of interference
effects requires a three-body equation, e.g., a Faddeev equation
[78]. However, the loop corrections to the in-medium potential
are in general different when generating them through a BSE
kernel compared to starting from a 3-body Faddeev approach
and then contracting the in-medium light-parton line, which
is illustrated in Fig. 14. However, one can prove that in the
Faddeev-based approach, there is an approximate four-point
Green’s function that can be cast into a two-body propagator
of the form of Eq. (49) or Eq. (D4). The more rigorous

T

T T

T T

T T

T

FIG. 14. The left panel shows the diagram corresponding to
the BSE implementation of loop effects in the potential, while the
right panel is based on a Faddeev equation for the QQ̄+light-parton
interaction with the thermal light-parton line being closed off.

treatment of the three-body equation is computational involved
and provides an interesting topic for future investigations.
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