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Jet-medium interaction and conformal relativistic fluid dynamics

Li Yan, Sangyong Jeon, and Charles Gale
Department of Physics, McGill University, 3600 rue University Montréal, Quebec H3A 2T8, Canada

(Received 17 August 2017; published 26 March 2018)

A formalism to study the mode-by-mode response to the energy deposition of external hard partons propagating
in a relativistic fluid is developed, based on a semianalytical solution of conformal fluid dynamics. The soft-particle
production resulting from the jet-medium interaction is calculated, and the recoil of the viscous medium is studied
for different orientations of the relativistic jets and for different values of the specific shear viscosity η/s.
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I. INTRODUCTION

One achievement of the Relativistic Heavy Ion Collider
(RHIC) and Large Hadron Collider (LHC) heavy-ion program
has been the realization that the medium created at those
facilities—the quark-gluon plasma (QGP)—could be success-
fully modeled theoretically using relativistic fluid dynamics.
The development of hydrodynamical models that followed
has further fueled the hopes of being able to extract trans-
port coefficients of QCD from detailed measurements of the
collective behavior of soft observables in relativistic nuclear
collisions [1,2].

Another remarkable property of the new state of matter
created during relativistic heavy-ion collisions, the energy
loss of QCD jets, has been revealed by using “hard probes,”
i.e., probes well calibrated with a behavior in vacuum that
can be calculated within perturbative QCD (pQCD). An early
suggestion about using jets as a baseline in nuclear collisions
was based on elastic interactions [3] and pictured the energy
loss process as similar to the ionization loss experienced
by charged particles in regular matter. It was later realized
that medium-induced bremsstrahlung could be even more
efficient in removing energy from the hard traveling parton
(“quenching the jet”) [4]. Thanks to decades of progress in
theory and in experiments, it is now firmly established that
jet quenching in high-energy heavy-ion collisions probes the
energy loss mechanisms of a hard parton traversing a hot and
dense quark-gluon plasma (QGP) [5,6]. The properties of the
strongly interacting medium created by colliding heavy ions
at high energies, as revealed by the analysis of jets, manifest
themselves mainly through transport parameters such as the
transverse momentum diffusion rate, q̂, and the elastic energy
loss rate ê [4,7].

How do jets affect the medium? Only recently has the
medium itself been included directly in jet observables. For
instance, measurements at the LHC energy have extended the
reconstructed jet substructures to large jet-cone radii [8], where
contributions from soft particles were found to be essential.
Also, the energy imbalance observed in the dihadron correla-
tions is restored by the relatively low transverse momentum
out-of-cone particles, which highlights the significance of
jet-medium interaction in a theoretical description of jets [9].

Indeed, in a recent calculation of the complete jet and of its
hydrodynamic medium response [10], the theoretical inter-
pretation of the measured jet shape requires the jet-induced
medium excitations to be included in the dynamical evolution
of the fluid background. Even though a growing number of
efforts have been devoted to simulating jet partons propagating
through a QGP medium (cf. Refs. [11–22]), a wholistic
treatment which includes also the medium recoil remains
challenging. Some of the complications seeking resolution
stem from the dynamically evolving medium. For example,
the medium expansion will distort the generated conical flow
structure expected in a static system [11].

In light of the complications involved in a complete and
consistent theoretical treatment in 3D involving jets and fluid
background, we turn to an approach with a simpler geometry
but which has a formal solution. In this work, we use the flow
solution put forward by Gubser et al. [23,24], to develop a
semianalytical formalism for the treatment of the jet-medium
interaction on a mode-by-mode basis. In this way, perturbation
modes of small wave numbers are captured in the linearized
hydrodynamic equation of motion, while modes associated
with large wave numbers can be safely ignored since they are
strongly suppressed by viscosity.

To be more specific, we consider the energy-momentum
conservation of the jet parton and fluid system,

∂μT μν = ∂μ

(
T

μν
hydro + T

μν
jet + δT μν

) = 0, (1)

where T
μν

hydro and T
μν

jet are energy-momentum tensors for the
background fluid and the jet parton, respectively. The effect
of jet-medium interaction is described by δT μν . For the
perturbations induced by the jet parton, the energy-momentum
conservation of the whole system can be separated into the
equation of motion of the background fluid ∂μT

μν
hydro = 0, and

a linearized equation of motion for the jet-medium interac-
tion [11],

∂μδT μν = −∂μT
μν

jet = J ν, (2)

where we have written effectively the loss of energy momen-
tum from the parton as a source current. To solve Eq. (2)
with respect to the source current for jet-medium interaction,
one needs the explicit form of δT μν , which, however, is not
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given a priori. It is only for the long-wavelength modes (with
wave number k satisfying kλmfp � 1) that one can identify
δT̃ μν(k) = δT̃

μν
hydro(k) [25] in terms of perturbations in the

energy density, pressure, and flow velocity. In a mode-by-mode
analysis, as in this work, this is realized naturally by focusing
on long-wavelength modes [11,12,19].

Inspired by Ref. [10], by applying the Landau matching
condition to the evolution of jet parton distribution function,
we find the following source current in Eq. (2) for a light-like
parton (|vjet| = c) [26],

Jμ(t,x) = êv
μ
jetnjet(t,x), (3)

where ê = 〈�E〉/dt is the average rate of energy loss of
the jet parton and v

μ
jet = (1,vjet) is the parton four-velocity.

The density of jet partons njet contains information on the
source shape. We consider a boost-invariant configuration in
this work. In particular, the jet parton passing through the
transverse plane presents a knife-like shape, which spans
the whole rapidity range and is captured by the density as
njet(t,x⊥) = δ(2)(x⊥ − vjet⊥�τ )/τ , where τ is the longitudinal
proper time. The boost-invariant assumption of a jet parton is
an idealization, but it captures qualitatively the main effect of
an energetic parton going through the QGP medium. In the
context of this work, a boost-invariant structure corresponds
quantitatively to the mode with the longest wavelength along
the space-time rapidity, whose dynamical evolution is more
sensitive in the jet-medium interaction. In obtaining the source,
Eq. (3), we have also assumed that the jet parton is of
sufficiently high energy, Ejet � T , so that contribution from
parton transverse momentum broadening is negligible.

II. MODE-BY-MODE HYDRODYNAMICS

Solutions to fluid-dynamical equations are few and far in
between, and therefore one may gain considerable insight
from cases that are exactly solvable. The method developed
by Gubser and Yarom for solving the equations of viscous
hydrodynamics analytically characterizes the longitudinal and
radial expansions of a conformal fluid system (e = 3P) and
incorporates rotational symmetry in azimuth and Bjorken
boosts in the longitudinal direction [23,24]. Importantly, those
solutions are regularly used to test modern hydrodynamics
codes for accuracy [27–30].

The solution technique consists of making a coordinate
transformation from Milne space-time (τ,r,φ,ξ ), where τ is
proper time and ξ is the space-time rapidity, to a dS3 × R
coordinate system (ρ,θ,φ,ξ ), through

sinh ρ = −1 − q2τ 2 + q2r2

2qτ
, (4a)

tan θ = 2qr

1 + q2τ 2 − q2r2
, (4b)

so that a SO(3) rotational symmetry becomes manifest in
the subspace (θ,φ), for the transformed metric tensor. The
parameter q in Eq. (4) specifies the inverse length scale of
the system.

The background medium evolution has an analytical so-
lution in this new coordinate system. In what follows, we

shall indicate hydro variables in this new system with an
overbar. While the flow four-velocity is explicitly determined
as ūμ = (1,0,0,0), with first-order viscous corrections (Navier-
Stokes hydro) the energy density is solved as [23] ε̄(ρ) =
(cosh ρ)−8/3[T̄0 + H0Fd (ρ)/3]4

, where Fd (ρ) is an analytical
function whose form is given in Ref. [23]. In the expression of
energy density, T̄0 and H0 are constant parameters to be fixed
by the system multiplicity and shear viscosity over entropy
ratio, respectively. Owing to symmetry constraints, the energy
density depends only on the de Sitter time ρ. Solutions with
respect to second-order viscous corrections of a conformal
fluid [31] can be achieved by solving an ordinary differential
equation. Hydro variables in the original Milne space-time
and in the dS3 × R frame are related to each other through
mappings associated with Eq. (4). In particular, the source term
in Eq. (3) in the dS3 × R frame becomes J̄μ = ê n̄jet v̄

jet
μ with,

n̄jet = δ(θ − θ (ρ))δ(φ − φ(ρ))/ cosh2 ρ sin θ .
Since transverse coordinates of the Milne space-time pos-

sess apparent rotational symmetry in terms of (θ,φ), the mode
decomposition of Eq. (2) can be achieved using spherical
harmonics, resulting in perturbations of temperature and flow
velocity:

δT̄ = T̄
∑
lm

∫
dkξ

2π
tlm(ρ)Ylm(θ,φ)eikξ ξ , (5a)

δūi =
∑
lm

∫
dkξ

2π

[
vlm

s (ρ)�lm
i (θ,φ) + vlm

v (ρ)�lm
i (θ,φ)

]
eikξ ξ ,

(5b)

δūξ =
∑
lm

∫
dkξ

2π
vlm

ξ (ρ)Ylm(θ,φ)eikξ ξ . (5c)

Here, Ylm is the scalar spherical harmonics, while �lm
i and

�lm
i are vector spherical harmonics which have a vanishing

curl and divergence in the subspace (θ,φ), respectively [32].
The quantity kξ is the conjugate coordinate of the space-time
rapidity ξ . Mode decomposition in Eqs. (5) results in three
scalar modes (t,vs,vξ ) and one vector mode vv . Similarly, one
also has the mode decomposition of the source current J̄μ,
which leads to a set of

J̄ρ =
∑
lm

∫
dkξ

2π
clm
ρ Ylm(θ,φ)eikξ ξ , (6a)

J̄i =
∑
lm

∫
dkξ

2π

[
clm
s �lm

i (θ,φ) + clm
v �lm

i (θ,φ)
]
eikξ ξ , (6b)

J̄ξ =
∑
lm

∫
dkξ

2π
clm
ξ Ylm(θ,φ)eikξ ξ . (6c)

The typical length scale of each mode in the decomposition
is determined by index (l,m) and kξ . In particular, in this
boost-invariant case, in which only the modes associated with
kξ = 0 contribute, we found it mostly dependent on l and it
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behaves like ∼1/(
√

lq/3).1 From this, one can deduce that
for a mode to be considered hydrodynamic, it must satisfy
λmfp

√
lq/3 ∼ η

√
lq/3sT � 1. For the fluid medium created

in high-energy heavy-ion collisions, this inequality is usually
satisfied up to a typical value of l � 102.

In terms of these scalar and vector modes V̄ lm =
(t lm,vlm

s ,vlm
ξ ,vlm

v ), the linearized hydrodynamics Eq. (2) re-
duces to a set of coupled differential equations

∂ρ V̄ lm(ρ,kξ ) = −�(ρ,l,kξ )V̄ lm(ρ,kξ ) + S̄ lm(ρ,kξ ), (7)

where �, whose explicitly expression can be found in Eq. (109)
of Ref. [23], is a matrix determined by the background medium
expansion. The source term S̄ lm is

S̄ lm =

⎛
⎜⎜⎜⎜⎜⎝

− 1
3w̄

clm
ρ

− 2T̄ tanh ρ

3w̄T̄ ′ clm
s

T̄
w̄(T̄ +H0 tanh ρ)

clm
ξ

− 2T̄ tanh ρ

3w̄T̄ ′ clm
v

⎞
⎟⎟⎟⎟⎟⎠

, (8)

where w̄ = ē + P̄ is the enthalpy density.
The matrix �(ρ,l,kξ ) is block-diagonalized in such a

way that the scalar modes and the vector modes decouple.
Furthermore, vξ is also decoupled from the rest of the scalar
modes when kξ = 0, corresponding to a system including also
boost-invariant hydro perturbations. Thus we shall ignore the
contribution of vξ mode in what follows. In the case of an
ideal fluid with H0 = 0, � has two scalar eigenmodes with
eigenvalues

λ± = − 1
3 tanh ρ ± 1

3 sechρ

√
sinh2 ρ − 3l(l + 1). (9)

When sinh2 ρ < 3l(l + 1), λ± becomes complex, indicating
sound wave propagation of the scalar modes. In the original
Milne space-time, complex eigenvalues of scalar modes appear
mostly at late τ , while at very early τ , scalar modes are still
diffusive. For the vector mode, however, �v = − 2

3 tanh ρ is
always real, which is purely diffusive. The viscous corrections
damp mode evolution and the damping is systematically
stronger for higher order modes (larger l) [24].

III. JET-MEDIUM INTERACTION IN HEAVY-ION
COLLISIONS

We solve Eq. (7) for ultracentral Pb+Pb collisions at the
LHC energy

√
sNN = 2.76 TeV. This is done in the semi-

analytical solution of conformal viscous hydrodynamics by
specifying T̄0 = 7.3 and 1/q = 4.3 fm [33,34]. To stress both
the effects of medium expansion and dissipation, we consider
three representative events with one pair of boost-invariant
back-to-back jet partons (kξ = 0). These events are illustrated
in Fig. 1, corresponding respectively to back-to-back partons
oriented along the x axis (case I), at an angle of π/3 (case
II), and at an angle of π/2 (case III), all starting from

x jet
⊥ = (1.0,0) at τ0 = 0.5 fm/c. For each of these cases, we

1This is inferred empirically from the width at half maximum of the
basis function of the mode decomposition.

x
I

IIIII

(1,0)

y

FIG. 1. Three events with dijets considered in this work. Solid
arrows indicate jet partons generating the near-side (leading) peak of
the observed spectrum, while dashed arrows are those generating the
away-side (subleading) peak.

calculate separately the medium response to the near-side
and away-side jet partons, whose superposition results in the
medium response to a dijet in linearized hydrodynamics. It is
worth mentioning that each individual jet parton may as well
be recognized as a parton in a γ jet, for which the QGP medium
is transparent to the photon recoiling against a parton.

We adopt in this work a T 2-dependent jet energy loss rate:
ê = κT 2 [35–37], while generalization to other parametriza-
tions is straightforward. We can determine the coefficient κ
via the dissipative properties of the QGP medium. In a weakly
coupled system, where medium dynamical properties can be
estimated perturbatively based on a quasiparticle assumption,
the coefficient is inversely proportional to the specific viscosity
as κ ≈ s/3η, from the proposed relation 1.25 T 3/q̂ ≈ η/s [38]
and the fluctuation-dissipation relation q̂ = 4êT [39,40]. As
a consequence, for a weakly coupled system, a jet parton
loses less energy to a more viscous medium and one expects
correspondingly a suppression of the jet-medium interaction
inversely proportional to η/s, an effect we refer to as dynamical
viscous suppression. Whereas for a strongly coupled system,
there is no obvious relation between the coefficient κ and
η/s, except a lower bound to the rate of jet energy loss,
κ � s/3η, according to 1.25 T 3/q̂ � η/s [38], and the effect
of dynamical viscous suppression is less clear. Nevertheless,
considering some extreme case of strongly coupled QCD
medium where jet energy loss has very little dependence on the
medium dissipative properties, dynamical viscous suppression
may be negligible. We shall return to this point later.

One may now proceed to study the medium response to a
jet parton and to also explore the effect of shear viscosity on
that system. Let us first start with the weakly coupled system
paradigm (which relates q̂ with η/s), with the values of the
specific shear viscosity being considered as η/s = 1/4π and
2/4π .2 We have verified that, with these values, the mode
summation always converged up to mode l < 35, so that a

2In this work, we shall take η/s = 1/4π as the specific shear
viscosity in a “weakly coupled” system, even though it is known
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FIG. 2. Medium excitations on top of expanding viscous systems
with η/s = 1/4π (upper rows) and η/s = 2/4π (lower rows) with
respect to the near-side jet parton of event I, plotted in terms of energy
density δe (left panels) and energy flux δT 0‖ (right panels), at τ =
6.0 fm/c. The color coding reflects units of GeV/fm3.

reliable solution of the jet-medium interaction was achieved for
the viscous fluid. For instance, the additional contribution to the
energy deposited from the jet parton becomes negligible for l �
35. A detailed comparison of the present result with complete
numerical hydro simulations of the jet-medium interaction in
Milne space-time will be given in Ref. [26].

As a supersonic object, a lightlike jet parton going through
QGP creates a conical flow [11]. For a static medium, the
conical flow has been found as a consequence of coherent
superposition of sound wave propagation, with the cone angle
θM

0 related to the speed of sound cs : θM
0 = 2 sin−1(cs/c) ≈

70◦ [11,12]. When the system expands, sound propagation gets
Lorentz boosted by the radial flow, which effectively distorts
the cone structure. For instance, when a jet parton goes with
the medium expansion, as the trigger parton considered in
our event I, the medium expansion “pushes” the sound waves
outward, leading to a cone angle larger than θM

0 . This is seen
in Figs. 2(a) and 2(c), where the induced medium response
on top of an expanding medium is presented in terms of
perturbations of energy density δe at τ = 6 fm/c.3 Despite
a larger cone angle, the formed Mach cone exhibits features
very similar to those observed in a static medium [12,14]. In
particular, the depletion behind the cone structure responsible
for the sonic boom is observed. Sound modes also contribute
to energy flux of the excited medium, which explains a similar
Mach cone structure in δT 0‖ in Figs. 2(b) and 2(d). Note
that in δT 0‖, a diffusive wake is generated behind the shock,
which contains excited kinetic energy flowing along the jet

to be the default specific shear viscosity for systems analyzed with
gauge and gravity duality [41].

3At τ = 6 fm/c, the medium cools down to a temperature T � 130
MeV, at which fluid systems in heavy-ion collisions are commonly
considered to freeze-out. See later discussions for more details.

parton. However, this diffusive wake is not visible in δe
[12].

For a weakly coupled system, one observes that the viscous
effects on the jet-medium interaction are many. First, an overall
reduction of the hydro excitations in the medium response is
expected due to the dynamical viscous suppression, which is
inversely proportional to η/s. In addition, evolution of hydro
modes is further damped by shear viscosity. Higher order
modes get stronger relative viscous corrections [42], which
is roughly proportional to exp(−�tk2η/sT ), with k being the
wave number. (In the Gubser solution, this factor corresponds
to exp(−l2H0�ρ). Therefore, for each mode there is a sup-
pression factor exp(−�tk2η/sT )/(η/s). As a consequence,
when comparing Figs. 2(c) and 2(d) to Figs. 2(a) and 2(b),
although a Mach cone is formed with its angle barely affected,4

the shock wave is smeared with its amplitude reduced. Apart
from the reduction due to dynamical viscous suppression (by
exactly a factor of 2 when increasing η/s from 1/4π to 2/4π ),
additional reduction and smearing of the cone structure is
entirely a fluidity effect reflected as the shock waves decaying
and spreading some distance from the vertex, which we may
refer to as the hydro viscous suppression. One should note that
increasing specific viscosity from 1/4π to 2/4π , the induced
reduction of conical flow is dominated by the dynamical
viscous suppression. In a similar way, in Figs. 2(b) and 2(d), the
diffusive wake in δT 0‖ gets broadened due to medium viscous
corrections.

The excited medium response to the jet partons particlizes
when it is decoupled from the fluid dynamical evolution. We
follow the standard Cooper-Frye freeze-out prescription [43]
at a constant proper time τf = 6 fm/c,

E
dδN

d3p
=

∫
d�μpμδf, (10)

to compute the contributions to the particle spectrum from
jet-medium interaction. In Eq. (10), δf is obtained from the
difference between a system with and without external jet
source, and includes the appropriate viscous correction. For
simplicity, we only consider pion production from the freeze-
out surface and ignore further interactions of hadrons.

In Figs. 3(a), 3(b) and 3(c), the generated pion number
density of the near-side (dashed lines) and away-side (dotted
lines) from jet-medium interaction are plotted separately as a
function of azimuthal angle φp, with medium specific viscosity
η/s = 1/4π . The green arrows indicate the directions of
external jet partons. Medium response to an individual parton
leads to a peak of width of order O(1) in the associated particle
spectrum. Note that the width in azimuth identifies with jet cone
size in the boost-invariant configuration. The overall height of
the peak is related to the total energy loss of the parton, which
is further determined by the jet parton’s path. The shape of
the peak reflects the structure of conical flow. Superposition
of the near-side and away-side gives rise to a double-peak
distribution (solid lines) of the produced pions from a dijet.

4This can be understood since shear viscosity in the conformal fluid
system significantly changes neither the speed of sound cs nor the
medium expansion.
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FIG. 3. First row: pion number density generated from the
medium response to jet partons as a function of azimuthal angle. The
near- and away-side number densities are shown separately, as well as
their sum (solid line). Second row: transverse energy of the induced
pions from the medium response to a dijet in a weakly coupled system.
Third row: transverse energy of the induced pions from jet-medium
interaction for a strongly coupled system. See the main text for more
details. A lower cut of pT � 1 GeV has been applied in these plots.

As a consequence of medium expansion, in events II and III,
we notice that the two centers of the double peak are shifted
from the original directions to back-to-back partons. It is also
worth mentioning that the depletion in the Mach cone results
in a depletion in the particle spectrum in the opposite direction
of the jet parton, as is evident in Fig. 3(a).

Viscous effect on the associated particle spectrum is re-
vealed in Figs. 3(d), 3(e) and 3(f), where we present the total
transverse energy induced from the medium response with
respect to a dijet for η/s = 1/4π and 2/4π , respectively.
Shear viscosity affects the calculated particle spectrum in two
ways. First, it smears and suppresses the induced Mach cone
structure, as a combined consequence of the dynamical and
hydro viscous suppressions. Second, it modifies the phase
space distribution in the Cooper-Frye freeze-out. By switching
on and off the viscous corrections at freeze-out, we find
the latter one is actually minor. Therefore, one observes in
Figs. 3(d), 3(e) and 3(f) the strong suppression of the double-
peak structure due to viscosity, which again is mostly due to the
dynamical viscous suppression. We have verified that without
introducing the dynamical viscous suppression, the change in
the particle spectrum in the weakly coupled system is small.

At last, let us briefly discuss the jet-medium interaction in a
strongly coupled system with a negligible dynamical viscous
suppression, with an η/s-independent jet energy loss. As a
crude estimate, we consider a value of κ = 20π/3, so that κ �
3s/η is roughly satisfied with respect to η/s = 1/4π and 2/4π .

Results are shown in Figs. 3(g), 3(h), and 3(i). Despite the
fact our T 2-dependent jet energy loss rate does not rigorously
implement a parametrization for the strongly coupled systems,
the absence of dynamical viscous suppression is the key factor
in the analysis. Since the only viscous effect is hydro viscous
suppression, the changes in the spectrum are entirely from
viscous damping of hydro modes. As anticipated, short-scale
modes get stronger viscous damping, which explains the
stronger suppression around the peaks. However, the overall
viscous corrections to the double-peak structure are not large.
Our analysis shows, however, that the details of the jet energy-
loss mechanism do leave a potentially measurable imprint on
the spectra of soft produced particles.

IV. SUMMARY AND CONCLUSIONS

We have developed a formalism of solving hydrodynamical
response to an external source mode by mode, based on the
Gubser’s solution to conformal fluid systems. With respect
to the ultracentral Pb + Pb collisions at the LHC energy,
the medium response to a lightlike jet parton is analyzed, in
which a conical flow structure is observed. The structure of the
cone receives modifications from both the medium expansion
and viscous damping, which then propagates to the generated
particle spectrum. After Cooper-Frye freeze-out, we observe
that a relatively wide peak structure in the associated particle
spectrum is generated from the conical flow.

Viscous effect on the jet-medium interaction can be revealed
in the suppressed peak structure of the particle spectrum. It is
a result of the dynamical viscous suppression, which accounts
for a reduced jet energy loss rate in a more dissipative fluid,
and hydro viscous suppression, which accounts for medium
viscous damping of hydro modes. With respect to the peak
structure of the particle spectrum, we found that the dominant
suppression is from the dynamical viscous suppression, while
hydro viscous suppression is less important, which was clearly
demonstrated in the extreme case of strongly coupled system.
In a weakly coupled system, where dynamical viscous suppres-
sion is expected from the well-established relation between jet
parton energy loss and η/s, viscous effect on the jet-medium
interaction is strong. Since dynamical viscous suppression is
inversely proportional to η/s, it implies a novel measure of
medium transport coefficients in the observed jet substructures.

This present work concerns boost-invariant configuration
of the background medium and the jet parton shape. Cor-
respondingly, the resulting particle spectrum [as shown in
Fig. (3)] is obtained under the condition �η = 0. In terms
of hydro modes, that case is associated with the mode with
longest wavelength in the space-time rapidity, or kξ = 0. For
more realistic situations, all higher order kξ modes should
be taken into account in the mode summation. But for each
of the kξ mode, we expect similarly that the effect from the
dynamical viscous suppression will dominate over that from
the hydrodynamical viscous suppression. Therefore, even after
the summation over kξ modes, or to say, for a realistic jet
parton localized in space-time rapidity, the conclusion that the
dominant viscous effect to the induced jet-medium interaction
is the dynamical viscous suppression is robust.

034914-5



LI YAN, SANGYONG JEON, AND CHARLES GALE PHYSICAL REVIEW C 97, 034914 (2018)

ACKNOWLEDGMENTS

We thank D. Pablos for helpful discussions. This work was
supported in part by the Natural Sciences and Engineering

Research Council of Canada. C.G. gratefully acknowledges
support from the Canada Council for the Arts through its
Killam Research Fellowship program.

[1] C. Gale, S. Jeon, and B. Schenke, Int. J. Mod. Phys. A 28,
1340011 (2013).

[2] U. Heinz and R. Snellings, Annu. Rev. Nucl. Part. Sci. 63, 123
(2013).

[3] J. D. Bjorken, Energy loss of energetic partons in quark-gluon
plasma: Possible extinction of high p(t) jets in hadron-hadron
collisions, FERMILAB-PUB-82-059-THY, FERMILAB-PUB-
82-059-T (Fermilab publication, 1982).

[4] R. Baier, Y. L. Dokshitzer, A. H. Mueller, S. Peigne, and D.
Schiff, Nucl. Phys. B483, 291 (1997).

[5] M. Connors, C. Nattrass, R. Reed, and S. Salur,
arXiv:1705.01974.

[6] G.-Y. Qin and X.-N. Wang, Int. J. Mod. Phys. E 24, 1530014
(2015).

[7] G.-Y. Qin and A. Majumder, Phys. Rev. C 87, 024909
(2013).

[8] V. Khachatryan et al. (CMS Collaboration), J. High Energy Phys.
01 (2016) 006.

[9] S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. C 84,
024906 (2011).

[10] Y. Tachibana, N.-B. Chang, and G.-Y. Qin, Phys. Rev. C 95,
044909 (2017).

[11] J. Casalderrey-Solana, E. V. Shuryak, and D. Teaney, J. Phys.
Conf. Ser. 27, 22 (2005); Nucl. Phys. A774, 577 (2006).

[12] P. M. Chesler and L. G. Yaffe, Phys. Rev. D 78, 045013
(2008).

[13] H. Stoecker, B. Betz, and P. Rau, Critical point and onset of de-
confinement. Proceedings of the 3rd Conference on CPOD2006,
Florence, Italy, July 3-6, 2006, PoS C POD2006, 029 (2006).

[14] R. B. Neufeld, B. Muller, and J. Ruppert, Phys. Rev. C 78,
041901 (2008).

[15] Y. Tachibana and T. Hirano, Phys. Rev. C 90, 021902 (2014).
[16] G. Y. Qin, A. Majumder, H. Song, and U. Heinz, Phys. Rev. Lett.

103, 152303 (2009).
[17] B. Betz, J. Noronha, G. Torrieri, M. Gyulassy, I. Mishustin, and

D. H. Rischke, Phys. Rev. C 79, 034902 (2009).
[18] A. K. Chaudhuri and U. Heinz, Phys. Rev. Lett. 97, 062301

(2006).
[19] E. Shuryak and P. Staig, Phys. Rev. C 88, 054903 (2013).

[20] W. Chen, S. Cao, T. Luo, L.-G. Pang, and X.-N. Wang, Phys.
Lett. B 777, 86 (2018).

[21] J. G. Milhano, U. A. Wiedemann, and K. C. Zapp, Phys. Lett. B
779, 409 (2018).

[22] S. Floerchinger and K. C. Zapp, Eur. Phys. J. C 74, 3189 (2014).
[23] S. S. Gubser, Phys. Rev. D 82, 085027 (2010).
[24] S. S. Gubser and A. Yarom, Nucl. Phys. B 846, 469 (2011).
[25] E. Iancu and B. Wu, J. High Energy Phys. 10 (2015) 155.
[26] M. Singh, L. Yan, S. Jeon, and C. Gale (unpublished).
[27] H. Marrochio, J. Noronha, G. S. Denicol, M. Luzum, S. Jeon,

and C. Gale, Phys. Rev. C 91, 014903 (2015).
[28] G. S. Denicol, U. W. Heinz, M. Martinez, J. Noronha, and M.

Strickland, Phys. Rev. Lett. 113, 202301 (2014).
[29] R. D. de Souza, T. Koide, and T. Kodama, Prog. Part. Nucl. Phys.

86, 35 (2016).
[30] K. Okamoto and C. Nonaka, Eur. Phys. J. C 77, 383 (2017).
[31] R. Baier, P. Romatschke, D. T. Son, A. O. Starinets, and M. A.

Stephanov, J. High Energy Phys. 04 (2008) 100.
[32] R. G. Barrera, G. A. Estevez, and J. Giraldo, Eur. J. Phys. 6, 287

(1985).
[33] P. Staig and E. Shuryak, Phys. Rev. C 84, 044912 (2011).
[34] L. Yan and H. Gronqvist, J. High Energy Phys. 03 (2016) 121.
[35] J. Casalderrey-Solana, D. C. Gulhan, J. G. Milhano, D. Pablos,

and K. Rajagopal, J. High Energy Phys. 10 (2014) 019; 09
(2015) 175.

[36] A. Ficnar, S. S. Gubser, and M. Gyulassy, Phys. Lett. B 738,
464 (2014).

[37] B. Betz, M. Gyulassy, and G. Torrieri, Phys. Rev. C 84, 024913
(2011).

[38] A. Majumder, B. Muller, and X.-N. Wang, Phys. Rev. Lett. 99,
192301 (2007).

[39] G. D. Moore and D. Teaney, Phys. Rev. C 71, 064904 (2005).
[40] G.-Y. Qin and A. Majumder, Phys. Rev. Lett. 105, 262301

(2010).
[41] P. K. Kovtun, D. T. Son, and A. O. Starinets, Phys. Rev. Lett. 94,

111601 (2005).
[42] B. Schenke, S. Jeon, and C. Gale, Phys. Rev. C 85, 024901

(2012).
[43] F. Cooper and G. Frye, Phys. Rev. D 10, 186 (1974).

034914-6

https://doi.org/10.1142/S0217751X13400113
https://doi.org/10.1142/S0217751X13400113
https://doi.org/10.1142/S0217751X13400113
https://doi.org/10.1142/S0217751X13400113
https://doi.org/10.1146/annurev-nucl-102212-170540
https://doi.org/10.1146/annurev-nucl-102212-170540
https://doi.org/10.1146/annurev-nucl-102212-170540
https://doi.org/10.1146/annurev-nucl-102212-170540
https://doi.org/10.1016/S0550-3213(96)00553-6
https://doi.org/10.1016/S0550-3213(96)00553-6
https://doi.org/10.1016/S0550-3213(96)00553-6
https://doi.org/10.1016/S0550-3213(96)00553-6
http://arxiv.org/abs/arXiv:1705.01974
https://doi.org/10.1142/S0218301315300143
https://doi.org/10.1142/S0218301315300143
https://doi.org/10.1142/S0218301315300143
https://doi.org/10.1142/S0218301315300143
https://doi.org/10.1103/PhysRevC.87.024909
https://doi.org/10.1103/PhysRevC.87.024909
https://doi.org/10.1103/PhysRevC.87.024909
https://doi.org/10.1103/PhysRevC.87.024909
https://doi.org/10.1007/JHEP01(2016)006
https://doi.org/10.1007/JHEP01(2016)006
https://doi.org/10.1007/JHEP01(2016)006
https://doi.org/10.1007/JHEP01(2016)006
https://doi.org/10.1103/PhysRevC.84.024906
https://doi.org/10.1103/PhysRevC.84.024906
https://doi.org/10.1103/PhysRevC.84.024906
https://doi.org/10.1103/PhysRevC.84.024906
https://doi.org/10.1103/PhysRevC.95.044909
https://doi.org/10.1103/PhysRevC.95.044909
https://doi.org/10.1103/PhysRevC.95.044909
https://doi.org/10.1103/PhysRevC.95.044909
https://doi.org/10.1088/1742-6596/27/1/003
https://doi.org/10.1088/1742-6596/27/1/003
https://doi.org/10.1088/1742-6596/27/1/003
https://doi.org/10.1088/1742-6596/27/1/003
https://doi.org/10.1016/j.nuclphysa.2006.06.091
https://doi.org/10.1016/j.nuclphysa.2006.06.091
https://doi.org/10.1016/j.nuclphysa.2006.06.091
https://doi.org/10.1016/j.nuclphysa.2006.06.091
https://doi.org/10.1103/PhysRevD.78.045013
https://doi.org/10.1103/PhysRevD.78.045013
https://doi.org/10.1103/PhysRevD.78.045013
https://doi.org/10.1103/PhysRevD.78.045013
https://doi.org/10.1103/PhysRevC.78.041901
https://doi.org/10.1103/PhysRevC.78.041901
https://doi.org/10.1103/PhysRevC.78.041901
https://doi.org/10.1103/PhysRevC.78.041901
https://doi.org/10.1103/PhysRevC.90.021902
https://doi.org/10.1103/PhysRevC.90.021902
https://doi.org/10.1103/PhysRevC.90.021902
https://doi.org/10.1103/PhysRevC.90.021902
https://doi.org/10.1103/PhysRevLett.103.152303
https://doi.org/10.1103/PhysRevLett.103.152303
https://doi.org/10.1103/PhysRevLett.103.152303
https://doi.org/10.1103/PhysRevLett.103.152303
https://doi.org/10.1103/PhysRevC.79.034902
https://doi.org/10.1103/PhysRevC.79.034902
https://doi.org/10.1103/PhysRevC.79.034902
https://doi.org/10.1103/PhysRevC.79.034902
https://doi.org/10.1103/PhysRevLett.97.062301
https://doi.org/10.1103/PhysRevLett.97.062301
https://doi.org/10.1103/PhysRevLett.97.062301
https://doi.org/10.1103/PhysRevLett.97.062301
https://doi.org/10.1103/PhysRevC.88.054903
https://doi.org/10.1103/PhysRevC.88.054903
https://doi.org/10.1103/PhysRevC.88.054903
https://doi.org/10.1103/PhysRevC.88.054903
https://doi.org/10.1016/j.physletb.2017.12.015
https://doi.org/10.1016/j.physletb.2017.12.015
https://doi.org/10.1016/j.physletb.2017.12.015
https://doi.org/10.1016/j.physletb.2017.12.015
https://doi.org/10.1016/j.physletb.2018.01.029
https://doi.org/10.1016/j.physletb.2018.01.029
https://doi.org/10.1016/j.physletb.2018.01.029
https://doi.org/10.1016/j.physletb.2018.01.029
https://doi.org/10.1140/epjc/s10052-014-3189-4
https://doi.org/10.1140/epjc/s10052-014-3189-4
https://doi.org/10.1140/epjc/s10052-014-3189-4
https://doi.org/10.1140/epjc/s10052-014-3189-4
https://doi.org/10.1103/PhysRevD.82.085027
https://doi.org/10.1103/PhysRevD.82.085027
https://doi.org/10.1103/PhysRevD.82.085027
https://doi.org/10.1103/PhysRevD.82.085027
https://doi.org/10.1016/j.nuclphysb.2011.01.012
https://doi.org/10.1016/j.nuclphysb.2011.01.012
https://doi.org/10.1016/j.nuclphysb.2011.01.012
https://doi.org/10.1016/j.nuclphysb.2011.01.012
https://doi.org/10.1007/JHEP10(2015)155
https://doi.org/10.1007/JHEP10(2015)155
https://doi.org/10.1007/JHEP10(2015)155
https://doi.org/10.1007/JHEP10(2015)155
https://doi.org/10.1103/PhysRevC.91.014903
https://doi.org/10.1103/PhysRevC.91.014903
https://doi.org/10.1103/PhysRevC.91.014903
https://doi.org/10.1103/PhysRevC.91.014903
https://doi.org/10.1103/PhysRevLett.113.202301
https://doi.org/10.1103/PhysRevLett.113.202301
https://doi.org/10.1103/PhysRevLett.113.202301
https://doi.org/10.1103/PhysRevLett.113.202301
https://doi.org/10.1016/j.ppnp.2015.09.002
https://doi.org/10.1016/j.ppnp.2015.09.002
https://doi.org/10.1016/j.ppnp.2015.09.002
https://doi.org/10.1016/j.ppnp.2015.09.002
https://doi.org/10.1140/epjc/s10052-017-4944-0
https://doi.org/10.1140/epjc/s10052-017-4944-0
https://doi.org/10.1140/epjc/s10052-017-4944-0
https://doi.org/10.1140/epjc/s10052-017-4944-0
https://doi.org/10.1088/1126-6708/2008/04/100
https://doi.org/10.1088/1126-6708/2008/04/100
https://doi.org/10.1088/1126-6708/2008/04/100
https://doi.org/10.1088/1126-6708/2008/04/100
https://doi.org/10.1088/0143-0807/6/4/014
https://doi.org/10.1088/0143-0807/6/4/014
https://doi.org/10.1088/0143-0807/6/4/014
https://doi.org/10.1088/0143-0807/6/4/014
https://doi.org/10.1103/PhysRevC.84.044912
https://doi.org/10.1103/PhysRevC.84.044912
https://doi.org/10.1103/PhysRevC.84.044912
https://doi.org/10.1103/PhysRevC.84.044912
https://doi.org/10.1007/JHEP03(2016)121
https://doi.org/10.1007/JHEP03(2016)121
https://doi.org/10.1007/JHEP03(2016)121
https://doi.org/10.1007/JHEP03(2016)121
https://doi.org/10.1007/JHEP10(2014)019
https://doi.org/10.1007/JHEP10(2014)019
https://doi.org/10.1007/JHEP10(2014)019
https://doi.org/10.1007/JHEP10(2014)019
https://doi.org/10.1007/JHEP09(2015)175
https://doi.org/10.1007/JHEP09(2015)175
https://doi.org/10.1007/JHEP09(2015)175
https://doi.org/10.1016/j.physletb.2014.10.016
https://doi.org/10.1016/j.physletb.2014.10.016
https://doi.org/10.1016/j.physletb.2014.10.016
https://doi.org/10.1016/j.physletb.2014.10.016
https://doi.org/10.1103/PhysRevC.84.024913
https://doi.org/10.1103/PhysRevC.84.024913
https://doi.org/10.1103/PhysRevC.84.024913
https://doi.org/10.1103/PhysRevC.84.024913
https://doi.org/10.1103/PhysRevLett.99.192301
https://doi.org/10.1103/PhysRevLett.99.192301
https://doi.org/10.1103/PhysRevLett.99.192301
https://doi.org/10.1103/PhysRevLett.99.192301
https://doi.org/10.1103/PhysRevC.71.064904
https://doi.org/10.1103/PhysRevC.71.064904
https://doi.org/10.1103/PhysRevC.71.064904
https://doi.org/10.1103/PhysRevC.71.064904
https://doi.org/10.1103/PhysRevLett.105.262301
https://doi.org/10.1103/PhysRevLett.105.262301
https://doi.org/10.1103/PhysRevLett.105.262301
https://doi.org/10.1103/PhysRevLett.105.262301
https://doi.org/10.1103/PhysRevLett.94.111601
https://doi.org/10.1103/PhysRevLett.94.111601
https://doi.org/10.1103/PhysRevLett.94.111601
https://doi.org/10.1103/PhysRevLett.94.111601
https://doi.org/10.1103/PhysRevC.85.024901
https://doi.org/10.1103/PhysRevC.85.024901
https://doi.org/10.1103/PhysRevC.85.024901
https://doi.org/10.1103/PhysRevC.85.024901
https://doi.org/10.1103/PhysRevD.10.186
https://doi.org/10.1103/PhysRevD.10.186
https://doi.org/10.1103/PhysRevD.10.186
https://doi.org/10.1103/PhysRevD.10.186



