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Reduction of the K ∗ meson abundance in heavy ion collisions
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We study the K∗ meson reduction in heavy-ion collisions by focusing on the hadronic effects on the K∗ meson
abundance. We evaluate the absorption cross sections of the K∗ and K meson by light mesons in the hadronic
matter, and further investigate the variation in the meson abundances for both particles during the hadronic stage
of heavy-ion collisions. We show how the interplay between the interaction of the K∗ meson and kaon with light
mesons in the hadronic medium determines the final yield difference of the statistical hadronization model to the
experimental measurements. For the central Au+Au collision at

√
sNN = 200 GeV, we find that the K∗/K yield

ratio at chemical freeze-out decreases by 37% during the expansion of the hadronic matter, resulting in the final
ratio comparable to STAR measurements of 0.23 ±0.05.

DOI: 10.1103/PhysRevC.97.034908

I. INTRODUCTION

Relativistic heavy-ion collision experiments have enabled
the production of a system of quantum chromodynamic matter
at extreme conditions under controlled conditions [1–5]. Due
to the huge energies available in heavy-ion collisions, it is
expected that a possible phase transition predicted by Lattice
Quantum Chromodynamics [6] between a hadronic matter
and a system of deconfined quarks and gluons takes place, and
the quark-gluon plasma at very high temperature is produced
at the initial stage of the collision. As a result, large numbers
of hadronic particles are produced during the quark-hadron
phase transition at later stages of heavy-ion collisions.

These hadronic particles are believed to emerge at the
transition point with the information of the matter. The
statistical hadronization model has been quite successful in
explaining the measured production yields of hadrons with
two parameters characterizing the chemical freeze-out point
in heavy-ion collisions: the phase transition temperature and
the baryon chemical potential [7–10].

All particles produced at the freeze-out, however, are subject
to further interactions with other hadrons in the hadronic
matter, leading to possible deviations in the final yield of some
hadrons from the statistical model prediction. In addition to
the effects from hadronic interactions, the lifetime of hadrons
as well as the lifetime of the hadronic matter itself plays an
important role in changing the abundance of hadrons from the
yield at the chemical freeze-out.

The abundance of hadrons that are stable against strong
decays is expected to be changed mostly by hadronic interac-
tions while that of resonances will be affected by both their
interactions with other hadrons and their strong decays when
the lifetime of resonances is comparable to or smaller than the
lifespan of the hadronic stage in heavy-ion collisions. Daughter
particles of resonances are subject to rescatter as well in the
hadronic medium, making the reconstruction of the resonances
from an invariant mass analysis difficult.

Studying the effects from the hadronic interactions on the
abundance of resonances has been suggested as one way of con-
firming the scenario about a time delay between the chemical
and thermal freeze-out [11,12], since a sudden hadronization
in heavy-ion collisions would leave no time for resonances to
decay in the hadronic medium. In particular, the K∗ meson
has attracted lots of attention as its short lifetime 4 fm/c is less
than the presumed lifespan of the hadronic stage.

The effects of hadronic interactions on the yield of the
K∗ meson have been measured in heavy-ion collisions using
K∗/K yield ratios. Since the K meson is the ground state
of the K∗ meson, having the same valence quarks with a
different mass and relative orientation of its quark spins, the
K∗/K yield ratio is considered to be independent of the freeze-
out conditions when hadronic interactions are neglected. It
has been shown that K∗/K yield ratios decrease with the
increasing size of the system at the same energy [13,14].
Compared to p+p collisions, K∗/K yield ratios in Cu+Cu
and Au+Au collisions are smaller, naively implying that K∗
and K mesons participate in rescattering processes during the
expansion of hadronic matter, and that the hadronic effects
become larger as the size of the hadronic matter increases.

The average transverse momentum of the K∗ meson mea-
sured in heavy-ion collisions [13,14], which is higher than
that of the K∗ meson in p+p collisions, also supports the
rescattering scenario about K∗ mesons. K∗ mesons with
low transverse momenta escape the hadronic stage later than
K∗ mesons with higher transverse momenta, and thus suffer
more rescattering in the hadronic medium. As a result the
measurement of the K∗/K yield ratio 0.23 ± 0.05 [13] in
Au+Au collision at

√
sNN = 200 GeV is smaller than the

statistical model expectation 0.33 ± 0.01 at that collision [10].
However, as we will see, the measurement of the K∗/K yield
ratio that is inconsistent with the statistical model prediction
not only confirms the hadronic effects on the yield of the K∗
meson but also provides information on the change in the
properties of the hadronic matter at freeze-out.
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The hadronic effects on the abundance of the K∗ meson
in the hadronic matter have been studied in many literatures
[11,12,15–20]. A microscopic transport approach to hadronic
interactions, the UrQMD model [21,22], has been successful
in explaining experimental measurements of the K∗ meson
in heavy-ion collisions, e.g., the transverse momentum distri-
butions of K∗ mesons in different centralities and the ratio
of yield K∗0/K− [20] recently measured at CERN’s Large
Hadron Collider (LHC) [23].

There also have been attempts to understand the abundance
of K∗ mesons at chemical freeze-out by investigating the
relative abundance between daughter particles of the K∗
meson, 〈K/π〉 [15,16]. Based on the analysis of the fluctuation
between same charged particles, K− and π−, and opposite
charged particles, K+ and π−, the constraint on the K∗ meson
reinteraction between chemical and thermal freeze-out has
been studied [19].

With these investigations of the K∗/K yield ratio in mind,
we study here the hadronic effects on the K∗ meson by
evaluating its absorption cross sections with π, ρ,K , and
K∗ mesons, and furthermore investigate variations in the K∗
meson abundance during the hadronic stage of heavy-ion
collisions by solving a time evolution equation for the K∗
meson. After the K∗ meson is produced at the chemical
freeze-out, it interacts mostly with light hadrons during the
expansion of the hadronic matter. As a result, K∗ mesons can
be absorbed by the comoving light mesons, or additionally
produced from scattering between them. Thus, evaluating
the K∗ meson cross sections by light hadrons is neces-
sary in estimating the hadronic effects on the K∗ meson
abundance in heavy-ion collisions. By comparing our results
with the experimental observation in heavy-ion collisions,
we understand the discrepancy of the K∗ meson yield be-
tween the statistical model and the experimental measure-
ments.

As has been stated, the scattering of the K∗ meson daughter
particles such as kaons in the hadronic medium also contains
useful information in understanding the hadronic effects on
K∗ mesons. Therefore, we also take into account interactions
of the kaon with light mesons during the hadronic stage of
heavy-ion collisions.

To this end, we introduce effective Lagrangians for interac-
tions between light mesons. The effective Lagrangian methods
have been used to calculate the scattering cross sections
between J/ψ and hadrons in order to estimate the amount
of J/ψ suppression in the hadronic matter [24–27]. Similar
approaches have been applied to investigate the hadronic
effects on the abundance of φ mesons [28], and exotic mesons
such as DsJ (2317) [29] and X(3872) mesons [30,31].

This paper is organized as follows. In Sec. II, we first
consider interactions of both the K∗ meson and kaon with light
mesons. Then we evaluate the absorption cross sections of both
mesons in the hadronic medium using effective Lagrangians.
In Sec. III we investigate the time evolution of the K∗ meson
abundance by solving the kinetic equation. In Sec. IV, we
argue the important roles of the abundance ratio of K∗ mesons
to kaons in heavy-ion collisions. Section IV is devoted to
conclusions. We discuss in detail the contact term in the
Appendix.

We have used throughout the paper the isospin averaged
mass for all hadrons, based on experimentally measured
masses [32], e.g., mK = 495.645 MeV.

II. HADRONIC EFFECTS ON K ∗ AND K MESONS

We first investigate hadronic interactions of a K∗ meson
during the hadronic stage of heavy-ion collisions. The K∗
meson produced at the chemical freeze-out can be absorbed
or even produced through interactions between mostly light
mesons during the expansion of the hadronic matter. We
consider here the K∗ meson interacting with pions, ρ mesons,
kaons, and K∗ mesons; K∗π → ρK,K∗ρ → πK , K∗K̄ →
ρπ,K∗K̄∗ → ππ , and K∗K̄∗ → ρρ. The diagrams repre-
senting each process are shown in Fig. 1. We introduce the
following Lagrangians to describe the interaction between the
K∗ meson and other mesons:

LπKK∗ = igπK∗KK∗μ�τ · (K̄∂μ �π − ∂μK̄ �π ) + H.c.,

LρKK = igρKK (K �τ∂μK̄ − ∂μK �τK̄) · �ρμ,

LρK∗K∗ = igρK∗K∗ [(∂μK∗ν �τK̄∗
ν − K∗ν �τ∂μK̄∗

ν ) · �ρμ

+ (K∗ν �τ · ∂μ �ρν − ∂μK∗ν �τ · �ρν)K̄∗μ

+K∗μ(�τ · �ρν∂μK̄∗
ν − �τ · ∂μ �ρνK̄∗

ν )],

LπρKK∗ = −gπρKK∗K∗μ(2�τ · �π �τ · �ρμ − �τ · �ρμ�τ · �π )K̄

+ H.c., (1)

LππK∗K∗ = gππK∗K∗
( �π · �π

2

)
K∗μK̄∗

μ,

LρρKK = gρρKK

( �ρμ · �ρμ

2

)
KK̄,

LρρK∗K∗ = gρρK∗K∗K∗μ(2�τ · �ρν �τ · �ρμ − �τ · �ρμ�τ · �ρν

− �ρσ · �ρσgμν)K̄∗ν,

obtained from free pseudoscalar and vector meson
Lagrangians by introducing the minimal substitution.
In Eq. (1), K ≡ (K0,K+) and K∗ ≡ (K∗0,K∗+) denote
strangeness pseudoscalar and vector meson doublets,
respectively, and �π and �ρ denote the pion and ρ meson isospin
triplets, respectively, with Pauli matrices �τ . gπK∗K, gρKK ,
and gρK∗K∗ are strong-coupling constants, for which we
use the empirical values gπK∗K = 3.25 and gρKK = 3.05
[33]. We apply the SU(3) flavor symmetry to obtain
gρK∗K∗ = gπK∗K = 3.25, gπρKK∗ = gπK∗KgρKK , gππK∗K∗ =
2g2

πK∗K, gρρKK = 2g2
ρKK , and gρρK∗K∗ = g2

ρK∗K∗ .
Here we neglect the KKππ contact term since its contri-

bution is smaller than that from the vector meson mediated
pseudoscalar four point contact term as explained in the
Appendix. In addition to the interactions shown in Eq. (1), one
may consider anomalous interactions [27,34]. Recently, the
importance of the anomalous contribution to the dissociation
and recombination of vector mesons in the hadron medium
have been discussed [35,36].

The work with the anomalous contributions will involve
a careful discussion of the couplings in connection to the
anomalous contributions coming from the gauged Wess-
Zumino action in the so-called Bardeen form in SU(3). This
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FIG. 1. Born diagrams for the K∗ meson absorption by π, ρ,K , and K∗ mesons. (a–c) K∗π → ρK . (d–f) K∗ρ → πK . (g–i) K∗K̄ → ρπ .
(j–l) K∗K̄∗ → ππ . (m–o) K∗K̄∗ → ρρ.

is an important subject that deserves a separate discussion,
and therefore we restrict in the present paper our discussion
to contributions available from the interaction Lagrangians,
Eq. (1), and investigate the anomalous contributions in future
work.

Using the above interaction Lagrangians we evaluate the
amplitudes for all processes shown in Fig. 1. The amplitudes
of the K∗ meson absorption by π, ρ,K , and K∗ mesons,
without isospin factors and before summing and averaging over
external spins, are represented by

MK∗π→ρK ≡ M(a)
K∗ + M(b)

K∗ + M(c)
K∗ , MK∗ρ→πK ≡ M(d)

K∗ + M(e)
K∗ + M(f )

K∗ , MK∗K̄→ρπ ≡ M(g)
K∗ + M(h)

K∗ + M(i)
K∗ ,

MK∗K̄∗→ππ ≡ M(j )
K∗ + M(k)

K∗ + M(l)
K∗ , MK∗K̄∗→ρρ ≡ M(m)

K∗ + M(n)
K∗ + M(o)

K∗ , (2)

where the amplitudes for the first K∗π → ρK and the second process K∗ρ → πK are

M(a)
K∗ = gπK∗KgρK∗K∗εα

1 ε
∗β
3

1

t − m2
K∗ + imK∗K∗

[
−gμν + (p1 − p3)μ(p1 − p3)ν

m2
K∗

]
(p2 + p4)μ

× [(2p1 − p3)βgαν − (p1 + p3)νgαβ − (p1 − 2p3)αgβν],

M(b)
K∗ = −gπK∗KgρKKεα

1 ε
∗β
3

1

s − m2
K

(p1 + 2p2)α(p3 + 2p4)β, M(c)
K∗ = −gπρKK∗εα

1 ε
∗β
3 gαβ (3)

and

M(d)
K∗ = −gπK∗KgρKKεα

1 ε
β
2

1

t − m2
K

(p1 − 2p3)α(2p4 − p2)β,

M(e)
K∗ = −gπK∗KgρK∗K∗εα

1 ε
β
2

1

s − m2
K∗ + imK∗K∗

[
−gμν + (p1 + p2)μ(p1 + p2)ν

m2
K∗

]
(p3 − p4)μ

× [(2p1 + p2)βgαν − (p1 − p2)νgαβ − (p1 + 2p2)αgβν],

M(f )
K∗ = −gπρKK∗εα

1 ε
β
2 gαβ, (4)

respectively. Similarly, amplitudes for processes K∗K̄ → ρπ and K∗K̄∗ → ππ are

M(g)
K∗ = gπK∗KgρK∗K∗εα

1 ε
∗β
3

1

t − m2
K∗ + imK∗K∗

[
−gμν + (p1 − p3)μ(p1 − p3)ν

m2
K∗

]
(p2 + p4)μ

× [(2p3 − p1)αgβν − (p1 + p3)νgαβ + (2p1 − p3)βgαν],
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M(h)
K∗ = gπK∗KgρKKεα

1 ε
∗β
3

1

u − m2
K

(2p4 − p1)α(2p2 − p3)β,

M(i)
K∗ = −gπρKK∗εα

1 ε
∗β
3 gαβ (5)

and

M(j )
K∗ = g2

πK∗Kεα
1 ε

β
2

1

t − m2
K

(p1 − 2p3)α(p2 − 2p4)β,

M(k)
K∗ = g2

πK∗Kεα
1 ε

β
2

1

u − m2
K

(p1 − 2p4)α(p2 − 2p3)β, (6)

M(l)
K∗ = −gππK∗K∗εα

1 ε
β
2 gαβ,

respectively. Finally, the amplitudes for K∗K̄∗ → ρρ are

M(m)
K∗ = g2

ρK∗K∗ε
α
1 ε

∗β
3 ε

γ
2 ε∗δ

4
1

t − m2
K∗ + imK∗K∗

[
−gμν + (p1 − p3)μ(p1 − p3)ν

m2
K∗

]

× [(2p3 − p1)αgβμ − (p1 + p3)μgαβ + (2p1 − p3)βgαμ][(p2 + p4)γ gδν + (p2 − 2p4)νgγ δ + (p4 − 2p2)δgγ ν],

M(n)
K∗ = g2

ρK∗K∗ε
α
1 ε

∗β
4 ε

γ
2 ε∗δ

3
1

u − m2
K∗ + imK∗K∗

(
−gμν + (p1 − p4)μ(p1 − p4)ν

m2
K∗

)

× [(2p4 − p1)αgβμ − (p1 + p4)μgαβ + (2p1 − p4)βgαμ][(p2 + p3)γ gδν + (p2 − 2p3)νgγ δ + (p3 − 2p2)δgγ ν],

M(o)
K∗ = gρρK∗K∗εα

1 ε
∗β
3 ε

γ
2 ε∗δ

4 gαβgγ δ + gρρK∗K∗εα
1 ε

∗β
3 ε

γ
2 ε∗δ

4 gαδgβγ + gρρK∗K∗εα
1 ε

∗β
3 ε

γ
2 ε∗δ

4 gαγ gβδ. (7)

In the above equations,pi denotes the momentum of particle
i. We keep the convention that particles 1 and 2 stand for
initial-state mesons, and particles 3 and 4 stand for final-state
mesons on the left and right sides of the diagrams, respectively.
The Mandelstam variables s = (p1 + p2)2, t = (p1 − p3)2,
and u = (p1 − p4)2 have also been used. We apply here the
K∗ meson propagator with its decay width, K∗ , and use
the isospin averaged value for the K∗ meson decay width,
K∗ = 49.1 MeV [32].

In order to take the finite size of the hadron into considera-
tion when evaluating amplitudes, we apply the following form
factor at each interaction vertex for the u,t channel and the s
channel, respectively:

Fu,t (�q) = �2 − m2
ex

�2 + �q2
, Fs(�q) = �2 + m2

ex

�2 + ω2
, (8)

with �q2 being the squared three-momentum transfer for t and
u channels, and ω2 being the total energy of the incoming
particles for the s channel taken in the center-of-mass frame.
mex is the mass of the exchanged particle in each diagram
shown in Fig. 1. For the four point contact interaction we use
the form factor of

Fc(�k) =
(

�2

�2 + �k2

)2

(9)

with �k being the average value of the squared three-momenta
used in the vertex form factors for the given channels at each
process. We set the cutoff parameter � to be � = 1.8 GeV [33].
The final isospin- and spin-averaged cross section is given by

σ = 1

64π2sg1g2

| �pf |
| �pi |

∫
d�|M|2F 4, (10)

where g1 and g2 are the degeneracy factors of the initial 1 and 2
particles; g1 = (2I1 + 1)(2S1 + 1) and g2 = (2I2 + 1)(2S2 +
1), respectively. |M|2 represents the squared amplitude of all

processes in Eq. (2) obtained by summing over the isospins
and spins of both the initial and final particles. | �pi | and | �pf |
in Eq. (10) stand for the three-momenta of the initial and final
particles in the center-of-mass frame.

Using the same method, we investigate hadronic effects on
a K meson during the hadronic stage in heavy-ion collisions.
We consider interactions of the K meson with π, ρ,K , and
K∗ mesons: Kπ → ρK∗,Kρ → πK∗,KK̄ → ππ,KK̄ →
ρρ, and KK̄∗ → πρ. Among these, however, two processes,
Kπ → ρK∗ and Kρ → πK∗, are the same as the inverse
processes of the K∗ meson interacting with ρ mesons and pions
as shown in Figs. 1(d)–1(f) and Figs. 1(a)–1(c), respectively,
and the process KK̄∗ → πρ is the same as that of the K∗
meson interacting with K̄ mesons, Figs. 1(g)–1(i). Therefore,
all we need to consider more are the following amplitudes:

MK̄K→ππ ≡ M(a)
K + M(b)

K ,

MK̄K→ρρ ≡ M(c)
K + M(d)

K + M(e)
K , (11)

for processes KK̄ → ππ and KK̄ → ρρ. We show the dia-
grams for these processes in Fig. 2.

In evaluating the amplitude for the process KK̄ → ππ
we have not considered a four point interaction term like the
diagram shown in Fig. 2(e) for the KK̄ → ρρ process. It is
known that the strength of the contact term at low energy is
fixed in chiral perturbation theory. In an effective Lagrangian
that includes the vector meson [37], one can find that the direct
contact term for KK̄ → ππ is smaller than that coming from
the vector meson exchange. The magnitude of the vector meson
exchange can be estimated by taking the static limit of the
vector meson diagrams. One then finds that its form effectively
becomes a four-point-type interaction and that its strength is a
factor 3 larger than that coming from the direct contact term that
we neglected. The detailed argument is given in the Appendix.
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FIG. 2. Born diagrams for the K meson absorption by K̄ mesons: (a, b) KK̄ → ππ and (c–e) KK̄ → ρρ.

The amplitudes for processes KK̄ → ππ and KK̄ → ρρ
are

M(a)
K = g2

πK∗K

t − m2
K∗ + imK∗K∗

(p1 + p3)μ(p2 + p4)ν

×
[
−gμν + (p1 − p3)μ(p1 − p3)ν

m2
K∗

]
,

M(b)
K = g2

πK∗K

u − m2
K∗ + imK∗K∗

(p1 + p4)μ(p2 + p3)ν

×
[
−gμν + (p1 − p4)μ(p1 − p4)ν

m2
K∗

]
(12)

and

M(c)
K = g2

ρKKε∗α
3 ε

∗β
4

1

t − m2
K

(2p1 − p3)α(2p2 − p4)β,

M(d)
K = g2

ρKKε∗α
4 ε

∗β
3

1

u − m2
K

(2p1 − p4)α(2p2 − p3)β,

M(e)
K = −gρρKKε∗α

3 ε
∗β
4 gαβ, (13)

respectively. Then, using Eqs. (8) and (10) we evaluate the K
meson absorption cross sections.

Lastly we consider the possibility of the K∗ meson forma-
tion from pions and kaons. The scattering cross section for the
K∗ meson production is given by the spin-averaged relativistic
Breit-Wigner cross section:

σKπ→K∗ = gK∗

gKgπ

4π

p2
cm

s2
K∗→Kπ(

m2
K∗ − s

)2 + s2
K∗→Kπ

, (14)

with gπ , gK , and gK∗ being the degeneracy of pions, kaons
and K∗ mesons, respectively, with gi = (2Si + 1)(2Ii + 1) and
pcm the momentum in the center-of-mass frame. K∗→Kπ is
the total decay width for a reaction Kπ → K∗ → Kπ as a
function of

√
s. We take the following

√
s-dependent decay

width K∗→Kπ of the K∗ meson:

K∗→Kπ (
√

s) = g2
πK∗K

2πs
p3

cm(
√

s). (15)

It should be noted that through the rate equation to be
discussed in the next section we effectively take into account
the effect from the imaginary part in the self-energy of the
K∗ meson, which is not necessarily in equilibrium with the
pion background at each instance. Hence, there might also be
some changes in the real part of the K∗ meson self-energy,
or equivalently the K∗ meson mass shift. However, the chiral
order parameter at finite temperature is found to drop sharply
only near the phase transition point. Therefore, we expect the

change of the K∗ meson mass to be important only near the
phase transition point which influences the initial K∗ numbers.
In this paper, as we are interested in the relative change
of the K∗/K ratio as a function of the system temperature
and lifetime, which is mainly determined by the decay and
production of K∗ mesons during and dominantly at later stages
of the hadronic evolution, we do not consider the explicit
changes of the K∗ meson mass caused by the real part of the
K∗ self-energy, though we consider such changes from the
processes we have evaluated, which correspond to the effects
from the imaginary part of the K∗ meson self-energy.

We show in Fig. 3 the cross sections for the absorption
of both the K∗ meson and the K meson by π, ρ,K , and K∗

FIG. 3. Absorption cross sections for (a) the K∗ meson by
π, ρ, K , and K∗ mesons via processes K∗π → ρK,K∗ρ →
πK,K∗K̄ → ρπ,K∗K̄∗ → ππ , and K∗K̄∗ → ρρ, and those for (b)
the K meson via processes KK̄ → ππ,KK̄ → ρρ, and Kπ → K∗.
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mesons via processes shown in Figs. 1 and 2 as functions of
the total center-of-mass energy s1/2 above the threshold energy
s

1/2
0 of each process. We see in Fig. 3 the general characteristics

that cross sections have a peak near the threshold energy for
the endothermic processes, e.g., K∗π → ρK and KK̄ → ρρ,
while cross sections for the exothermic processes, e.g.,
K∗ρ → πK,K∗K̄ → ρπ , K∗K̄∗ → ππ,K∗K̄∗ → ρρ, and
KK̄ → ππ , become infinite near the threshold. We also see
that contributions from the contact terms shown in Figs. 1(c),
1(f) 1(i), 1(l), 1(o), and 2(e) to amplitudes in all processes are
significant.

We notice that the K∗ meson is absorbed more easily
by strange mesons, kaons and K∗ mesons, than by light
mesons, pions and ρ mesons; the absorption cross sections
of the K∗ meson by K∗ mesons and kaons, K∗K̄∗ → ρρ
and K∗K̄ → ρπ , are larger than those by ρ mesons and
pions, K∗ρ → πK and K∗π → ρK . We also see that the
annihilation cross sections for both the K∗ meson and K
meson are larger when ρ mesons are produced than when
pions are produced; the cross section for K∗K̄∗ → ρρ is
larger than that for K∗K̄∗ → ππ , and the cross section for
KK̄ → ρρ is also larger than that for KK̄ → ππ .

The cross section for K∗K̄∗ → ρρ is an order of magnitude
larger than other processes, and seems to reflect the effect from
two interaction mechanisms between three vector mesons. All
particles participating in the process K∗K̄∗ → ρρ are vector
mesons, and thus two LρK∗K∗ in Eq. (1) are needed to describe
the process K∗K̄∗ → ρρ. It has already been shown that the

interaction between three vector mesons increases the absorp-
tion cross section in the effective Lagrangian approach [26].

It seems unusual that the cross section forK∗K̄∗ → ρρ rises
with increasing energy even though the form factor has been
correctly used to kill the artificial growth of the cross section
with the energy. This behavior recalls the rise of the total cross
section for pp̄ collisions at high energy. It has been already
well known that the resonance exchange is largely responsible
for an increase of the cross section in high-energy scattering. In
this paper the K∗ meson exchange in the reaction K∗K̄∗ → ρρ
causes the rise of the cross section even at relatively low energy
less than 1 GeV. The introduction of the decay width in the
propagator K∗ , however, does not contribute to this behavior
at all. Instead it merely reduces a little bit the amplitudes for
the process having a K∗ meson exchange. Finally, we also find
that the cross section for the formation of the K∗ meson from
pions and K mesons, Eq. (14), is not small at all, compared to
cross sections for other processes.

III. TIME EVOLUTIONS OF THE K ∗ AND K
MESON ABUNDANCES

We consider the time evolutions of the abundance for both
the K∗ meson and kaon based on the cross sections evaluated
in the previous section. We build a coupled evolution equation
for both particles consisting of densities and abundances for
mesons participating in all processes shown in Fig. 1; π, ρ,K ,
and K∗ mesons:

dNK∗ (τ )

dτ
= 〈σKρ→K∗πvKρ〉nρ(τ )NK (τ ) − 〈σK∗π→KρvK∗π 〉nπ (τ )NK∗ (τ ) + 〈σKπ→K∗ρvKπ 〉nπ (τ )NK (τ )

−〈σK∗ρ→KπvK∗ρ〉nρ(τ )NK∗ (τ ) + 〈σρπ→K∗K̄vρπ 〉nπ (τ )Nρ(τ ) − 〈σK∗K̄→ρπvK∗K̄〉nK (τ )NK∗ (τ )

+〈σππ→K∗K̄∗vππ 〉nπ (τ )Nπ (τ ) − 〈σK∗K̄∗→ππvK∗K̄∗ 〉nK̄∗ (τ )NK∗ (τ ) + 〈σρρ→K∗K̄∗vρρ〉nρ(τ )Nρ(τ )

−〈σK∗K̄∗→ρρvK∗K̄∗ 〉nK̄∗ (τ )NK∗ (τ ) + 〈σπK→K∗vπK〉nπ (τ )NK (τ ) − 〈K∗ 〉NK∗ (τ ),

dNK (τ )

dτ
= 〈σππ→KK̄vππ 〉nπ (τ )Nπ (τ ) − 〈σKK̄→ππvKK̄〉nK̄ (τ )NK (τ ) + 〈σρρ→KK̄vρρ〉nρ(τ )Nρ(τ )

−〈σKK̄→ρρvKK̄〉nK̄ (τ )NK (τ ) + 〈σK∗π→KρvK∗π 〉nπ (τ )NK∗ (τ ) − 〈σKρ→K∗πvKρ〉nρ(τ )NK (τ )

+〈σK∗ρ→KπvK∗ρ〉nρ(τ )NK∗ (τ ) − 〈σKπ→K∗ρvKπ 〉nπ (τ )NK (τ ) + 〈σρπ→K∗K̄vρπ 〉nπ (τ )Nρ(τ )

−〈σK∗K̄→ρπvK∗K̄〉nK̄ (τ )NK∗ (τ ) + 〈K∗ 〉NK∗ (τ ) − 〈σπK→K∗vπK〉nπ (τ )NK (τ ), (16)

where ni(τ ) is the density of a light meson i in the hadronic
matter at proper time τ , and Nj (τ ) is the abundance of the other
light meson j in each process shown in Fig. 1 at proper time
τ . ni(τ ) for pions and ρ mesons is evaluated from

ni(τ ) = gi

2π2

∫ ∞

0

p2dp

e
√

p2+m2
i /T (τ ) − 1

≈ gi

2π2
m2

i T (τ )K2

[
mi

T (τ )

]
, (17)

by assuming that they are in thermal equilibrium, and varies
in time through the temperature profile introduced below,
Eq. (18). We obtain Nj (τ ) by multiplying Eq. (17) by the
hadronization volume V (τ ). In Eq. (17), gi is the degeneracy

factor for a particle i and K2 is the modified Bessel function
of the second kind.

ni(τ ) and Nj (τ ) are functions of the proper time through
the temperature profile developed to describe the dynamics of
relativistic heavy-ion collisions. We use the schematic model
of a system with an accelerated transverse expansion based on
the boost invariant Bjorken picture [29,38]:

V (τ ) = π [Rc + vc(τ − τc) + ac/2(τ − τc)2]2τc,

T (τ ) = Tc − (Th − Tf )

(
τ − τh

τf − τh

)4/5

, (18)

with Th and τf being the hadronization temperature and
the freeze-out time, respectively. Equation (18) describes the
system of the quark-gluon plasma expanding with its transverse
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TABLE I. Values for the volume and temperature profiles in the
schematic model Eq. (18).

Temperature (MeV) Time (fm/c)

Rc = 8.0 fm Tc = 175 τc = 5.0
vc = 0.4c Th = 175 τh = 7.5
ac = 0.02c2/fm Tf = 125 τf = 17.3

velocity vc and transverse acceleration ac starting from its final
transverse size Rc at the chemical freeze-out time τc. The
temperature of the system decreases from the hadronization
temperature to the kinetic freeze-out temperature Tf . The
values used in Eq. (18) are summarized in Table I.

In the rate equations, Eq. (16), 〈σab→cdvab〉 is the thermally
averaged cross section for initial two particles in a two-body
process ab → cd given by [39]

〈σab→cdvab〉 = 1

1 + δab

∫
d3 �pad

3 �pbfa( �pa)fb( �pb)σab→cdvab∫
d3 �pad3 �pbfa( �pa)fb( �pb)

= 1

1 + δab

T 4

4m2
aK2(ma/T )m2

bK2(mb/T )

×
∫ ∞

z0

dzK1(z)σ (z2T 2)[z2−(ma + mb)2/T 2]

× [z2 − (ma − mb)2/T 2], (19)

with z0 = max((ma + mb)/T ,(mc + md )/T ),K1 and K2 be-
ing the modified Bessel function of the second kind,
fi being the Boltzmann momentum distribution of the

particle i, fi( �p) = e−
√

�p2+m2
i , respectively. vab is the rel-

ative velocity of interacting particles a and b, vab =√
(pa · pb)2 − m2

am
2
b/(EaEb). 〈K∗ 〉 in Eq. (16) is the

thermally averaged decay width of K∗ mesons, Eq. (15),
〈K∗ 〉 = K∗ (mK∗)K1(mK∗/T )/K2(mK∗/T ), which has been
obtained in the same methods as used in Eq. (19).

The K∗ meson abundance at τ,NK∗ , depends not only
on the dissociation reactions like K∗π → ρK , K∗ρ →
πK,K∗K̄ → ρπ , K∗K̄∗ → ππ , and K∗K̄∗ → ρρ but also
on the production reactions, or the inverse reactions of the dis-
sociation reactions, such as ρK → K∗π, πK → K∗ρ, ρπ →
K∗K̄, ππ → K∗K̄∗, and ρρ → K∗K̄∗. We have taken both
reactions into consideration in building the coupled equation
for both the K∗ meson and kaon in Eq. (16). We have used the
detailed balance relation when evaluating thermally averaged
cross sections of the inverse reactions from the results for
forward processes shown in Fig. 3. The results are shown in
Fig. 4.

As we see in Fig. 4, thermally averaged cross sections
of the dissociation reactions are bigger than those of the
production reactions for the exothermic reactions. In the case
of the endothermic reaction like K∗π → ρK , the thermalized
production cross section is bigger than that for the dissociation

FIG. 4. Thermally averaged cross sections for the absorption of (a) a K∗ meson by π, ρ,K , and K∗ mesons via processes K∗π →
ρK,K∗ρ → πK,K∗K̄ → ρπ,K∗K̄∗ → ππ , and K∗K̄∗ → ρρ, and those for (b) a K meson via processes KK̄ → ππ,KK̄ → ρρ, and
Kπ → K∗. Thermally averaged cross sections for their inverse processes (c) ρK → K∗π, πK → K∗ρ, ρπ → K∗K̄, ππ → K∗K̄∗, and
ρρ → K∗K̄∗ for a K∗ meson and (d) ππ → KK̄ and ρρ → KK̄ for a K meson.
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reaction. Both thermalized cross sections are comparable for
the other endothermic reaction, KK̄ → ρρ.

In general, the smaller the threshold energy, mass, and
degeneracy, the bigger the thermally averaged cross section
in the two-body process. We find that the thermally averaged
cross section for K∗ formation, Kπ → K∗, becomes more
significant than those for other reactions. However, the
unusually rising cross section in energy for the reaction
K∗K̄∗ → ρρ has been suppressed in the thermalized medium
as shown in Fig. 4(a).

When solving the coupled differential equation for both the
K∗ meson and kaon abundances, we have treated abundances
of their antiparticles K̄∗ and K̄ mesons also as variables
using the strangeness chemical potential μs , i.e., NK̄∗ =
e−2μs/T (τ )NK∗ and the same for antikaons. In other words, we
have not considered that K∗ mesons and kaons are in thermal
equilibrium during the expansion of the hadronic matter, while
we calculate the thermally averaged cross section Eq. (19)
using the thermal distributions of hadrons involved. However,
the initial yield of kaons at chemical freeze-out has been
evaluated to be 88.1 using the statistical hadronization model,
Eq. (17) with the strangeness chemical potential μs = 10 MeV
and the hadronization volume VH = 1908 fm3 [30], whereas
the initial yield of K∗ mesons has been obtained from

NK∗ (τ ) = VH

gK∗

2π2

∫ ∞

mth

dm

NBW

K∗

(m − mK∗ )2 + 2
K∗/4

×
∫ ∞

0

p2dp

e(
√

p2+m2−μs )/T (τ ) − 1
, (20)

to take the width of the K∗ meson into consideration. In
Eq. (20), mth is the threshold energy for the K∗ → Kπ decay
channel and NBW is the normalization constant for the Breit-
Wigner distribution. We obtain the K∗ meson initial yield to
be 55.7, which is slightly larger than 52.4 obtained without
including the K∗ meson width calculated with the formula
given in Eq. (17).

In Fig. 5, we show the abundances of the K∗ meson and
kaon as a function of the proper time during the hadronic

FIG. 5. Time evolution of the K∗ meson and kaon abundances
during the hadronic stage in central Au+Au collisions at

√
sNN =

200 GeV. The ratio of the K∗ meson abundance to the sum of the K∗

meson and kaon abundances is shown in the inset.

FIG. 6. A comparison between the K∗ meson and kaon abun-
dances due to all hadronic interactions shown in Figs. 1 and 2 and
those from the thermal model prediction at each time and temperature.

stage of heavy-ion collisions at
√

sNN = 200 GeV. As we
have expected, the K∗ meson abundance decreases due to both
interactions of K∗ mesons with other hadrons and the decay of
the K∗ meson to the pion and kaon, eventually becoming 35.2
at 9.8 fm/c after the chemical freeze-out. On the other hand
the abundance of the kaon increases up to 106.4 at the end of
hadronic expansion. We find that throughout the time evolution
the sum of the K∗ meson and kaon abundances changes slightly
from 143.8 to 141.5. We also show in the inset of Fig. 5 the
variation of the ratio of the K∗ meson abundance to the sum of
the K∗ meson and kaon abundances. The ratio decreases from
the initial ratio from the statistical hadronization model 0.39
to 0.25 in the end.

Based on the analysis we find that about 37% of K∗
mesons produced at chemical freeze-out disappear during the
hadronic stage in heavy-ion collisions, making the invariant
mass reconstruction of the total K∗ meson difficult. We further
find that the hadronic interactions shown in both Figs. 1
and 2 explain about 5% of the K∗ meson loss, and the
K∗ meson decay, Eq. (15), and its formation, Eq. (14), are
largely responsible for the K∗ meson reduction in the hadronic
medium. Our result is comparable to the 30% reduction of the
previous statistical model prediction 0.33 ± 0.01 [10] to the
experimental measurements 0.23 ± 0.05 [13].

We also consider the possibility of both the K∗ meson and
kaon thermalization during the hadronic expansion. Assuming
that both mesons are in thermal equilibrium with the hadronic
medium we evaluate the K∗ meson and kaon abundances in
time using Eqs. (17), (20), and (18), and show the results
represented by N th

K and N th
K∗ in Fig. 6.

As we see, N th
K∗ keeps decreasing all the time. However,

N th
K increases at the beginning of the hadronic stage, and

finally decreases. This is due to the competition between
the volume expansion and the decreasing rate caused by the
thermal effects in Eq. (17), through the factor mK/T (τ ) inside
the modified Bessel function of the second kind, implying that
N th

K and N th
K∗ depend on the size and also on the lifetime of

the expanding fireball, Eq. (18). Nevertheless, one should note
that the volume of the system expands in time with the total
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entropy almost preserved [40]. We find that abundances of
most hadrons decrease during the hadronic expansion in the
statistical hadronization model but that of the pion, the lightest
hadron, increases in time to compensate the loss of entropy
from heavier hadrons. We argue that the same mechanism is
happening to strangeness hadrons for some time during the
hadronic expansion. However, the ratio N th

K∗/(N th
K + N th

K∗ ) is
not affected by the volume, and it keeps decreasing from 0.39
to 0.25 at the kinetic freeze-out.

We notice that recent measurements of the K∗ meson yield
in Pb+Pb collisions at

√
sNN = 2.76 TeV at the LHC provide

0.19 ± 0.05 [23] as the K∗0/K− ratio. This value is also
smaller than the statistical hadronization model prediction 0.30
evaluated with the hadronization temperature 156 MeV [41]
at the LHC energy. The measurements indicate that more K∗
mesons are lost during the hadronic expansion at LHC, leading
to 37% reduction of the ratio.

IV. THE ABUNDANCE RATIO OF K ∗ MESONS TO KAONS
IN HEAVY-ION COLLISIONS

Since the interactions of K∗ mesons and kaons with light
mesons considered in Figs. 1 and 2 take place during the
hadronic stage at both BNL’s Relativistic Heavy Ion Collider
(RHIC) and LHC, it is necessary to understand general features
of the variation of the K∗ meson abundance in heavy-ion
collisions. In order to analyze the reduction of the K∗ meson
in the hadronic medium we simplify the coupled equation,
Eq. (16), by keeping the linear terms in NK and NK∗ only:

dNK∗ (τ )

dτ
= γKNK (τ ) − γK∗NK∗ (τ ),

dNK (τ )

dτ
= −γKNK (τ ) + γK∗NK∗ (τ ), (21)

with

γK∗ = 〈σK∗ρ→KπvK∗ρ〉nρ + 〈σK∗π→KρvK∗π 〉nπ + 〈K∗ 〉,
γK = 〈σKπ→K∗ρvKπ 〉nπ + 〈σKρ→K∗πvKρ〉nρ

+〈σKπ→K∗vKπ 〉nπ . (22)

When the thermal cross sections and densities of light mesons
are independent of time, the following analytic solutions are
obtained from the coupled equation, Eq. (21):

NK∗ (τ ) = γK

γ
N0 +

(
N0

K∗ − γK

γ
N0

)
e−γ (τ−τh),

NK (τ ) = γK∗

γ
N0 +

(
N0

K − γK∗

γ
N0

)
e−γ (τ−τh), (23)

where the initial yields for both hadrons, N0
K and N0

K∗ , have
been assumed, and N0 is the sum of the K∗ meson and kaon
yields, N0 = N0

K + N0
K∗ , at chemical freeze-out. The γ in

Eq. (23) is the sum of the K∗ meson and kaon widths in the
hadronic phase, γ = γK + γK∗ ; γK∗ and γK play roles of the
collisional broadening of the width of the K∗ meson and kaon
in the hadronic medium, respectively.

In Eq. (23) time-independent terms represent abundances
when time goes to infinity, and the sum of two solutions is
preserved as its initial value N0

K + N0
K∗ . As time goes on NK

increases while NK∗ decreases, and the rate at which the final

number is reached in Eq. (23) is determined by the γ which
takes into account hadronic interactions of K∗ mesons and
kaons with light mesons. If the γ is large, the abundance can
change significantly for a short time.

Let us now investigate the time evolution of yield ratio of
K∗ mesons to kaons from the analytic solution of Eq. (23),
R(τ ) = NK∗ (τ )/[N∗

K (τ ) + NK (τ )]:

R(τ ) = NK∗ (τ )

NK∗ (τ ) + NK (τ )
= NK∗ (τ )

N0

= γK

γ
+

(
N0

K∗

N0
− γK

γ

)
e−γ (τ−τh). (24)

We notice that R(τ ) is also composed of two parts: a time-
independent part and a transient part. After a long time τ the
time-independent part R(∞) = γK/γ is expected to represent
the K∗ meson to the kaon ratio. How fast the abundance ratio
approaches the time-independent part relies on γ , the sum of
the K∗ meson and kaon widths in the exponential function.

With these in mind let us investigate the variation in the
abundance of K∗ mesons and kaons obtained from Eq. (16).
Since all thermally averaged cross sections and densities of the
light mesons in γK and γK∗ are functions of a time, solutions
of Eq. (16) are different from the analytic solution of the
simplified equation, Eq. (21). Nevertheless, we find that the
solution of Eq. (16) keeps the same important characteristics
of the analytic solutions from Eq. (21).

We first show in Fig. 7(a) γ obtained in Eq. (16) as a
function of time. The γ decreases in time from 0.33 to 0.26
c/fm as the system cools down from 175 MeV at τH to
125 MeV at τf , reflecting that interactions between hadrons
become less vigorous as the temperature of the system de-
creases. The γK or 〈σKπ→K∗ρvKπ 〉nπ + 〈σKρ→K∗πvKρ〉nρ +
〈σKπ→K∗vKπ 〉nπ in Eq. (22) decreases as the temperature
decreases, but γK∗ is almost constant during the hadronic stage;
with decreasing temperature of the system, the part of γK∗

or 〈σK∗ρ→KπvK∗ρ〉nρ + 〈σK∗π→KρvK∗π 〉nπ decreases whereas
the thermal width of the K∗ meson 〈K∗ 〉 slightly increases
due to the factor K1(mK∗/T )/K2(mK∗/T ), meaning that K∗
mesons live shorter at lower temperature.

We compare in Fig. 7(b) the abundance ratio variation
NK∗/(NK + NK∗ ) evaluated numerically from Eq. (16) for
RHIC to γK/γ obtained from Eq. (24) at each time and tem-
perature. γK/γ represents the expected hadronic interaction
width ratio between kaons and K∗ mesons plus kaons at each
temperature and time. We anticipate that the abundance ratio
of K∗ mesons and kaons in Fig. 7 approaches to γK/γ as
time goes on, like the ratio between those mesons obtained
from the simplified rate equation, Eq. (24). We show in the
inset of Fig. 7(b) how γ (τ − τh) varies in time at RHIC.
As we see, γ (τ − τh) increases up to 2.5 for 9.8 fm/c.
We expect that the similar term with e−γ (τ−τh) in the real
solution suppresses the contribution of the time-dependent
term as time goes on. The discrepancy between the abundance
ratio and the γK/γ in Fig. 7(b) is attributable to both the
contribution from nonlinear terms included in Eq. (16)—such
as K∗K̄ → ρπ , [Figs. 1(g)–1(i)], K∗K̄∗ → ππ , [Figs. 1(j)–
1(l)], K∗K̄∗ → ρρ [Figs. 1(m)–1(o)], KK̄ → ππ [Figs. 2(a)–
2(b)], and KK̄ → ρρ [Figs. 2(c)–2(e)]—and the time delay
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FIG. 7. (a) Variations of γK, γK∗ , and γ = γK + γK∗ in time
during the hadronic stage. (b) A comparison of the abundance ratio
variation NK∗/(NK + NK∗ ) obtained numerically from Eq. (16) for
RHIC and R(τ = ∞) = γK/γ from Eq. (24) evaluated at each time
and temperature. We show in the inset how γ (τ − τh) changes in time.

required to reach thermal equilibrium from the interactions of
K∗ mesons with light mesons in the hadronic medium.

Based on the above analysis we argue that the final ratio of
the yield between K∗ mesons and kaons in heavy-ion collisions
is largely dependent on their interactions with other hadrons
in the hadronic medium, γK and γK∗ . Since γ (τ − τh) keeps
increasing during the hadronic stage, the transient term with
e−γ (τ−τh) in the yield ratio R(τ ) plays a negligible role at a later
time during the hadronic interaction stage. Therefore, we see
that the relative interaction ratio γK/γ mainly determines the
final yield ratio between K∗ mesons and kaons at the end of
the hadronic stage.

We show in Fig. 8 γK/γ and NK∗/(NK + NK∗ ) obtained
from Eq. (16) as functions of the temperature of the system.
We also show in Fig. 8 measurements of the abundance ratio
between K∗ mesons and kaons, NK∗/(NK + NK∗ ), 0.23 ±
0.05 at RHIC [13], and 0.19 ± 0.05 at LHC [23]. We notice
from Fig. 8 that the ratio of the K∗ meson and kaon in heavy-
ion collisions seems to reflect the interaction ratio between
strange and light mesons, γK/γ , at the kinetic freeze-out
temperature. We infer that the lower ratio NK∗/(NK + NK∗ )
at LHC compared to that at RHIC is due to a lower kinetic
freeze-out temperature at LHC than at RHIC.

FIG. 8. Variations of γK/γ and NK∗/(NK + NK∗ ) from Eq. (16)
in temperature during the hadronic stage. We show measurements
of the abundance ratio between K∗ mesons and kaons, NK∗/(NK +
NK∗ ) 0.23 ± 0.05 at RHIC [13] and 0.19 ± 0.05 at LHC [23].

It has been argued that the degree of the reduction of K∗
meson yield during the hadronic stage in heavy-ion collisions
is attributable to a lifetime of the hadronic stage. Since the
system of quark-gluon plasma at LHC is much larger than that
at RHIC, it has been assumed that the lifespan of the hadronic
stage at LHC is also longer compared to that at RHIC, and
thereby more K∗ mesons are lost in the hadronic medium at
LHC.

We find, however, from the investigation of the variation
in the yield ratio between K∗ mesons and kaons based on the
solution of the rate equation, that the reduction of the K∗ meson
in heavy-ion collisions reflects the interaction of K∗ mesons
and kaons with light mesons at kinetic freeze-out. We argue that
the degree of the K∗ meson abundance reduction in heavy-ion
collisions, or the reduction of the yield ratio between the K∗
meson and kaon, is largely attributable to the kinetic freeze-out
temperature via the interaction of K∗ mesons and kaons with
light mesons in the hadronic medium. The long lifespan of the
hadronic stage just suppresses more a transient term, such as
the second term in Eq. (24), contributing little to the change of
the K∗ meson to kaon ratio.

Due to both the larger number of particles and the larger
volume of the system at LHC than at RHIC, the temperature
is expected to drop more at LHC than at RHIC between the
chemical freeze-out and kinetic freeze-out. Moreover, as has
already been analyzed in the statistical hadronization model,
the chemical freeze-out temperature at LHC, 156 MeV [41], is
lower than that at RHIC, 162 MeV [42]. Therefore, it is natural
that the kinetic freeze-out temperature at LHC is lower than
that at RHIC, which can support the smaller abundance ratio
between K∗ mesons and kaons NK∗/(NK + NK∗ ), 0.19 ± 0.05
at LHC compared with 0.23 ± 0.05 at RHIC.

The argument on the lower kinetic freeze-out temperature
at LHC compared to that at RHIC, based on the investigation
on the reduction of the K∗ meson abundance at both RHIC
and LHC, agrees with the recent UrQMD model study on the
centrality dependence of resonance production in heavy-ion
collisions [20]. The longest hadronic phase is expected for
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the largest system size available at the most central collisions,
which leads to the lower kinetic freeze-out temperature with
increasing centralities.

As has been already mentioned, how fast meson abundances
change in the hadronic medium is governed by the sum of all the
interactions involved, i.e., the width γ in Eq. (23). Therefore, in
addition to the hadronic interactions considered in Figs. 1 and
2 all other interactions with various hadrons, i.e., nucleons,
have to be taken into account to thoroughly understand the
reduction of K∗ mesons in heavy-ion collisions. Moreover, we
also have to include more the feed down effects from heavier
strangeness hadrons to fully consider the abundance ratio of
the K∗ meson to the kaon, which is left for future work.

V. CONCLUSION

We have studied the reduction of K∗ mesons in heavy-ion
collisions. We have focused on the hadronic effects on the
K∗ meson and kaon abundances during the hadronic stage of
the cental Au+Au collisions at

√
sNN = 200 GeV in order to

understand the K∗ meson yield difference between the exper-
imental measurement and the statistical hadronization model
prediction. We have evaluated absorption cross sections for
both kaons and K∗ mesons by π, ρ,K , and K∗ mesons inside
the hadronic medium. In describing the interaction between
K∗ mesons and kaons and light mesons, we have introduced
one meson exchange model with the effective Lagrangian.
Furthermore, we have built the coupled differential equation
for K∗ mesons and kaons, and have solved it to investigate the
time evolution of the K∗ meson and kaon abundances during
the expansion of the hadronic matter.

We have found that the K∗ meson and kaon abundances
during the hadronic stage of heavy-ion collisions are dependent
on absorption cross sections and their thermal average. We
have shown that the sum of K∗ and kaon abundances is almost
preserved during the expansion, and the interaction of K∗
mesons with light mesons controls the reduction or production
of K∗ mesons and kaons in the hadronic matter. Our analysis
indicates that 37% of the total K∗ mesons produced at the
chemical freeze-out are lost during the hadronic expansion
in the central Au+Au collisions at

√
sNN = 200 GeV. We

have found that among 37% about 5% of the total K∗ mesons
are converted into light mesons by hadronic interactions, and
the remaining 32% reduction is due to the decay of K∗
mesons to kaons and pions. We see that the loss of the K∗
meson abundance in the hadronic medium explains very well
the discrepancy of the K/K∗ ratio between the statistical
hadronization [10] model prediction and the experimental
measurements [13].

We have shown that the results obtained here can be applied
to the analysis of theK∗ meson production at the LHC. We have
found that all the interactions involved at RHIC must be present
at LHC, and therefore widths γK∗ and γK evaluated at the RHIC
energy can be applied to the case at the LHC energy. Moreover,
we have realized that the smaller ratio of K∗/K measured at
the LHC energy indicates a lower temperature of the kinetic
freeze-out at LHC compared to that at RHIC. We have shown
that the yield ratio between K∗ mesons and kaons is not mainly
dependent on the lifetime of the hadronic stage in heavy-ion

collisions, and the hadronic interaction width ratio of strange
mesons with light mesons, γK/γ , determines the final yield
ratio between K∗ mesons and kaons. We therefore conclude
that studying the yield of the K∗ meson and its variation during
the hadronic stage in relativistic heavy-ion collisions provides
a chance to understand not only the production of K∗ mesons
but also the evolution of the hadronic medium in heavy-ion
collisions.
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APPENDIX: FOUR POINT CONTACT TERM

We introduce the effective Lagrangian in the hidden gauge
approach [37]. This approach has the advantage over the
massive Yang-Mills approach in that chiral symmetry can
be kept intact after introducing the vector meson without
additionally introducing the axial vector meson [43,44]:

L = LA + aLV ,

LV = f 2
π tr

[
Vμ − 1

2i
(DμξL · ξ

†
L + DμξR · ξ

†
R)

]2

,

LA = f 2
π tr

[
1

2i
(DμξL · ξ

†
L − DμξR · ξ

†
R)

]2

, (A1)

where a is taken to be 2 [43]. In the unitary gauge,

ξ = ξ
†
L = ξR = eiP (x)·τ , (A2)

where P (x) is taken to be the pseudoscalar octet field divided
by the decay constant fπ . Then, to lowest order, we have

1

2i
(DμξL · ξ

†
L + DμξR · ξ

†
R)

= 1

2i
[(∂μP )P − P∂μP ],

1

2i
(DμξL · ξ

†
L − DμξR · ξ

†
R)

=
[

− ∂μP + 1

6
(∂μP )P 2 − 2

6
P (∂μP )P + 1

6
P 2∂μP

]
.

(A3)

Therefore, to lowest order

2LV = 2f 2
π tr

{
V 2

μ − 2Vμ

1

2i
[(∂μP )P − P∂μP ]

− 1

4
[(∂μP )P − P∂μP ]2

}
, (A4)

LA = f 2
π tr

{
(∂μP )2 + 1

3 [(∂μP )P − P∂μP ]2}. (A5)

If the vector field Vμ is integrated out, Eq. (A4) vanishes and
one is left with Eq. (A5), which corresponds to the lowest-order
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chiral Lagrangian. If the kinetic term for the vector meson is
added so that the vector field becomes dynamical, the vector
meson pseudoscalar coupling is obtained from LV and one is
left with the following four point contact term:

2LV + LA = f 2
π tr

{− 1
6 [(∂μP )P − P∂μP ]2

}
. (A6)

Now, consider K + K̄ → π + π . The process can occur
through the contact interaction given in Eq. (A6), or the
vector meson exchange obtained by using the VμPP vertex in
Eq. (A4) twice. Note that the mass term for the vector meson
can be obtained by substituting Vμ = gρμ in Eq. (A4), which

gives m2
V = 2g2f 2

π . In the static limit of the vector meson, the
vector meson mass cancels the two factors of g and the extra
f 2

π appearing in the contracted vertex and hence leads to an
effective vertex without the mass term given as follows:

LVector-exchange = 2f 2
π tr

{
1
4 [(∂μP )P − P∂μP ]2

}
. (A7)

Comparing Eq. (A7) with Eq. (A6), we note that the contri-
bution from the vector meson exchange diagram in the static
vector meson limit is a factor 3 larger than that from the direct
contact term. Hence, we neglect the direct contact term for the
process K + K̄ → π + π in this paper.
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