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Microscopic description of pair transfer between two superfluid Fermi systems:
Combining phase-space averaging and combinatorial techniques
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In a mean-field description of superfluidity, particle number and gauge angle are treated as quasiclassical
conjugated variables. This level of description was recently used to describe nuclear reactions around the Coulomb
barrier. Important effects of the relative gauge angle between two identical superfluid nuclei (symmetric collisions)
on transfer probabilities and fusion barrier have been uncovered. A theory making contact with experiments should
at least average over different initial relative gauge-angles. In the present work, we propose a new approach
to obtain the multiple pair transfer probabilities between superfluid systems. This method, called phase-space
combinatorial (PSC) technique, relies both on phase-space averaging and combinatorial arguments to infer the
full pair transfer probability distribution at the cost of multiple mean-field calculations only. After benchmarking
this approach in a schematic model, we apply it to the collision 20 + 2°0 at various energies below the Coulomb
barrier. The predictions for one pair transfer are similar to results obtained with an approximated projection
method, whereas significant differences are found for two pairs transfer. Finally, we investigated the applicability
of the PSC method to the contact between nonidentical superfluid systems. A generalization of the method is
proposed and applied to the schematic model showing that the pair transfer probabilities are reasonably reproduced.
The applicability of the PSC method to asymmetric nuclear collisions is investigated for the '*O 4 2°0 collision
and it turns out that unrealistically small single- and multiple pair transfer probabilities are obtained. This is
explained by the fact that relative gauge angle play in this case a minor role in the particle transfer process
compared to other mechanisms, such as equilibration of the charge/mass ratio. We conclude that the best ground
for probing gauge-angle effects in nuclear reaction and/or for applying the proposed PSC approach on pair transfer
is the collisions of identical open-shell spherical nuclei.
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I. INTRODUCTION

Although its contribution to the energy is rather small,
superfluidity plays a significant role in static properties of
atomic nuclei [1,2]. Its influence on time evolution of nuclei
is, however, scarcely known. One effect that could be naturally
anticipated is the enhancement of simultaneous transfer of two
nucleons when the two particles form a pair [3,4]. Another
predicted effect is the global increase of pair transfer when
coherent oscillations of pairs exist, the so-called pairing vi-
bration [5-7]. While a possible effect of pairing on transfer
is rarely contested [3,4], its quantitative influence remains
to be clarified. A detailed analysis has been, for instance,
made recently in Ref. [8], where different levels of description
from a pure mean field to beyond mean field have been
considered. In parallel, to understand the competition between
transfer and fusion reaction, new highly accurate experimental
measurements of transfer probabilities have been achieved
giving test-bench for nuclear models [9-13].
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In recent years, intensive efforts have been made to include
pairing into dynamical microscopic theories [14—19] to sim-
ulate both isolated nuclei and/or collisions between nuclei.
These approaches offer the possibility to understand the in-
fluence of superfluidity on the dynamics from a different point
of view than traditional approaches where nuclear structure
is treated separately from nuclear reaction. The basic tools to
include superfluidity is the Hartree-Fock-Bogoliubov (HFB) or
BCS theory where the U (1) symmetry associated to the gauge
angle is spontaneously broken to include pairing correlations
in a simple way. Similarly to interacting bosonic systems it
is quite natural to investigate if the interaction of two nuclei
is affected by their relative gauge angles when they enter
into contact. Recently, several works have uncovered rather
large effects of the relative gauge angle between identical
nuclei. This case of symmetric collisions is quite special in the
sense that effects such as charge/mass equilibration between
collision partners are absent. This context allows the pairing
fluctuations to become a major driver of the pair transfer. A
first hint on the role of gauge angle in symmetric reactions
was given in Ref. [20], where its influence on pair transfer has
been addressed for the first time within TDHFB. It was indeed
found in particular that particle transfer is sensibly affected
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by the relative gauge angle between nuclei. The sensitivity
to the gauge angle has been further explored in Refs. [21-23],
confirming again its importance in the particle transfer process.
Besides, these works emphasize two surprising behaviors.
First, when fusion does not occur, the kinetic energy of
fragments after reseparation is significantly affected by the
initial relative phase in gauge space. Second, the relative
angle changes the fusion threshold leading to a considerable
contribution to the so-called extra-push energy.

The fact that some spontaneous symmetry breaking affects
the physics close to the Coulomb barrier is by itself not a
surprise. Another typical example is given by the spontaneous
breaking of the rotational symmetry at the mean-field level
that leads to deformed nuclei in their intrinsic frame. The
role of the gauge angle is in this case replaced by the relative
orientation between the two main axes of deformation of the
collision partners. These collective degrees of freedom lead
to fluctuations in the Coulomb barrier properties that can be
probed experimentally [24,25]. Note that an extensive discus-
sion of the possible role of spontaneous symmetry breaking
(e.g., deformation in real and/or gauge space) on transfer
reactions can also be found in Ref. [26]. Mean-field theories
like Hartree-Fock and/or Hartree-Fock-Bogoliubov provide a
proper framework to describe spontaneous symmetry breaking
in the sense that these approaches naturally yield deformed
ground states. However, they treat the collective variables
classically while, in principle, a fully quantum collective
approach would be required. To overcome this difficulty, the
mean-field picture requires some mechanism to restore the
broken symmetries of the total system before, during, and after
the collisions. A natural technique to ensure proper symmetries
in state-of-the-art nuclear structure studies is to project the
trial wave function on good particle number, parity, angular
momentum [27-29]. This technique is, however, much more
involved for nuclear reactions where two evolving systems with
various exit channels are considered. Up to now, the projection
technique has been essentially used after the reaction involving
either two normal [30] or only one superfluid nucleus [19].

A first attempt was made recently to use projection tech-
nique during the evolution [31,32]. An important advantage is
eventually to be able to treat interferences between different
mean-field trajectories. The technique proposed in Ref. [31]
turns out to be rather involved even if a drastic approximation
was made on the mixing of different mean-field trajectories.
In addition, two difficulties show up: (i) the results strongly
depend on the conventions for the equation of motion used to
solve the TDHFB equations; (ii) the final transfer probabilities
might have rather important oscillations depending on the
phase evolution convention even when the two nuclei are well
separated.

Based on the recent investigation on the role of gauge angle
on nuclear reactions, there is a number of emerging interroga-
tions: the first one is that the gauge angle itself is a concept that
only has a meaning in a symmetry breaking theory while the
number of protons and neutrons in nuclei are fixed. Then, are
the predicted effects surviving in a particle number conserving
theory? If yes, do the huge effect predicted on reactions in
Ref. [22] persists once the symmetry is properly restored? Are
these effects still important in collisions involving a target

different from the projectile? Behind these questions, one
may wonder if the classical mechanics mean-field approach
based on gauge angle has a physical observable reality in
nuclei. Another difficulty is that contrary to cold atoms, and
even if nuclei might have rather large number of nucleons,
the true number of nucleons (essentially those close to the
Fermi energy) forming pairs is rather small. Then, finite-size
corrections to the BCS/HFB approaches are expected to be
significant as well as correlations much beyond the mean-field
picture.

This article is organized as follows. First, we discuss some
of the points raised above and question if a classical picture for
the gauge space is meaningful in the context of transfer reac-
tions (Sec. II). In Sec. III we review several existing technics
to restore the symmetry associated to the number of particles
in the context of nuclear reactions and propose a new method
that we call phase-space combinatorial (PSC) technique. This
method is benchmarked in a schematic model of collision
between two identical systems (symmetric collisions) and at
energies below the Coulomb barrier. Section IV highlights its
application to the realistic collision °0 + 2°0. Finally, we
discuss in Sec. V the applicability of the PSC method to the
case of asymmetric collisions, i.e., when the two superfluids
are different, for which the main driver of particle transfer may
not be the residual pairing interaction.

II. DESCRIPTION OF TRANSFER REACTIONS
IN A SCHEMATIC MODEL

In this section, we focus on the exchange of pairs of fermions
happening when two symmetric and superfluid systems come
into contact. We follow Refs. [31,32] and consider a minimal
schematic Hamiltonian to describe the transfer between a
superfluid system A and a superfluid system B. In this simple
model, the systems are assumed to stay at any time in fully
paired states. The Hamiltonian is a sum of three terms:

H = Hy+ Hg + V(1) 1)

The operator H4 (respectively, Hp) describes the isolated
Fermi system A (respectively, B) and is supposed to take
the form of a simple pairing Hamiltonian (see, for instance,
Ref. [2]):

Qa Q4
Hy = eA(aTa —l—aTa-)— alalaa
A= x (g ay 9% 84a (3 aal A
k>0 k#1>0

Qp Qp
Hy =Y el (blbe+blbp) —gs > biblbb.  (2)
k>0 k£1>0

Here, {ay,az} (respectively, {by,bz}) correspond to a set of
Q, (respectively, Qp) pairs of states, where k denotes the
time-reversed state of k. The term V (¢) describes the interaction
between the two systems during the contact time. As stated in
Ref. [33], two mechanisms may drive the transfer of particles
between two colliding nuclei. The first one is the tunneling
of single particles coming from the mean field and can be
mimicked by operators a,Ibl, whereas the second one is the
direct transfer of pairs due to the residual pairing interaction
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and is related to a,ia%b,—b,. In the present model, the first term

is omitted and therefore it implicitly assumes that the transfer
of pairs mainly occurs simultaneously. As we will see below,
such a model can eventually model the pair transfer during
symmetric heavy-ion collisions but not asymmetric reactions.
In the present work, we mainly concentrate on symmetric
collisions where large gauge-angle effects has been uncovered.
Then, neglecting the single-particle tunneling, the transfer
process is described using [32]

Q4 Qp
V)=o) Y Y (alalbiby + b]blagay). 3)
k>0 [>0

The time dependency of the coupling is assumed to be Gaussian
and centered at the collision time ¢ = O:

v(t) = voexp [—1%/77], “4)

where 7, is the interaction time. Under simple assumptions, the
two parameters of the coupling strength v(#) may be related to
a few characteristics of the input channel namely the charges
Z4,Zp, the reduced mass of the colliding nuclei, the relative
kinetic energy and the scattering angle in the center of mass
frame [33].

In the following, for the sake of compactness, we denote

generically by (c,T{,cI{) a pair of states belonging to either the
system A or B. Then, the total Hamiltonian is simply written
as

H =Y ealla+ciep)— Y Gujclge. (5
k>0 k#1>0

With these notations, & = &f' (respectively, ¢f) if (k, k)
belong to A (respectively, B). The matrix element G, equals,
respectively, to g4, gp, and v(?) if the couple of indices (k,l)
refers to states that are both in A, both in B, or one in A and
one in B.

A direct diagonalization technique applied in every sub-
space of given seniority gives the complete set of eigenstates of
the pairing Hamiltonian [34]. This direct technique is possible
as long as the single-particle Hilbert space is not too large.
This advantageous feature of the pairing Hamiltonian has been
widely leveraged to study the static properties of a variety of
small superfluid systems [2,35,36] as well as to test approxi-
mate treatment of pairing [37]. The full Hamiltonian Eq. (1)
was first proposed to study transfer reaction in Ref. [33] and
further analyzed in Refs. [38,39]. It was also used by Broglia
et al. to discuss the semiclassical nature of the mean-field
approximation (see, for instance, Ref. [26]). The exact solution
of this schematic Hamiltonian guided us to propose, in this
paper, an approximate treatment of the pair transfer between
two colliding nuclei. This approximate treatment aims at being
applicable to heavy systems where the direct diagonalization of
the pairing Hamiltonian becomes impractical. We first discuss
below briefly the exact and mean-field solutions.

A. Exact solution

‘We assume at initial time that each subsystem is in its ground
state. In these ground states, all the particles are paired. Since
the complete Hamiltonian Eq. (1) does not break pairs during

the evolution, the total wave function of the composite system
remains in a subspace where all nucleons are paired during the
whole evolution. Calculations can, therefore, be performed in
the basis of orthonormal states {|n)} defined as

Q
iny = [Teeleh™10), ne = 0.1, ©)
k>0

where 2 = Q4 + Q5. Dueto the invariance of the total particle
number respected by the model Hamiltonian, this basis can
even be reduced to states verifying the condition

Q

1
=5 (Ni+Np). @

k>0

where NX and Ng denote the initial numbers of particle in
systems A and B, respectively. The string of bits ngng_; - - - nj
totally defines the state |n) and provides a direct mapping
between this state and the integer n having nong_i - - - n; for
binary representation. The initial state of each subsystem is
determined by diagonalizing its own Hamiltonian within the
subspace spanned by |n) states with appropriate number of
particles; i.e., Y ,.,nr = N$/2 and Y, _pnx = Nj/2. The
time-evolution of the total wave-function |¥) is then obtained
by solving the coupled-channel equations on the components
¢, (t) with

W(0) =) cul®)ln). ®)

From the coefficients, any quantity related to transfer can
be computed. For instance, the probability to have (N4, Np)
particles at final time ¢, is given by

P(Ns,Np.to) = Y

I’IEE(NA,NB)

len(too)?, ©)

where the sum runs over the set of states £(N 4, Np) defined by
the condition

> me=Na/2, D m=Ng/2. (10)

keA keB

Since the total particle number N is conserved, the final
probability given by Eq. (9) is zero if Ng £ N — N4. In the
following, we introduce the exact pair transfer probability P
that is equal to

PE* = P(Ny = N} +x,Ng = Njj — X,tx). (an

We follow the standard terminology and call addition (re-
spectively, removal) probabilities, the probability for x > 0
(respectively, x < 0), implicitly assuming that the addi-
tion/removal is defined with respect to the system A.

Using this practical scheme, we compute the multiple pair
transfer probabilities during the collision of two identical
systems. This example is used as a reference calculation
throughout this article. Each system consists of one degenerate
shell with single-particle energies set to e,f =¢f =0. The
shell degeneracy is set to 24 = Q5 = 6 and both systems are
initialized in their half filling situation, i.e., N3 /2 = N} /2 = 3
pairs of particles. This simple assumption can be regarded
as a minimal description of the transfer of nucleon pairs
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FIG. 1. Exactasymptotic probabilities of multiple pair transfer as
a function of the coupling strength vy /g obtained for the symmetric
degenerate case with Q4 = Qp = 6 and N = NJ = 6.

from one degenerate shell of nucleus A (respectively, B)
to another degenerate shell of nucleus B (respectively, A).
The pairing strength is assumed to be the same in the two
systems g = g4 = gg = 1 MeV. The characteristic contact
time defining the coupling Hamiltonian is setto t. = 0.28 7/ g
and the evolution takes place from 7y = —2.28 to 7o, = +2.28
in the same units. This time interval is wide enough to probe
the asymptotic regime both before and after the collision.
The initial product state is evolved in time using a Taylor
expansion of the exponential propagator up to fourth order
with a sufficiently small time step dt = 107* i/g. After the
collision, the transfer probabilities are recovered using Eq. (9).

Figure 1 shows the results obtained for a wide range of
coupling strength vy/g. Two regions of coupling strength can
be identified. For vy/g > 2.1072, the probabilities to transfer
several pairs have the same order of magnitude. This region
corresponds to a highly nonperturbative regime where strong
quantum interferences between different transfer channels play
an important role. On the other hand, for vy/g < 2.1072, the
interaction acts as a small perturbation. The probability to
transfer one pair becomes prominent compared to multipair
transfer. The perturbative nature of the transfer can be directly
inferred from the simple scaling behavior of P, observed
in Fig. 1. Indeed, for small values of the coupling, P,, is
proportional to (vy)*, which is consistent with the scaling de-
duced from the first nonzero term appearing in time-dependent
perturbation theory (see the Appendix). It is finally worth
mentioning that the observed probability dependence with
vo/g looks very much the same as the observed evolution of
transfer probabilities below the Coulomb barrier when plotted
as a function of the minimal distance of approach [9-12]. This
underlines that the perturbative regime is certainly the most
relevant for these experiments.

B. TDHFB solution

We now consider a mean-field description of transfer. The
natural approach to circumvent the combinatorial growth of
the exact Hilbert space is to restrain the system to a TDHFB
ansatz. In the case of our model Hamiltonian, the HFB trial

function reduces to a BCS one, which takes the form

(W) = [ [Wim + Vi@elehio). (12)
k>0

The single-particle occupation numbers n; and the anomalous
density components ky, defined as

(1) = (cex) = (cleg) = Vi),

ki (t) = (crex) = Uk V@),

contain all the information on the system.

The mean-field trajectory fulfills the Ehrenfest theorem
ihd,(0) = ([0,H]) for any operator O that are linear com-
binations of {c}:ck, CiChs c}:cl{} operators (here H just means
that it might contain or not the constraint on particle number
—AN). This leads to the set of equations of motion:

. dl’lk % %
lh_d[ = A]{Kk _KkAka
d
ih% = 280 4+ Ar(2n — 1). (13)

The pairing gap is defined as Ay = ), Gyk; and the single-
particle energies write as & = &, — A;. While Egs. (13) can
be solved directly, it is common to use instead the equation of
motion on the quasiparticle components (Uy, Vy):

. d (Ui(t) Ek — Vi A Ux(1)

e (vkm) = ( AL - n)(vk(r))' a4
As previously noted [15,40], the above set of equations are
not unique and can be solved using an arbitrary factor y. This
arbitrary factor brings a change in the evolution of the global
phase of the quasiparticle vacuum |W(¢)), while conserving
the equation of motion Eq. (13). At the mean-field level,
any expectation value will be independent of this factor and
therefore y; may be chosen arbitrarily [15,40]. If one tries to go
beyond mean-field (e.g., using theories requiring calculation
of overlaps between different quasiparticle vaccua), the results
strongly depend on the choice of this global phase. The fact that
no specific choice has yet been established on first principle
argument renders the treatment of the interaction between two
superfluids rather tricky [31].

Within the TDHFB approach, the initial state is a product
of two quasiparticle ground states associated with A and B.
The breaking of U(1) symmetry for these two states leaves us
with an arbitrary relative initial gauge angle 92 5 between the
two subsystems:

ka(0)k5(0) = kA (0)] |k 5(0)]e . s)

As demonstrated in several works [31,41], the final result of the
collision treated within TDHFB depends on the initial relative
gauge-angle.

To better grasp this effect, we consider as in Sec. ITA the
case of two symmetric fully degenerated systems. In this simple
model, the gauge angle and relative number of particles play the
role of classical conjugated variables that obey simple coupled
equations of motion. Due to the degeneracy in each system,
only four parameters describe the TDHFB evolution: ny4, np,
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k4, and kg. Then, Eq. (13) reduces to

. dl’lA * * QB dl’lB

ZFIW = QBU(I)(KBKA _KAKB) = Q_A dr’ (16)
., dica ~

th =28ak4 +(As + Aup(0)2ns — 1), (A7)
. dkp ~

lh7 = ZEBKB + (AB + ABA(I))(an - 1)’ (18)

with
Ap = gaQ2skp, Ap = gplpkp,
App = v(t)Qpkp, Apa = v(1)Q24k4. (19)

At any time 7, we may define the time-dependent relative
angle 045(1) by kak}y, = |kcal|kcgle'® . Finally, introducing the
number of particles N4(f) = 2Q4n4(¢) in the subsystem A
(respectively, Ng(t) = 2Qpnp(t) in B) yields the following
evolutions for the average particle numbers:

dN QAR
d—tA = 4u(1) Ah B liea@)| |k p(0)]sin[045(1)]
_ dNg
=-— (20)

This evolution is rather complicated as it depends explicitly
on the anomalous density of each system. However, in the
weak coupling regime, one might neglect the coupling term
in Egs. (17) and (18). Then, the evolution of the anomalous
densities in the two subsystems become independent from each
other and can be integrated in time:

Ka/(1) = K g eXp(—2iwa,pl), (1)

with fiwy/p = €a/B — A+ gA/BQA/B(nA/B — 1/2). The rel-
ative gauge orientation then rotates with a nearly constant
frequency wap = ws — wp:

Oap(t) = —2wapt +655. (22)

Reporting in the anomalous densities evolutions and integrat-
ing in time, we finally obtain an expression of N, (t):

Na(t) = N§ + S,(t)sin 0% — A,(t)cos 6%, (23)

with

Sv(t)zf W(s)cos(RQwaps)ds,

t
A,(t) = / W(s)sinQwaps)ds,
Io
and where we have introduced the notation
_ f 0(],.0
W(t) = hv(t)QAQB|KA||KB|. (24)

In the asymptotic regime after the collision, we may choose
too = —Ip so that only the symmetric term will contribute to
pair transfer. In the symmetric case, wap =~ 0 and S, can be
integrated explicitly as

Su(t) = z[”‘;"']UOQAQB;Kg||Kg|ﬁ
x[erf(¢/t.) — erf(ty/7.)], (25)

T T T T T

661 ___ TpHFB, 095 €10, 27
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_26.2 1 o
> 08 e e m e e m e

-2 -1 0 1 2
Time (%/g units)

2.0¢ sin(0Y, k-A vy/g=0.200 ]
1.5F O O w/g=0.002 vp/g=0.400 ]
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2 1.0
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| 0.5
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0.0 0.5 1.0 1.5 2.0
Relative gauge angle 6,/

FIG. 2. (a) TDHFB evolutions of the particle number in the
system A starting from the relative gauge angles 69, = 2k /20, 0 <
k < 20 (same as Fig. 1 of Ref. [31] given here for completeness),
and for a coupling strength vy/g = 0.02. (b) Asymptotic number
of particles transferred to the system A as a function of the initial
relative gauge angle for four different coupling strengths. The number
of transferred particles is normalized by S3° and the weak coupling
analytical formula, Eq. (26) is shown in red solid line. All TDHFB
calculations are performed with a rescaling factor « = 1.2 on the
interaction (cf. Sec. I1IB 3).

with the standard definition erf(x) = Ji; fot e=5'ds. As a con-
clusion, the average number of particle transferred in the weak
coupling conditions is found to depend on the sinus of the
relative gauge angle with an amplitude proportional to the
a-dimensional parameter (vot./h):

N =~ NY + S,(to0) sin 69 . (26)

In Fig. 2, the time evolution of N4 obtained with mean field
is illustrated using different initial relative phases for the case
considered in Sec. ITA (24 = Qp = 6 and starting from the
half filling configuration). In the top panel, we see that starting
from different 69, leads to different mean-field trajectories as
soon as the two systems start to interact. Similar behavior has
been obtained in Ref. [31]. The bottom part of Fig. 2 shows the
dependency of the asymptotic number of particles transferred
as a function of the initial relative gauge angle. As we decrease
the coupling strength, the asymptotic particle number tends
toward the sinusoidal dependency given by Eq. (26). Already
for vg/g = 2.1072, the agreement with the analytical formula
is very good which is consistent with the beginning of the
perturbative regime shown for the exact case in Fig. 1.
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III. DESCRIPTION OF PAIR TRANSFER PROBABILITIES
BEYOND MEAN FIELD

Mean-field theories that treat superfluidity have inherent
limitations. The first one is obviously the breaking of the
U(1) symmetry associated to particle number, which makes
difficult the extraction of transfer probabilities. Indeed, finite-
size effects and quantum fluctuations associated to the eventual
symmetry restoration are anticipated to play a significant role,
especially if the number of particles involved is small. A second
limitation is the quasiclassical nature of the mean field in
collective space.

In this section, we first give a nonexhaustive overview of
some approaches that can include beyond mean-field effects
as well as their possible shortcomings. We then present a
new approach named phase-space combinatorial technique to
compute pair transfer probabilities based on multiple TDHFB
trajectories.

A. Quantum methods to go beyond mean field

A natural extension to include quantum effects beyond mean
field would be to use a path integral approach. In the simple
degenerated model described here, it is indeed possible to
include interferences between trajectories leading to the same
final number of particles. From Fig. 2, one indeed realizes that
there are always at least two trajectories (weak coupling) or
more (strong coupling) leading to the same N§°. Using the
stationary phase approximation (SPA), we may estimate the
transfer probability as a weighted average over different paths
with the proper phase factor. This approach has already been
applied with some success to transfer reaction, starting from
the classical action S;1(645,N4) and making additional efforts
to access probabilities in the classically forbidden region
[26]. We could have followed the same technique and most
probably got reasonable probabilities. However, we anticipate
that such a method may not be applicable for realistic nuclear
collisions where the collective coordinates associated to the
particle number and relative gauge angle are coupled to other
degrees of freedom (e.g., the relative distance between nuclei,
the deformation,...). A clear fingerprint of such a coupling is
the large dependence of the fusion barrier with the gauge-
angle empirically observed in Ref. [22]. Treating this feature
explicitly when performing the stationary phase approximation
leads to an increase of the problem complexity that seems
prohibitive.

A second strategy consists in performing a proper quantum
mixing of the TDHFB trajectories during the evolution. In such
a framework, the symmetry is restored with an appropriate
variation after projection (VAP) onto good particle number
[27] both for the initialization of the two partners of the reaction
but also during the whole evolution. The VAP technique itself
is already the state of the art theory in nuclear structure and
requires a large amount of computational resources. Besides,
a proper formalism for its time-dependent equivalent (time-
dependent VAP), where the many-body wave function would
be written as a set of evolving quasiparticle many-body vacua
is still missing. A first attempt has been made in Refs. [31,32],
where the mixing is made approximately by assuming that each

quasiparticle vacua evolves independently from each other.
This attempt was the original motivation of the present work.
We made extensive tests of this technique and realized that
changing the phase convention during the TDHFB evolution
significantly affects the results and therefore jeopardizes the
reliability of the prediction.

B. Semiclassical phase-space average over initial orientations

A simpler approach toward the symmetry restoration re-
lies on semiclassical averages over the initial gauge angle
configurations. The attractive feature of this method is that it
keeps the computational costs to the level of computing several
mean-field trajectories.

1. Phase-space estimation of the moments of an observable

The method starts with the statement that no orientation in
gauge space should be a priori privileged in the initial state.
The situation is similar to the case of deformed nuclei where
semiclassical methods with random orientations of deforma-
tion axis between nuclei have been considered followed by a
set of classical evolutions to describe barrier fluctuations (see,
for instance, Refs. [42,43]).

Since the initial relative gauge angle 69, is arbitrarily
chosen before the two systems interact, one should at least
perform a phase-space average of all the possible orientations
between 0 and 2. This is equivalent to assuming a uniform
initial probability for the relative gauge angle distribution:

1

P(68s) = 5 @7
A simple observable O' is considered as a classical variable
whose evolution is given by its expectation value along the
mean-field path. These evolutions are denoted by (9[(92 ptls
since they explicitly depend on the initial relative orientation.
In this picture, the quantum fluctuations in the gauge space
are mimicked by the fact that (9[92 5»1] becomes a random
variable. The moments of order k of the observable O after the
collision is estimated through the semiclassical average:

- 2
Ok = / OF[03 5,100 | P (63 5)d03 5. (28)
0

while its associated centered moment 1} reads

2w
s = /0 (O[6%5.10] = 0) P(625)d6%, (29

This brute-force semiclassical treatment, that was already
discussed extensively in Ref. [26], is very similar to the
stochastic mean-field (SMF) approach [44,45] especially to
its superfluid version [46]. It should however be noted that
here the initial phase-space is taken to restore in a classical
picture the broken symmetry while in Ref. [46] the initial
phase-space was chosen to simulate quantum fluctuations of a

"Here simple observable means that its expectation value can be
written as a linear combination of the one-body density matrix and
anomalous density matrix elements.
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FIG. 3. (a) Centered moments of the probability distribution
P,, at final time as a function of the coupling strength vy/g.
The semiclassical results (dashed lines) are compared to the exact
results (solid lines). (b) Second centered moment obtained with the
semiclassical average divided by its exact counterpart. The results
are obtained for the symmetric degenerate case with Q4 = Qg =6
and N3 = NJ = 6. All TDHFB calculations are performed with a
rescaling factor @ = 1.2 on the interaction.

quasiparticle vacuum or more generally of correlated systems.
Besides being simpler technically, such a direct phase-space
average has some advantages compared to alternative formula-
tions where the quantum expectation are kept together with the
gauge-angle average as in Refs. [47,48]. Indeed, assuming an
isolated Fermi superfluid with a fixed number of particles, all
centered moments ;¢ of the total particle number distribution
will be 0 in the semiclassical picture while spurious fluctuations
will persist if a quantum average is performed.

2. Transfer probabilities from the phase-space approach

In this section, we apply the phase-space averaging to com-
pute the moments of the observable X=N A — Ng (number
of pairs transferred to the system A). For this model case, we
can compare the semiclassical results with the exact quantum
distribution for the same observable. Indeed, once the exact
solution has been evolved in time according to Sec. ITA, the
exact centered moments for X can be evaluated with

w =) = (X)) PO (30)

where Eq. (11) provides the probabilities P¢;* and sum runs
over the even integers x.

Figure 3 compares the evolution of the second, fourth, and
sixth centered moments of X for a wide range of coupling
strength. Both moments obtained from the exact case and
the semiclassical phase-space approach are represented. In

the strong coupling regime, significant differences between
exact and semiclassical estimations are present for all three
moments. In the low coupling regime, the situation is quite
different. An impressive result is that the approximate and
exact second moments coincide over a wide range of coupling
strength. We see in particular (bottom part of Fig. 3) that the
ratio of the two moments is nearly constant and close to one
up to vo/g ~ 3.1072 in the perturbative regime. In this weak
coupling regime, the different centered moments of the number
of nucleons in the subsystem A can be expressed analytically
by performing the averages of NX[69,,7.0] over 69, where
Nga [92 g-t] is given by Eq. (26). For the second moments, it
gives, for instance,

— —
py = N3 — Ny = 183(t0). 31)

The fact that exact and semiclassical second-order moments
become proportional in the low coupling regime can in this
case be shown analytically as

1 Vo T, 2 " Vo T, 2
MZC=§S§(IDO)<X< p ) s 28Pznoc( - ) -

(32)

The exact estimation of P,, comes from keeping only the
leading-order term in the time-dependent perturbative ap-
proach developed in the Appendix.

On the contrary, higher moments obtained with the semi-
classical average completely fail to reproduce their exact
counterparts for all coupling strengths. In particular, the fourth
and sixth semiclassical moments fall down much faster than
the exact case when vy decreases. Using the analytical formula
Eq. (25), we can, for example, investigate the asymptotic
behavior of the fourth semiclassical moment:

sc 3 Vo T, 4
s = gS;‘(zm)oc< - ) ) (33)

Due to the hierarchy of the probabilities Py, 3> Pagk+1)s in the
perturbative region, the exact solution will necessarily result
in a different behavior ug* ~ 4us* (”"TT")Z. This relation
between the order two and fourth exact moments clearly
appears in Fig. 3 and similar arguments can be used to explain
the mismatch between exact and semiclassical moments for
the higher orders.

As illustrated from the mismatch between moments of
order higher than two, the distribution of the random variable
X[69;,t] is a poor approximation of the exact quantum
distribution of the observable X at . There are several reasons
for the failure of a direct semiclassical phase-space average.
First, semiclassical variable X [92 p-loo] takes continuous real
values, whereas only even integers are possible in the exact
treatment. In addition, the domain of variation of X [92 goloo]
may in practice be very different from the range of possible
measurements of X. To illustrate this, we emphasize that in the
weak coupling regime one can eventually obtain an analytical

expression of the probability P probability using [26]

x[69, 1.1\
Pj;:l<—d (6351 ]> ) (34)

T dol,
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This expression? accounts for the fact that two initial relative
orientations lead to the same final number of particles (see
Fig. 2). Inserting Eq. (26), we find that the number of particles
is bounded,

N = Sy(tos) < NP < N§ + S, (1), (35)

which corresponds to the “classically allowed” region. In the
exact treatment, particle numbers that are outside the classical
region are always populated.

We conclude from this analysis that, even in our simple
model case, the direct phase-space approach that consists in
averaging over different TDHFB does not provide a precise de-
scription of the transfer probability distribution. However, this
semiclassical average procedure seems to recover correctly the
second moments of the pair transfer distribution by somehow
including effects beyond the independent quasiparticle picture.

3. Precision on the comparison between exact
and phase-space treatment

When comparing an approximate treatment of the many-
body problem with the exact one, we should a priori use the
same Hamiltonian. In Ref. [31], it has been argued that the
interactions strength used in the Hamiltonian for the mean-
field-based calculations should be rescaled compared to the
exact case, in such a way that the initial total energy is the
same. More precisely, for the symmetric case, it was assumed
in Ref. [31] that g/, = aga, g5 = agp, and vj = avy in the
energy where « is a factor that depends on the specific case
under study. For Q4 = Qp = 6 in the half filling situation
we get @ = 1.2 and the corresponding scaling was applied in
the phase-space calculations presented here. This adjustment
might appear surprising but it is quite close to what is done
nowadays in nuclear structure where the strength of the pairing
interaction is adjusted to reproduce either the pairing gap
for midshell nuclei or the global trend in the two nucleons
separation energies. It should, however, be kept in mind
that this adjustment is based on rather empirical arguments.
The comparison between the exact solution and approximate
methods using this rescaling should be taken with caution and
conclusions should only be qualitative.

C. The phase-space combinatorial technique (PSC)

Although the semiclassical technique presented in Sec. III B
is not able to describe the complete richness of the transfer
probabilities, it provides a very good estimation of the second
moment for a wide range of interaction strength vy. This
nontrivial feature of the semiclassical approach for transfer
was already emphasized in Ref. [31] and is confirmed on a
more systematic basis in this work. Based on this empirical
assessment, we propose a method to compute the pair transfer

2Note that this expression is only defined when d;’—é( # 0. According
AB

to equation this is not the case for a few discrete values of 6% (e.g.,
69, = m/2). This is actually not a problem as continuous distribution
of probabilities may have non defined values on a support of measure
null.

probabilities from the first semiclassical moments in the pertur-
bative regime. The method relies on two major assumptions:

(a) The first and second moments obtained from a semi-
classical distribution of many TDHFB evolutions with
different relative gauge-angles are realistic. This hy-
pothesis can only be validated a posteriori by com-
paring the result of the approach developed here with
experimental observations.

(b) The transfer of interest takes place in the weak coupling
regime. In this regime, we do expect a hierarchy in the
transfer probabilities.

POn > (P2nvP—2n) > (P4n’P—4n) > (36)

Such hierarchy is typically observed in reactions be-
low the Coulomb barrier [9-12], which establishes an
interesting range of applications.

1. One pair transfer

The one pair transfer is fully determined by the two
probabilities P, and P_,,. For the symmetric case, we have
in addition P, ~ P_,,. We can then use the hypothesis (b)
to obtain an approximate expression between the variance of
the distribution P,, and the two-particles addition/removal
probabilities:

pa(t) = 8Py (1) = 8P_p,(1). (37

We have checked that this is indeed realized up to 0.4% in the
exact calculations as long as we stay in the perturbative regime
vo/g < 2.1072. Consistently with the assumption made above,
Py, is automatically obtained from the approximate relation:

P()n:1_P2n_P—2n~

The relation Eq. (37) provides a straightforward way to access
the two-particles addition/removal probabilities and avoids the
complexity of multiple projections at different times [31].
In addition, it only requires the computation of independent
mean-field trajectories. In the weak coupling regime between
two symmetric degenerated systems, one can eventually use
Eq. (31) to get the analytical form P5¢ = S2(¢)/16 where S2(t)
is given by Eq. (25).

In Fig. 4, the numerical and analytical semiclassical esti-
mates of the two-particle pair transfer probabilities are com-
pared to the exact ones as a function of time for different
coupling strengths. At very small coupling, all the probabilities
are in close agreement with each other. The simple strategy
proposed here reproduces to a good extent the behavior of the
exact result in the weak coupling regime. In particular, the
time evolution of P (¢) is smooth and does not suffer from the
spurious oscillations of asymptotic probabilities observed in
Refs. [31,32]. As could be anticipated, the numerical estimate
has a wider range of applicability than the analytical one
obtained from Sf(t)/l6. Finally, and without surprise, more
and more deviation is observed as the coupling strength enters
the nonperturbative regime.

2. From one to multiple pair transfer

The success of the above method is an incentive to gen-
eralize it to multiple pair transfer. A naive attempt in this

034627-8



MICROSCOPIC DESCRIPTION OF PAIR TRANSFER ...

PHYSICAL REVIEW C 97, 034627 (2018)

12 ' ' ' '
_10t @
& 8 rwy/g=0.002
L’JO 6_
— 4_
2_
0 =1 =1 . =1
12F '
_10+ (B
o g-uo/gzo.ozo
= 4t
2_
0 =1 =1 . =1
04 . '
o3l (©
= 7 T w/g = 0.200
0.9 |9
0.1}
00l in o
0S[ @ ]
£ 0.4 Fvy/g = 2.000 7V S-E--B-3--B-
S Qg [l ]
0.2} ]
0.1} ]
00blmin o : . .
-2 -1 0 1 2

Time (h/g units)

FIG. 4. Two-particle transfer probability as a function of time and
for different coupling strength vy/g. The semiclassical estimation (red
dashed line) and its approximate analytical expression in the weak
coupling regime (blue dotted line) are plotted along with the exact
solution (black solid line). The calculations are performed in the
symmetric degenerate case with 2, = Q = 6 and N = N} = 6.
The rescaling factor on the interaction for TDHFB calculations is
o =12

direction would be (i) to compute the higher-order semi-
classical moments ;¢ and (ii) to invert the set of equations
uy = Zn(Zn)k(szn + P_y,) to retrieve the probabilities.
This technique would actually work if the high-order moments
wy° would match their exact counterparts. However, the Fig. 3
clearly shows that the phase-space approach fails to predict the
centered moments of order higher than 2.

To circumvent this difficulty, we propose to model the shape
of the probability distribution P,, with an analytical formula
involving a sufficiently small number of free parameters. Once
the generic shape of the distribution is decided, we determine
the parameters so to reproduce the first and second moments
predicted by the semiclassical average. This gives us eventually
the possibility to extrapolate the distribution Py, to multiple
pair transfer.

To propose a shape for the Py, distribution, we start from
the following simplifying assumption.

(c) In the perturbative regime, the transfer of several pairs
from one superfluid system to another can be essentially
treated as a sequence of uncorrelated pair transfers.

This hypothesis is guided by the exact resolution that is
discussed in the Appendix. In the exact case, the transfer
probabilities result from a rather complicated process involv-
ing interferences between different channels (see Fig. 12 of
the Appendix). In the perturbative regime, the interference
between channels can be neglected and we simply end-up with
a sequence of transfer that could be depicted for the addition
or removal process from A to B, respectively, as

P Pio

and
Na b N2 N, —4. 39)

The removal and addition probabilities of k pairs can then be
written as a product:

Py =Pr1-- Pk, Poopn=P-1---P_. (40)

A simplified expression of the P, is illustrated by Eq. (A12).
These transfer probabilities are in general rather complex since
they contain the information on the internal structure of the
system before and after the transfer, as well as the dynamical
effects of the time-dependent interaction. However, as shown
in the Appendix, in some limiting situation, the product of
probabilities can be rewritten as

Pon = Wip*,  P_opy = W_iq", 41

where W;,_; are combinatorial factors while p and g can
be interpreted as the elementary probability for a pair to be
added or removed during the reactions. In the exact case, this
probability is governed by the coupling v as well as the contact
time, i.e., by the time-dependent interaction between the two
systems. The factors W, and W_; contain here the information
on the available number of particles to transfer as well as the
number of possible states reachable when accounting for the
Pauli principle. It may also contain in an approximate way
some information on the intrinsic structure of the initial and
final states. In the Appendix, we obtained the expression of
Wi —« for two specific cases:

(i) We first consider the case where the transition frequen-
cies at each step of the process Eq. (38) are constant.
Then we have
(nA + k)' (QB —ng+ k)‘

Cs, ' . (42)

na! (25 —np)!
This situation is the one anticipated for the case of
degenerate system in the absence of pairing, i.e., when
both systems are in their normal phase.

(ii)) We then consider the case where the transition frequen-

cies at the step k is proportional to k, leading to
k k o~k k
Wi = CQA*"A C”BC A+kCle‘7nB+k. 43)

n

Wi = Cg,

—ny

This second case, is relevant for two degenerate systems
in the presence of superfluidity starting from half-filling
and is then expected to be more realistic for the present
study.

In both cases, W_; is deduced from W; simply by mak-
ing the replacement 24 <> Qp and ny <> npg. Parts of the
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combinatorial factors appearing in Eqs. (42) and (43) have
a simple statistical interpretation. Indeed, C,’fﬂ counts the
number of configurations of k pairs initially in system B
that could be transferred to A, while C§ _, counts the
number of possibilities to put k pairs in 24 — n4 empty spots.
Note, finally, that this second estimate of the pair transfer
probabilities will lead to lower probabilities, since Eq. (43)
can be obtained by dividing Eq. (42) by (k!)%. The approach
that uses combinatorial arguments is called hereafter PSC
(phase-space combinatorial).

In the following, we will systematically show the result
of both prescriptions. Since both are deduced from simple
approximate treatment of the internal structure of the systems,
the variation of transfer probabilities from one prescription to
another gives us an idea on the uncertainty related to the proper
treatment of the structure of the two systems.

Our starting point to obtain multiple pair transfer prob-
abilities are the assumed Eq. (41), where we see that the
important quantities for pair transfer addition and removal are
the elementary probabilities p and g. These parameters can
directly be inferred using our previous technique to estimate
two-particle transfer probabilities from phase-space average
(Sec. IIC1). Focusing first on the symmetric case where
p = g, we obtain simply

H2
=qg=—-—. 44
P=4= gy (44)
From the knowledge of p and ¢, we can directly calculate the
different probabilities when more than one pair is transferred
using Egs. (41). It is worth mentioning that for the symmetric
case, we have the recurrence relation,

Pyt = p Pon, (45)
as well as a direct connection between the probability to
transfer k pairs with the probability to transfer one pair:

Wk Wfk
Py = W},([Pzn]k, Py = W—fl[szn]". (46)

The method proposed here provides a straightforward way
to obtain the transfer probabilities from a semiclassical average
using solely the second moment of the simulated distribution.
Let us now study to what extent the forms given by Eqs. (41)
are valid for the considered model. To do so, we compute
the ratios py = [W Pf(’jc +,)n] /W1y Psi, 1 obtained from the
exact probabilities. The shape of the probability distribution is
realistic when these ratios are almost independent of k for a
given value of vy/g [cf. Eq. (45)]. The Fig. 5 highlights these
ratios for different k and different initial size of the systems
A and B. We used the values of W, given by Eq. (43). All
ratios match to a good extend with each others as long as not
too many pairs are transferred. Note that, if the prescription
Eq. (42) is used, more deviations between ratios are observed
as anticipated.

To further illustrate the accuracy of the PSC approach,
we show in Fig. 6 the approximate pair transfer probabilities
deduced when using the exact second moment uS* in the
combinatorial method presented here and compare it to the
exact probabilities. We see that the pair transfer are relatively
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FIG. 5. Ratios pr = [Wi Py 1y, ]/ [Warny Py, ] as a function of
the coupling strength. We used the W, coming from Eq. (43). The
results are displayed for the symmetric degenerate case with (a) 2,4 =
Qp =4,(b) 24 = Qp =6,and (c) 24 = Qp = 8§, starting from the
half filling configuration for both systems.

well reproduced with more and more deviations as the number
of transferred pairs or as the coupling strength increases.
Nevertheless, in general, the probability to transfer two pairs
and sometimes three pairs are reasonably close to the exact
probabilities. Figure 8 presents the systematic calculation of
the multiple pair transfer as a function of the coupling strength
vo/ g in the perturbative regime. We see that the behavior of the
distribution is monotone in this region and the semiclassical
result gives a nice estimate of the exact probabilities in this
case.

We finally couple the combinatorial approach with the
semiclassical estimate of the second moment. Provided that
the phase-space averaging is accurate to describe this moment
[hypothesis (a)], we compute in a straightforward way the
different pair transfer probabilities starting from p5°. Figures 7
and 8 compare again the approximate transfer probabilities
using w3 with the exact ones for the symmetric case. The
overall evolution of the probability with increasing number of
pairs transferred is rather well reproduced as well as its vy
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FIG. 6. Asymptotic probabilities to transfer one or several pairs
as a function of the quantity N3 — N§ obtained from a symmetric
degenerate situation with Q4 = Qp = N = N3 = 4 (a), 6 (b), and
8 (c). The colored bands span the area obtained with the distribution
Eq. (41) with the two cases for the W, factors. The distribution
are obtained by using the exact second moment u$* to determine
p = q. Approximate probabilities are systematically compared with
the exact values (dashed line) for three coupling strength vy /g in the
perturbative regime.

dependency. As expected, the exact solution is closer to the
case of linear transition frequencies given by Eq. (43). Note
that in all cases we have u3° ~ u$*. Therefore, using the exact
or semiclassical second moments does not change the resulting
probabilities. Part of this matching is a direct consequence of
the fact that the interaction has been rescaled in the TDHFB
case to match the exact ground state energy (cf. Sec. IIIB 3).
In the different cases considered in Fig. 7, a scaling factor
o =1.333, 0 = 1.2,anda = 1.144 has been used for 2,4 = 4,
6, and 8, respectively, leading to a difference between the exact
and approximate u, that is at maximum 10%. Again, we would
like to insist on the fact that the scaling procedure is irrelevant
for realistic applications and one should instead suppose that
the hypothesis (a) is valid.
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FIG. 7. Same as described in the caption of Fig. 6, except that p
is determined with the second moment u5° obtained by performing
the semiclassical phase-space average.

In summary, we introduced here the new PSC method that
works in two steps. First the second moments p5° is estimated
from phase-space averaging. This requires computing a set
of independent TDHFB trajectories. Then the complete pair
transfer distribution is recovered from the combinatorial fac-
tors Wy. The main benefit is that we obtain beyond mean-field
fluctuations at the cost of several mean-field calculations only.
The growth of the computation time with the number of
particles is therefore no more than the one associated to the
TDHFB calculations themselves.

IV. APPLICATION TO %0 + 20 REACTIONS BELOW
THE COULOMB BARRIER

To test the applicability the PSC method to a realistic
situation, we consider the symmetric reaction 200 + 200 dis-
cussed in Ref. [31]. The TDHFB equation using the Gogny
interaction [17,18] has been used to simulate the central
collision of two 2°O superfluid nuclei at various energies
and gauge angles below the Coulomb barrier. In Ref. [32], a
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FIG. 8. Asymptotic probabilities to transfer one or several pairs
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with the two cases for the W, factors. The distribution are obtained
by using the semiclassical second moment u5° to determine p = g.
Approximate probabilities are compared with the exact values (dashed
line). All TDHFB calculations are performed with the rescaling factor
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multiple projection technique was used to extract two particle
transfer probabilities. With the same projection technique, the
probability to transfer several pairs can also be obtained and
can serve as an element of comparison to the PSC approach
proposed here. The one pair and two pairs transfer probabilities
obtained with projections are represented in Fig. 9 by solid
lines. Note that in this case, the error bars stem from the
fluctuations of the probabilities after the nucleus do reseparate.

An important and nontrivial ingredient to be able to ap-
ply the PSC approach is to figure out the number of pairs
contributing to the transfer and the size of the phase-space

o—e PV
P2n

11.5

— Pf;oj 4

Transfer probability P,

[y
= e e e
o ¢4} (<)) > N o

10.5 11.0
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FIG. 9. Probability to transfer one and two pairs in the symmetric
central collision 2’0 + 2°0 as a function of the closest distance of
approach D during the reaction. The probabilities PP™ are computed
with the approximate projection method of Ref. [32],whereas P}:
results from the PSC approach presented in this paper. The error
bars associated to PP™ correspond to the fluctuations of the particle
number after reseparation of the collision partners. They are too
small to be visible for PJ,”. The colored band for P spans the area
obtained with the two prescriptions for the W, factors. These factors
are computed using ny = ng = 2 and Q4 = Qp = 6 (see text).

available for particles to be transmitted to the other nucleus.
This number does not impact the probability of one pair
exchange, but it drives the predictions for the multiple pairs
transfer. In a simple shell-model picture, for the 200, we expect
to have four particles in the last occupied level 1ds , therefore
we assumed that the number of pairs equals ny = ng = 2.
The available phase-space after transfer is more difficult to
identify, a reasonable assumption is to suppose that all states
in the sd shell contribute to the phase-space; i.e., (24 =
Qp = 6). We show in Fig. 9 the result of the combinatorial
approach compared to the result obtained by projection. It is
first remarkable to notice that the probability to transfer two
particles are almost identical in the two approaches. This is
already a great success of our approach in view of its relative
simplicity compared to the method proposed in Ref. [32].
Indeed, the two-particle transfer is obtained in the present work
using the simple formula Eq. (37) once the second moment is
computed from the phase-space average. Another advantage
is the absence of dependence of the result with respect to
the phase convention used to solve the TDHFB equations.
Note that the agreement of the two particles transfer indirectly
validates the projector approach to estimate P, and P_,,.

The situation is different when more than one pair is
transferred. We see that the PSC approach leads systematically
to probabilities that are smaller than the projection case. One
possible origin of the discrepancy could stem from the size of
the available phase-phase that is assumed to perform the PSC
calculation. Indeed, the multiple pair transfer increases with
degeneracy €24. To obtain an upper limit of Py, with the PSC
approach, we simply assumed an infinite number of possible
final states, i.e., 24 = Qp = +00. Using Egs. (42) and (43)
lead to the scaling Py, = 1/6[P»,]> and P, = 1/24[P»,1%,
respectively. These upper limits are actually within 10% of the
values obtained with 2, = 6 which tells us that (i) the PSC
is quite robust relatively to a change of €24, (ii) having more
states active in the reaction does not explain the discrepancy
with the projection case where the scaling Py, =~ 1 /2[P2,,]2
has been empirically found. Having in mind the success of the
approach in the toy model and henceforth supposing that the
approach is suited to predict the multiple pair transfer, this dis-
crepancy suggests that the projection technique overestimates
the probabilities when more than one pair is transferred.

V. APPLICABILITY TO REACTIONS BETWEEN
NONIDENTICAL SUPERFLUID SYSTEMS

The major motivation for this work was the surprisingly
large effects related to gauge angle in the collision between two
identical superfluids observed in Ref. [22]. In this section, we
give some hint on whether these effects are still present in the
case of the contact between nonidentical superfluids systems
and if the PSC method is still applicable in this case.

A. Schematic model for asymmetry reactions
1. Generalization of the PSC method for nonidentical systems

As a first step, we show how the PSC method modified to
properly describe the pair transfer process in the schematic
model considered previously when the two initial superfluids
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are different, i.e., when they have for instance different particle
numbers, degeneracies, single-particle levels, etc.). Two major
differences appear in this case: (i) the probability to transfer
pairs comes not only from fluctuations but also from an average
drift of the mean particle number transferred from one system
to the other; (ii) the elementary probability to transfer a pair
from A to B or from B to A are a priori different, i.e., p # ¢
and in general Py, # P_y,.

Starting from the same hypotheses (a—c), we generalize
below the PSC technique to access the pair addition/removal
probabilities. In the perturbative regime, we can still assume
that only Py,, Pa,, and P_j, are dominating. Denoting §ns =
N — Ng the average number of pairs transferred from B to
A, and using hypothesis (b), we can express the probabilities
P», and P_,,. Indeed, we now have

ong 2 2(Poy — P_yy), 47)
while
Mm2 = 4(P2n + P72n)~ (48)

Note that here we used the fact that Pfﬂn < Pyy,.
Inverting these equations leads to the simple expressions

28
Py, ~ M2+ 20ms = pW,,
8
— 28
Py, ~ % =qW_,, (49)

which give a straightforward method to extract the values of p
and q. Equations (45) are now extended as

Wit
Pygstn = p W: Pin,
W_(kt1
P i1y = — V;/'+ P (50)
f3

It is worth mentioning that the above expressions should be
used with some care. Indeed, when the absolute value of the
drift |6n 4| increases and exceed w, /2, one of the probabilities
becomes negative which is unphysical. This directly stems
from the breakdown of the hypothesis (b). Indeed as |6 4]
increases, on of the two particle transfer probabilities starts
to decrease and becomes comparable to Py, and or P_yg,.
This constraint on the applicability of Eq. (49) can be further
quantified. Let us first assume that §n4 > 0, which means that
the transfer from B to A is dominant and P, > P_,,. Then,
the condition P_j, > Py, gives the condition

(8W12> [t — 28n 4]
Wy J s + 28n4]°

Equivalently for the case §n4 < 0, which corresponds to the
case where the transfer from A to B dominates, the condition
becomes

> 1. 61V}

2
<8W1> [12 + 20n4] 1. (52)

W_y ) (o — 28041
If these conditions are not met, i.e., if the drift becomes too

high compared to the second moment, one of the two-particle
transfer probabilities dominates the other. Then, Eqgs. (47) and

(48) simplify and we have
Mo = 2|5I’I.A| ~ 4P,]2n, (53)

where 7 is the sign of the 6n4. The moments of order one
and two contain a redundant information, which characterizes
only the dominant branch (addition or removal). In practice,
the probability p (or g) associated to this branch may still be
obtained by matching the first moment with 2 P, ,,. It is finally
interesting to mention, that for large drift we obtain 1y o [6n4]
that is similar to the results obtained in the nucleon exchange
model where the transfer is driven by randomness [49-51].

2. Benchmark with the exact second moment

To benchmark this approach, we follow the same methodol-
ogy as for the symmetric case and first compute the probability
distribution P, from the exact average drift and second
moment. In the present study, we consider three different types
of asymmetric reactions: (I) the case of degenerate system with
a different initial number of particles in each system N§ = 4,
N9 = 8; (Il) the same situation with an additional asymmetry
coming from a shift in the single-particle energy between the
two systems, namely, Ae = €g — €4 = g; (III) the case of two
nondegenerated systems with equidistant single-particle level
spacing Ae/g = 1 in each system and different initial number
of particles in A and B. In all cases, we assume Q24 = Qp = 6.
Note that we also tested situations where Q24 # Qp, leading
essentially to the same conclusions.

In Fig. 10 the pair transfer probabilities obtained for the
three asymmetric reactions using the PSC approach with
the exact 6n4 and second moment. These probabilities are
compared to the exact ones. We end up essentially to the same
conclusions as in the symmetric case. We systematically see
that the probability to transfer one or two pairs are reasonably
well reproduced, while as the number of transferred pair
increases, more and more deviation appears with respect to
the exact distribution. Overall, the shape of the distribution
still matches correctly the exact one.

3. Critical discussion on the semiclassical moments in collisions
between nonidentical systems

Note also that for the case of asymmetric collisions that is
considered here, there is no more strong argument to apply
the same scaling for g4,gp, and v(¢) to compare with the exact
solution. For the sake of simplicity, we kept the same procedure
as for the symmetric case.

For the three asymmetric cases considered, we compute
the semiclassical moments én% and u5° from the average over
different TDHFB trajectories. When going from symmetric
case to asymmetric case, we did not found any systematic
arguments to obtain the scaling on the coupling constant
discussed in Sec. III B 3. For the sake of simplicity, we therefore
adopted the same scaling procedure as in the symmetric case
and found o = 1.2 for cases (I) and (II) and o = 1.289 for
case (III).

Figure 11 compares the semiclassical estimation of the
two first moments with the exact one. In the three cases, this
procedure yields moments that are proportional to their exact
counterparts in the perturbative region. The semiclassical drift
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FIG. 10. Same as Fig. 6 for three cases of asymmetric reactions.
The exact probabilities are shown with dashed lines and systematically
compared to the combinatorial results using the exact values of 7
and p, (colored bands). The different panels (a)—(c) correspond,
respectively, to the asymmetric case (I), (IT), and (III).

lies within 20% of the exact drift in this regime, whereas
the second moment is systematically underestimated, 3 ~
0.5-0.7u5*. The absence of clear procedure to generalize the
scaling technique strongly bias the comparison between the ex-
act and the semiclassical approach combined with the combi-
natorial technique. From these results, it is not clear whether the
underestimation of the second order moment comes essentially
from the arbitrary rescaling procedure or an intrinsic feature of
the semiclassical phase-space method. This question is crucial
as such an underestimation in a realistic case would severely
jeopardize the method proposed for asymmetric reactions. For
example, in the model cases (II) and (II) we find that whatever
the values of p and g, no distribution represented by Eq. (A12)
could reproduce the moments estimated from the semiclassical
average.

To conclude, a generalization of the PSC method to the case
of nonidentical superfluid systems is technically possible. Its

o 1'4 sc exact
=S —e 3 pug"
8 * [ ﬁsc/,ﬁexact
= 1.0
£ 0.8
o
S 0.6
10* 102 102 10' 10° 10!
Coupling strength v, /g
1.4 . . . - .
2
S1.2¢
—~
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o
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10* 102 102 10! 10° 10!
Coupling strength v,/g
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5121 © . -
2 1.0 | grmcmmomm . -
£0.8! ]
o
S 0.6+ 1

10%* 102 102 101 10° 10!
Coupling strength vy/g

FIG. 11. First- and second-order moments obtained with the
semiclassical average normalized to their exact counterparts as a func-
tion of the coupling strength. The different panels (a)—(c) correspond,
respectively, to the asymmetric case (I), (II), and (III).

application to our toy model shows that in the case where the
transfer is dominated by an average drift of pairs only a part
of the distribution could be recovered. In addition, it is not
clear from this study whether the low order moments of the
distribution can be correctly estimated within the phase-space
averaging procedure. To answer this remaining question, an
application of the PSC method to a realistic collision between
nonidentical systems is required.

B. Application to '*O 4 2°O reaction below the Coulomb barrier

Using the semiclassical average over the initial relative
gauge angle, we computed the semiclassical drift and second
order moment of the pair transfer distribution for the asym-
metric reaction '*O + 2°0. The calculations were repeated at
three different energies below the Coulomb barrier and the
Table I summarizes the results. For the sake of completeness,
we also give the results obtained by the projection method
proposed in Ref. [31]. In the case of nonidentical nuclei, almost
no influence of the initial gauge-angle on the particle transfer
process is found leading to a small, almost zero, value of p5°
from which we deduce very small values for the pair transfer
using Eq. (53). This is at variance with both the toy model for a
symmetric reaction and the 2°O + 2°0 application. This is also
different from the toy model used previously for interacting
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TABLE I Average drift along with fluctuation of the number of transferred particles (and pair transfer probabilities P;¢) obtained within a

phase-space averaging for the 140 + 20 reaction at different energies in the center of mass (E.,). The probabilities to transfer one Plp,f"j and
two Py particles obtained from an approximated projection technique are also provided for comparison.

Ecn (MeV) Sna P3¢ = ps /4 P P

7.903 0.28 x 1073 0.04 x 107 0.28 x 1072 0.05 x 107
8.903 7.93 x 1073 0.14 x 10~ 331 %107 1.23 x 1073
9.403 40.11 x 1073 0.48 x 107 13.04 x 1073 7.11 x 1073

nonidentical superfluids. The difference with the toy model can
be directly traced back to the fact that one-body components
treating single-particle tunneling has not been considered in the
toy model. This process seems to dominate for the asymmetric
collisions considered here washing out any significant effects
of gauge-angle.

As amatter of fact, this is not surprising because the transfer
process in asymmetric systems is known to be mainly domi-
nated by the fast N/Z equilibration, due to a fast equilibration
of the chemical potentials. This process is already accounted
for by the mean-field Hamiltonian and is not connected to
superfluidity. It is worth mentioning that mean field alone (with
or without pairing) can describe the mean drift but not the
fluctuations around the mean drift.

The absence of gauge-angle influence obviously leads to a
failure of the PSC approach. Indeed, a prerequisite of the suc-
cess of the approach presented here is that the U (1) symmetry
breaking dominates the physical process under interest.

Our conclusions are twofold. First, the PSC method applied
to nuclear reactions can only be successful for symmetric
collisions between superfluid nuclei to avoid at maximum the
pollution from pure one-body effects. Second, for the same
reason, experiments involving symmetric reactions between
midshell spherical nuclei is the best test-bench to probe any
significant gauge-angle effects, if any.

VI. CONCLUSION

In this work, we analyze in detail the pair transfer between
two identical superfluid systems. We use a simple model where
the two systems governed by a pairing Hamiltonian only
interact with each other for a short finite time. This model
mimics the transfer of pairs during a heavy-ion reaction in
the presence of pairing and can be solved exactly for small
systems. The possibility to describe accurately the pair transfer
by combining the TDHFB framework with some average over
the relative gauge angle is discussed. We show in particular
that a brute force semiclassical average over a distribution of
gauge angles can only partially describe the final distribution of
particles in each subsystem. While the second moment of this
distribution is reasonably described, higher-order moments
significantly differ from the exact results.

Based on this observation, a method is proposed to obtain
the probability to transfer multiple pairs in the perturbative
regime. This approach supplements the phase-space average
with a combinatorial technique to infer the probabilities to
transfer more than one pair. The PSC method is benchmarked
with respect to the schematic model and then successfully

applied to the head-on collision of two 2°O. For this realistic
case, the results are systematically compared with the projec-
tion method proposed in Ref. [32]. Despite the fact that the
PSC method is technically much simpler than the projection
method, both techniques lead to similar two particle transfer
probabilities. The PSC that was shown to be effective in the
schematic model to reproduce multiparticle transfer leads in
general to multiple pairs transfer probabilities that are much
smaller than the projection approach.

Finally, the applicability of the PSC method to the case of
asymmetric collision is discussed. We show in particular that
in its current state, the method fails to describe the transfer in
the asymmetric reaction '*O + 2°0. The main reason is that
the fluctuations associated with the relative gauge angle in this
reactions are not the main driver of the transfer.

In the future, it would be interesting to compare the different
approaches to describe multiple pair transfer to high-precision
experiments. In recent years, several experiments have been
performed for energies well below the Coulomb barrier [9-12]
where the perturbative regime is relevant. However, these
experiments involve targets different from the projectile where
many effects other than pairing play a role in the transfer.
We believe that the best situation to compare theory and
experience and to unambiguously probe relative gauge-angle
effects in multiple particles transfer would be to consider
symmetric collisions between medium mass spherical nuclei,
like 1981208y where the last occupied level is close to half-
filling.

APPENDIX: EXACT EVOLUTION
FOR THE SYMMETRIC DEGENERATE CASE

In this section, we show that the combinatorial approach
used in the present work can be motivated in some way by the
exact case in the perturbative regime. We consider here that
the two systems A and B are fully degenerated and governed
by a pure pairing Hamiltonian. We follow Ref. [38] and use
the compact notation Hy = H4 + Hg. We assume that the
system is described initially by the state |nj,ng) = |n4) ®
|ng), where |n4) and |np) are, respectively, the seniority zero
ground states of A and B. The symboln,,p = N4,p/2 denotes
here the number of pairs. Since, the Hamiltonian conserves
the seniority and the total number of particles, in the simple
symmetric degenerate case (with initial half filling), one can
introduce the set of states

|k) = |na +k,np —k), —np <k < +np,
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associated to the unperturbed energy E, and decompose the
time-dependent state |V (¢)) as

=Y amlk),
k

with |ll{(t0)) = |0). Introducing the set of parameters b () =
cr(t)et Bt/ the coupled equations on the b; components can
be written as

|W (1)) (AD)

d . n
ih—bit) = v(t)[kjbkme'”" (1€ + O)lk),

with wy = (E; —
notation CT =

Ey) / h and where we have introduced the
D up alal bﬁb,g One can then introduce two
matrices D1 and D~ with components

D;f = (I|CT|k) = 8, k11 D},

Dy = (l|IClk) = 8 -1 Dy . (A2)

Note that D' (respectively, D) only connects the state |k)
with the state |k + 1) (respectively, |k — 1)). We first assume
that the transition frequencies are constant, with

g = tw. (A3)

On top of that, we assume that the perturbation is time
symmetric and take for convenience ¢, = —#. From this, we
obtain a compact expression for the b vector,

b(tos) = exp(2iz[DT + D71) b(1), (A4)
with
z= —% / ) ds v(s) cos(ws). (AS5)

The final probability to have k pairs transferred, denoted again
by Py, from the initial state |0) is then given by

Potn = |b(too)|?

+o0 2 J 2
- Z( 71 (D* + DY Thito)
J=0
=X i) [ I I J—1 i
=125 | 2 @D D) bw)] - (A6)
J=0 : 1=0

In general, the transfer probabilities result from a rather com-
plicated interference effect between different paths depicted
in Fig. 12. In this double sum, all terms with I — (J — 1) =
21 — J = k will contribute to the probability P,;,. However,
noting that z & vy, the first term feeding the state |k) in Fig. 12
will dominates the probability in the perturbative regime. This
term corresponds always to the lowest or highest branch in this
figure. Neglecting all other terms in the expansion yields the
simplified expressions

|2Z|2k
Pojn = e |Dg1* -+ 1D, 1%,
2z _
szk” ~ WlDO |2 e |D—(k—1)|2.

y

/
\
\‘|/
\

FIG. 12. Schematic view of the different contributions to the
population of a state |k) in Eq. (A6).

These formulas induce the recurrence relations
+ |2

|D
P " 2Pk _p -
2k+Dn = 122] G D2 2
P =|2z? D, P
—2(k+1n = (k+1)2 —2kn -

The matrix elements of Dt, D~ read [33]°

IDFI? = (R4 —na —k)(na +k+ 1)

x(np —k)(Qp —ng+k+1), (A7)
ID")* = (Qp —ng —k)np+k+1)

X(na —k)(Q2s —na+k+1), (A8)

na and np being the initial number of pairs in A and B,
respectively. We finally deduce the compact expressions

(na + ) (Qp —np +k)!

% ok k
Py = 122]7Cq, _,, Cy,

na! (25 —np)!

ng + k) (Q4 —nyg+k)!

P, = |2Z|2kcés—nBC£A( 5+ RN —na+ B!
ng! (R4 —ny)!

In the above expressions, we recognize the combinatorial factor
that has been introduced in the main text. Choosing p ~ |2z/,

3As a side remark, we note that if the exact state with particles
N4, Np is systematically replaced by a BCS/HFB quasiparticle state
with average particle number N4, Np, we obtain

P = (AA(NA)AB(NB>>2
8488
= nanp(Qa —na)2p —np),
where A}* and A%”. Similarly, we have
D * =
DY =

(na +k)(Qs —na —k)ng —k)(Qp —ng +k),
(na —k)(Qa —na+k)ng + k)2 —np —k),

which is rather close to the exact formula.
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FIG. 13. Asymptotic probabilities to transfer one or several pairs
as a function of the quantity N3° — N9 obtained from a symmetric
degenerate situation with Q4 = Qp = N} = N = 6. The colored
bands span the area obtained with Eq. (41) assuming Eq. (A9)
(upper limit) or the same expression divided by (k!)* (lower limit).
The distributions are obtained by using the exact second moment
uy to determine p = q. Approximate probabilities are compared
with the exact values (red dashed line) and the leading order of the
perturbative approach computed with the assumption w;; = cst (black
dotted line). All calculations are performed for the coupling strength
vo/g = 2.1072,

we obtain indeed

(na + ) (Qp —np +k)!

_ rk k
W= ch, ., ch, AT E I I )
ik ¢ (g + k) (R4 —na +k)!
Wor=Cgq, ,,Ch, gl TR (A10)

for the factors Wy, involved in Eq. (41).

In Fig. 13, the method proposed in Sec. IIIC to obtain the
transferred probabilities with two prescriptions for the W is
tested against the exact results. In this figure, we also display
the results obtained from the coupled equation enforcing that
all transition frequencies are constant, as it was supposed in
the derivation here. By construction, the results from the com-
binatorial method using Eq. (42) for the factors W; matches
the results from the coupled equation resolution with constant
transition frequencies. On the other hand, this method tends to
overestimate the transfer probabilities compared to the exact
case especially when the number of pairs transferred increases.
We conclude from this that (i) the approximation Eq. (A3) is
too crude for the present situation; (ii) there is a rather close
connection between the combinatorial factor and the set of
values of transition frequencies at play during multiple pair
transfer. Starting from a situation of a single degenerate shell
with initial half-filling and neglecting pairing correlations, the
addition or removal of two particles to the shell will indeed lead
to wy; = £w = £2¢, where ¢ is the single-particle energy in
the shell. However, when pairing plays a role, the energies
are distorted by correlations. In particular, starting from the
exact energies of the degenerate system with initial half-filling,
it can be shown that the energies verifies wy x+1 =~ £kw and
therefore increases when the number of pairs increases. The
combinatorial factor should take into account this aspect in
some way.

To obtain a more realistic expression of Wy _ for superfluid
system, we start back from the time-dependent perturbation
theory. Without any assumption on the transition frequencies,
we can show that the leading order contribution to b; with
k > 0 can be written as

. oo Tk
br(ts) = h_ke_l(wktm_woto)/ dl’k/ dt_;
Tk—1 Tk—2

1%
[ v e

to

—l'a)].()'fl + .. +
-.e D/, Dy

To further progress, we make the simplifying assumption that

Ino Tk 1 129 Io
/ d‘[k/ d‘L’k_] g —'/ dl’k/ dl’k_ln‘ s
Tkl Tk—2 k! T o

where the factor 1/k! accounts properly for the change of
volume of integration in the time hyper-space (ty, . ..,7:). We
further simplify the interaction and assume v(t) = vo©O(r./2 —
[t]), where t. is the interaction time and ® is the Heavyside
function. With this, we can explicitly perform the time inte-
gration and obtain

1200\ 15 [ sin(@rs-17/2)
|bi(100)| =E<7> ]‘[[— D; - Df.

-
I=1 Li-1

We then see that the probability to transfer k pairs can be
rewritten as a product,

Pogn = Pr1- - P, (A11)

with

209 sin(@i-17/2)\° 1 o

Pay = (E—wk,k_l ) IDELR (A1)
This probability is, in general, rather complicated since it
contains the information on the initial and final system after
transfer as well as the information on the time-dependent
interaction.

In the case where all the transition frequencies are equal to
w, we recover the previous expression provided that

|2vo]

27| =
12z] W

sin (wt./2) ‘
— |

In a different situation where the transition frequencies behave
as wy;—1 = lw, we obtain a new expression with

1 VoTe k L . Tc
bk(too) = p (T) Dlj;l e D; 1_[]() <la)3>,
’ =1

where jo is the first spherical Bessel function, jy(x) =
sin(x)/x. If |wt./2| <« 1, we will always have |jo(loT)| <
|jo(wT)| that explains empirically why the approximations
Eq. (A10)leads systematically to an overestimation of the exact
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probabilities. In particular, we obtain an upper bound for the
absolute value of |b,| that is given by

bl 1 (20)\*
ID12--- 1D 12~ (kD) \ ho )

This expression contains an extra 1/(k!)*> compared to the
case where we assumed simply that all frequencies are the
same.

From this last remarks, we empirically assume that the
proper combinatorial factors are those given by Egs. (A10)
divided by (k!)?, leading to

_ rk k k k
Wy = CQA—nACnBCnA+kCSZB—nB+k’

(A13)

W_i = CS]%B*I‘LB C"]i/\ CI];BJrkCSk?A*HAJrk' (Al4)

This combinatorial factor improves significantly the descrip-
tion of the transfer probabilities and is the one retained in this
work.
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