
PHYSICAL REVIEW C 97, 034626 (2018)

Absorption effects in nuclear particle correlations
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We calculate the contribution of absorption effects to the correlation function of two identical particles emitted
by a fixed source. These effects result from the successive collisions undergone by the emitted particles before
they leave the source of emission.
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I. INTRODUCTION

Much effort, both experimental and theoretical, has gone
into nuclear particle interferometry studies since the pioneering
paper of Goldhaber [1]. It became known that the correlation
functions defined as the convolution of the modulus squared
of the pair of particles wave functions with the emitting source
distribution are not only sensitive to the spatial extension of the
emitting source but also to the time dependence of the emission
processes and to the final-state interactions [2,3]. The influence
of the mean field of the emitter source including the Coulomb
field on the particles correlation function is mentioned and
analyzed by a few authors [4,5]. However, there is another
effect, which is generally ignored, which comes from the very
fact that the emitted particles should undergo a succession of
collisions with the nucleons inside the source before leaving
the source’s volume. The aim of the present paper is to give an
approximated way to evaluate the contribution of such specific
collision mechanism on the two-particle correlation function.

II. GENERAL THEORETICAL EXPRESSIONS

Let us consider two incoherent identical particles emitted
from pointlike sources located at r̄i (i = 1,2) inside a nuclear
extended source of spatial density ρ(r̄i).

The probability of observing simultaneously both particles
(bosons or fermions) with wave vector k̄a and k̄b at detectors
located at aaa and bbb, respectively, is

P (k̄a,k̄b) =
∫

dr̄1

∫
dr̄2|�(r̄1,k̄a; r̄2,k̄b)|2ρ(r̄1)ρ(r̄2). (1)

In (1) the wave function �(r̄1,k̄a; r̄2,k̄b) for two identical
bosons or fermions is replaced by:

�(r̄1,k̄a; r̄2,k̄b) = 1√
2

[φ1,a(k̄a,r̄1)φ2,b(k̄b,r̄2)

±φ1,b(k̄b,r̄1)φ2,a(k̄a,r̄2)], (2)

where φi,a defines the single-particle wave function for the
particle emitted at r̄i with a wave vector k̄a .

*Deceased.
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The general expression of the correlation function is

C(k̄a,k̄b) = P (k̄a,k̄b)

P (k̄a)P (k̄b)
(3)

or

C(k̄a,k̄b) = 1 + αR(k̄a,k̄b), (4)

where P (k̄a,k̄b) is replaced by (1) and α is a number dependent
of the type of particles and of the statistics to be applied.

To take into account the succession of collisions of the
emitted particles with the nucleons inside the source, we refer
to the Glauber [6] approach in pion or nucleon scattering at
high energy by semitransparent nuclei. We assume that the
wavelength of the emitted particles is very small compared to
the spatial expansion of the source so as to take for the single-
particle wave functions in (2) the high-energy approximation:

φi,j (k̄j ,r̄i) = exp ik̄j r̄i exp iχG
i (5)

with j = a,b and i = 1,2.
The phase χG

i is the Glauber phase shift given by

χG
i = − 1

h̄v

∫
Vopt(r̄i)dr̄i . (6)

For the scattering by a many-particle system, the Glauber phase
shift χG

i corresponds to an optical potential Vopt(r̄) having the
same functional form as the density ρ(r̄) of the system. We
shall adopt the parametrization:

ρ(r̄) = ρ0v(r̄) Vopt(r̄) = (V0 + iW0)v(r̄). (7)

The phase shift (6) in the single-particle wave functions (5)
of the emitted particles should be calculated on the straight-
line trajectories between the point sources r̄i (i = 1,2) and the
detectors located at aaa and bbb.

For a constant density ρ(r̄) the phase shift due to the real
part of the optical potential (7) can be evaluated for these
two trajectories and it consists only of replacing the value
q = 2ksin( ϑ

2 ) of the transfer momentum q̄ = k̄a − k̄b with
k = |k̄a| = |k̄b| by the value qn = q + 2 |V0|

h̄v
sin( ϑ

2 ).
For small angles ϑ , the two trajectories r̄i,a and r̄i,b are

very close to each other inside the volume source so that one
can replaced these ones by mean trajectories along the zi axis
(i = 1,2) (see Fig. 1). With this approximation there is no phase
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FIG. 1. Schematic illustration of the two-particle correlation mea-
surement from incoherent pointlike sources located at r̄1 and r̄2 inside
a nuclear extended source of density ρ(r̄i). The emitted particles of
momentum k̄a and k̄b are counted by detectors aaa and bbb.

shift due to the real part V0 of the optical potential and the phase
shift due to the absorptive part is given by

χG
i = i

|W0|
h̄v

∫ ∞

zi

v(r̄)dz (8)

Using this expression (8) in the single-particle wave function
(5), the correlation function R(k̄a,k̄b) is

R(k̄a,k̄b) =
∣∣ ∫ dr̄S(r̄) exp iq̄r̄

∣∣2

∣∣ ∫ dr̄S(r̄)
∣∣2 (9)

with

S(r̄) = ρ(r̄) exp iχG(r̄)

= ρ(r̄) exp

(
−|W0|

h̄v

∫ ∞

z

v(r̄ ′)dz′
)

. (10)

The function S(r̄) defined as the product of the density in
the source and of the probability that the emitted particle
survives the absorption when traveling inside the source
can be interpreted as the source function. Using cylindrical
coordinates r̄ = (b,φ,z) and operating the integrations over φ
and z successively, the function R(q) of (9) is

R(q) =
∣∣ ∫ ∞

0 bdbJ0(qb)
∫

dzS(b,z)
∣∣2

∣∣ ∫ ∞
0 bdb

∫
dzS(b,z)

∣∣2 (11)

or, more explicitly,

R(q) =
∣∣ ∫ ∞

0 bdbJ0(qb)
[
1 − exp (−|W0|

h̄v

∫ +∞
−∞ v(b,z)dz)

]∣∣2

∣∣ ∫ ∞
0 bdb

[
1 − exp (−|W0|

h̄v

∫ +∞
−∞ v(b,z)dz)

]∣∣2 .

(12)

This expression tells us that the q dependence of the
correlation function (11) is the same as the one obtained
for the differential cross section in the elastic scattering of
high-energy incident particles (nucleons or pions) by absorbing
nuclei. However, the measured angular distributions of these
two phenomena are, in fact, quite different. When the pion or
nucleon scattering exhibits an Airy-like oscillatory pattern, the
correlation function for such particles emitted in high-energy
heavy-ion collisions shows a curve peaked forward and slowly
decreases [7]. As we shall see, this can be interpreted as
due to the difference between the absorption effects in these
two situations. In particles with high-energy scattering, the
absorption effects are produced by the target nuclei viewed
as spheres of constant density. In the interference process, the

pattern generally observed corresponds to absorption effects
produced by a diffuse Gaussian-like density of the excited
emitting source.

This formulation of the source function and of the associated
correlation function as defined in (10) and (12), respectively,
will be used with different forms, Gaussian and constant, of
the source density ρ(r̄). In the analysis performed by different
authors [8–10] of the experimental data in such interference
process in nuclear or particle physics, it appears that the source
function (as defined by these authors) displays significant non-
Gaussian forms.

In some papers [1,11], it is also mentioned that similar
correlation functions are obtained indifferently with a Gaussian
or a constant source density ρ(r̄) according to a specific relation
between the radii used in both forms. We shall analyze some
special cases in the next paragraph.

III. THE MODEL SOURCE FUNCTIONS AND THE
CORRESPONDING CORRELATION R(q)

We shall consider two model source functions as follows:
(1) A source function associated to a Gaussian density

ρ(r̄) = ρ0exp− r2

r2
0

modified by the factor describing the ab-
sorption effect as defined in (10):

S(b,z) = ρ0 exp −b2 + z2

r2
0

× exp

[
− |W0|

h̄v
exp

(
− b2

r2
0

) ∫ ∞

z

exp −z′2

r2
0

dz′
]
.

(13)

In this case the correlation function R(q) (12) is given by:

R(q)

=
∣∣ R2

qR
J1(qR)− ∫ ∞

0 bdbJ0(qb) exp
(−|W0|

h̄v

√
πr0 exp − b2

r2
0

)∣∣2

∣∣R2

2 − ∫ ∞
0 bdb exp

( − |W0|
h̄v

√
πr0 exp − b2

r2
0

)∣∣2

(14)

with a radius R → ∞.
(2) A source function associated to a constant density for the

nuclear emitting sphere of radius R; ρ(r̄) = ρ0 for 0 � r � R.
In this case, the source function (10) is

S(b,z) = ρ0 exp

(
−|W0|

h̄v

∫ √
R2−b2

z

dz′
)

(15)

and the expression of the correlation function R(q) is

R(q)=
∣∣ R2

qR
J1(qR)− ∫ R

0 bdbJ0(qb) exp (−2 |W0|
h̄v

√
R2−b2)

∣∣2

∣∣R2

2 − ∫ R

0 bdb exp (−2 |W0|
h̄v

√
R2 − b2)

∣∣2 .

(16)

In these expressions we have only two parameters |W0|
h̄v

and r0 or
R for the extension of the density ρ(r̄). Note that the parameter
|W0|
h̄v

defines how the emitted particles of velocity v are absorbed
along their trajectories inside the nuclear emitting source.
When neglecting the particles final-state interaction, the cor-
relation function appears generally as the Fourier transform of

034626-2



ABSORPTION EFFECTS IN NUCLEAR PARTICLE … PHYSICAL REVIEW C 97, 034626 (2018)

0.00

0.20

0.40

0.60

0.80

1.00

0 50 100 150

W0 =  0  MeV

W0 = 10 MeV

W0 = 30 MeV

W0 = 60 MeV

q (MeV/c)

Co
rr

el
a�

on
R(

q)
 

-20 -10 0 10 20

W0 =   0 MeV

W0 = 10 MeV

W0 = 30 MeV

W0 = 60 MeV

Z (fm)

S(
b=

0,
 Z

)
(a

rb
itr

ar
y 

un
its

)

0 5 10 15 20

W0 =   0 MeV

W0 = 10 MeV

W0 = 30 MeV

W0 = 60 MeV

b (fm)

(b)

S 
(b

, Z
=0

) 
(a

rb
itr

ar
y 

un
its

)

(c)

(a)

FIG. 2. Emission of two nucleons at E/p = 100 MeV. The source
functions S(b,z) for a Gaussian density (r0 = 8 fm) and several values
of the absorption parameter W0 are drawn in (a) and (b). On (c) we
have reported the correlation functions R(q) as function of the variable
q (MeV/c) associated to the different source functions reported in (a)
and (b).

the source function. Thus a Gaussian pattern will correspond
to a Gaussian source function. But there is no reason to expect
the source function to be a Gaussian. By applying imagine
techniques, different authors have investigated the possibility
of having non-Gaussian sources [8–10]. To have agreement
with the experimental data at low q values, some authors
introduce a factor λ replacing R(q) in the correlation function
C(q) by λR(q), considering that there is only a fraction of pairs
of particles which will interfere, λ being a simple parameter
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FIG. 3. The same as for Fig. 2 for a Gaussian density with r0 =
4 fm.

of absorption [5] or a parameter connected to a mean lifetime
τ [2]. This also means that the true source function has a non-
Gaussian tail. More recently, exponential tails have been tested
and compared with the image analysis of the experimental data
in C(q) [10].

IV. QUALITATIVE INSIGHT OF THE ABSORPTION
EFFECTS: APPLICATIONS

In the present calculations, we give a qualitative insight of
the effect due to the absorption as defined in (13)–(16) on the
source function S(b,z) and on the correlation function R(q)
independently of all effects other than the statistic requirement
for identical emitted particles. Within the Glauber approach,
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any absorption (W0 = 0 MeV) and the corresponding correlation
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we give an exact estimation of this effect of absorption. This
parametrizes the assumption that the emitted particles should
undergo a succession of collisions inside the source before to
leave this. Such successive collisions have also been evaluated
[12] assuming a cascade model and using the Cugnon’s code
(INC model).

As an example, we consider the emission of a pair of
nucleons in an heavy-ion reaction, with a relative energy
E/particle of about 25 and 100 MeV. The absorption coef-
ficient W0 is chosen so that we have the same value for the
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FIG. 5. The same as for Fig. 4 with an absorption parameter W0 =
30 MeV.

parameter |W0|
h̄v

at both relative energies E/particle. So we
use W0 = 10(5),30(15), and 60(30) MeV for E/particle =
100(25) MeV. For a Gaussian density with r0 = 8 fm and
r0 = 4 fm, the patterns of the source functions S(b,z) as
a function of z at b = 0 or of b at z = 0 are reported,
respectively, in Figs. 2(a) and 2(b) and Figs. 3(a) and 3(b).
The absorption effect inside the source volume reduces the
source function S(0,z) for negative and low positive z values,
leaving unchanged the tail at large positive z. The effect is
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more or less the same for the source function S(b,0) showing
a reduced intensity at low positive b values and an unchanged
tail at large b values. This reduces the values of the correlation
function R(q) at large q and modifies its qualitative behavior
and tail compared to the pure Gaussian pattern (W0 = 0), see
Fig. 2(c) and Fig. 3(c).

The effects on the source function of changing the parameter
r0 of the Gaussian density ρ(r) are shown by comparing Figs. 2
and 3. A shift of the maximum with increasing the absorption
effect and the decrease of the density of pairs that will
interfere are well observed; but the tail of the source functions
remains almost the same. Moreover, this does not give a drastic
modification of the associated correlation functions R(q).

These patterns of S(b,z) and of R(q) are the same for
the same values of r0 and of the absorption parameter |W0|

h̄v
associated to different couples of values of W0 and E/particle.
For E/particle = 25 MeV with the same values of r0 and |W0|

h̄v
(which means to have W0 = 5, 15, and 30 MeV, respectively),
the results are exactly the same. We have also compared the
source functions associated to Gaussian and spherical constant
densities ρ(r). As mentioned in the literature, the correlation
functions are very similar for Rsphere ≡ 2.15r0 as noted in [1] or
for Rsphere ≡ 1.52r0 as noted in [11]. We note that for W0 → 0,
the expression (16) of the correlation function is the same as
that used by [2] for q0 = |E1 − E2| = 0, it means

R(q) =
∣∣∣∣2J1(qR)

qR

∣∣∣∣
2

(17)

and

limR(q)q→0 = exp

(
− q2R2

4

)
. (18)

And we also note that for W0 → 0, the expression (14) reduces
to

R(q) = 1 − q2r2
0

4
(19)

so that we have the approximated relation R2 = 2r2
0 or R =

1.44r0 to be compared to the prescription of [1] or [11].
In Fig. 4 we compare the source functions S(b,z) and

the correlation R(q) for Gaussian and constant densities
without any absorption correction (W0 = 0) for E/particle =
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FIG. 6. The same as for Fig. 5 for a Gaussian and a Constant
density with an absorption parameter W0 = 30 MeV, r0 = 4 fm, and
R = 2.7r0.

100 MeV and r0 = 8 fm. The same functions are drawn on
Fig. 5 but for W0 = 30 MeV. The source functions are quite
different; a shift to the surface with a Gaussian like shape at
positive z values and b = 0 for the Gaussian density and a
clear enhancement at the surface for the constant density. So
one observes a small variation of the correlation R(q) with an
oscillation (see Fig. 6) in the very small intensities at large q
values.

In Fig. 6 the correlation functions are drawn for W0 =
30 MeV with r0 = 4 fm as parameter in the Gaussian density
and R = 2.7r0. When zooming on the values at large transfer
momentum q an oscillation appears clearly. This is a surface
effect connected to the oscillatory behavior of the function
J1(qR) (16) and (17). We have here the fingerprint of the first
zero of this Bessel function.

V. CONCLUSION

With some simple academic examples, we have shown the
qualitative and quantitative effects on the source functions and
on the particle correlation of taking into account the absorption
of the particles inside the source before emission. Such an
effect is generally ignored in nuclear particles interferometry
studies.
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