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Comparison of heavy-ion transport simulations: Collision integral in a box
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Simulations by transport codes are indispensable to extract valuable physical information from heavy-ion
collisions. In order to understand the origins of discrepancies among different widely used transport codes,
we compare 15 such codes under controlled conditions of a system confined to a box with periodic boundary,
initialized with Fermi-Dirac distributions at saturation density and temperatures of either 0 or 5 MeV. In such
calculations, one is able to check separately the different ingredients of a transport code. In this second publication
of the code evaluation project, we only consider the two-body collision term; i.e., we perform cascade calculations.
When the Pauli blocking is artificially suppressed, the collision rates are found to be consistent for most codes
(to within 1% or better) with analytical results, or completely controlled results of a basic cascade code. In order
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to reach that goal, it was necessary to eliminate correlations within the same pair of colliding particles that can be
present depending on the adopted collision prescription. In calculations with active Pauli blocking, the blocking
probability was found to deviate from the expected reference values. The reason is found in substantial phase-space
fluctuations and smearing tied to numerical algorithms and model assumptions in the representation of phase
space. This results in the reduction of the blocking probability in most transport codes, so that the simulated
system gradually evolves away from the Fermi-Dirac toward a Boltzmann distribution. Since the numerical
fluctuations are weaker in the Boltzmann-Uehling-Uhlenbeck codes, the Fermi-Dirac statistics is maintained
there for a longer time than in the quantum molecular dynamics codes. As a result of this investigation, we are
able to make judgements about the most effective strategies in transport simulations for determining the collision
probabilities and the Pauli blocking. Investigation in a similar vein of other ingredients in transport calculations,
like the mean-field propagation or the production of nucleon resonances and mesons, will be discussed in the
future publications.

DOI: 10.1103/PhysRevC.97.034625

I. INTRODUCTION

The investigation of properties of nuclear matter away from
saturation density, such as the nuclear equation of state (EoS),
is a great challenge for nuclear physics. It is also critically
important for the understanding of astrophysical objects and
processes in neutron stars and core collapse supernovas for a
broad range of densities. Heavy-ion collisions provide a unique
opportunity to study the nuclear equation of state in the labora-
tory, for a range of densities, temperatures, and neutron-proton
asymmetries. However, heavy-ion collisions create transient
states out of equilibrium, and theoretical methods are needed
to infer equilibrium information. The inference in collisions at
incident energies between the Fermi-energy regime and several
GeV per nucleon normally relies on transport theory. Because
of the complexity of transport equations, and in particular
their dimensionality, the solution is not sought directly but
rather through algorithms that, in particular, invoke statistical
sampling and finite phase-space resolutions.

Ideally, the determination of physics quantities from heavy-
ion experiments should be independent of the utilized im-
plementation of transport theory and details of modeling in
the transport code. However, recently it became apparent that
different conclusions could be drawn from the same data,
with no obvious physical reasons, while relying on transport
simulations, e.g. in the investigations of isospin equilibration in
peripheral collision (isospin diffusion) [1–4], or in the interpre-
tation of ratios of charged pions [5–10]. On one hand, transport
simulations differ in various technical assumptions; on the
other hand, the inputs to these simulations are often different
in subtle ways even when major physical assumptions are the
same. The impacts of these on predictions and conclusions
are often difficult to disentangle. This situation led to the idea
of a systematic comparison and evaluation of transport codes
under controlled conditions to eventually provide benchmark
calculations for transport codes and thus to improve the ability
to reach firm conclusions.

This project was started some time ago with dedicated
workshops at European Center for Theoretical Studies in
Nuclear Physics and Related Areas (ECT*) in Trento, Italy
[11]. It continued through dedicated workshops at the Shanghai
Jiao Tong University, China [12], and at the Facility for Rare
Isotope Beams/National Superconducting Cyclotron Labora-
tory (FRIB/NSCL) in East Lansing, USA [13], in addition to

various smaller satellite workshops tied to larger meetings. The
final result of the Shanghai workshop was a comparison of 19
widely used codes in the field, in simulations of Au + Au colli-
sions at incident energies of 100 and 400 A MeV, for specified
input mean field and cross sections, as well as specified impact
parameters and initialization details. The compared aspects
included the stability of the initialized nuclei, the distributions
of the collision probabilities in time and energy, the efficiency
of Pauli blocking for the final states, and predicted flow ob-
servables. The outcome of these investigations was published
in 2016 [12]. An attempt was made to quantify the model
uncertainty in the transverse flow predictions, which was found
to depend on the incident energy and amounted to about 30% at
100 and 13% at 400 A MeV. There were indications that a large
part of the observed differences in the outcomes resulted from
differences in the initialization of the systems and in the treat-
ment of Pauli blocking. Integration of the mean-field equations
of motion also seemed to play a role. However, the origins of
the differences are often difficult to pin down unambiguously,
since various effects interplay and propagate and are thus
difficult to disentangle. As an example, if the Pauli blocking
is less efficient, then the reaction becomes more violent, lower
densities are achieved, and the mean field is impacted.

To make progress in understanding the differences among
different transport codes observed in Ref. [12], we perform
box calculations, i.e., simulations of nuclear matter enclosed
in a box with imposed periodic boundary conditions. The box
calculations have several advantages: (1) the initial conditions
are straightforward to realize, (2) the average density remains
constant in time, (3) the different aspects of heavy-ion colli-
sions can be isolated and tested separately, e.g. the collision
probabilities and blocking in cascade calculations without
mean field as reported in this paper, and the mean field prop-
agation in Vlasov calculations without collision as planned in
next installment, and (4) there are in some cases exact limits
available from kinetic theory or Landau theory, against which
the performance of the codes can be judged rather than against
each other. It is often standard practice also in other fields to
subject a code to tests under controlled conditions, including
simulations in a box, and to incorporate this as an option in the
code, e.g., to verify that the calculations are consistent with the
assumed EoS of symmetric and asymmetric nuclear matter;
see Refs. [14,15] for some examples outside of intermediate-
energy nuclear physics. However, this is the first time when the
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TABLE I. The acronyms, code correspondents, kinematic character (relativistic or nonrelativistic), and representative references of the
seven BUU-type and eight QMD-type codes participating in the present comparison.

Type Acronym Code correspondents Rel./nonrel. Reference

BUU-VMa S. Mallik Rel. [17]
GiBUU J. Weil Rel. [18]
IBUU J. Xu, L. W. Chen, B. A. Li Rel. [19]

BUU pBUU P. Danielewicz Rel. [20]
RVUU T. Song, Z. Zhang, C. M. Ko Rel. [10,21]

SMASH D. Oliinychenko, H. Petersen Rel. [22]
SMF M. Colonna Nonrel. [23]

CoMD M. Papa Nonrel. [24,25]
ImQMDb Y. X. Zhang, Z. X. Li Rel, [26]

IQMD-BNU J. Su, F. S. Zhang Rel. [27]
IQMD-IMPc Z. Q. Feng Rel. [28]

QMD JAM A. Ono, N. Ikeno, Y. Nara Rel. [29]
JQMD T. Ogawa Rel. [30]

TuQMD D. Cozma Rel. [31]
UrQMD Y. J. Wang, Q. F. Li Rel. [32,33]

aBUU code developted jointly at VECC and McGill.
bImQMD-CIAE in Ref. [12].
cAlso known as LQMD in the literature.

performance of different transport codes is compared in box
calculations and when consistency with adopted algorithms or
assumptions in such a situation is tested independently.

As a word of caution in comparing the different codes
against each other and against any known limits, one should
keep in mind that (1) fundamental differences may be present
between an idealized kinetic equation and a simulation, such
that the idealized limit cannot be reached as a matter of
principle; and (2) along that line, the different approaches to
transport, namely Boltzmann-Vlasov and molecular dynamics
codes, which are briefly described below, start from different
philosophies in modeling heavy-ion collisions, and thus one
cannot expect that they completely agree with each other. How-
ever, differences between codes of the same type and differ-
ences with the exact limits in many cases can suggest improve-
ments of the codes. In fact, in the course of the comparisons
presented in this paper, some improvements already have been
implemented in some of the codes. In other cases, some codes
that showed big discrepancies were taken out of the present
comparison for further work on them. Thus, it should be noted
that the codes used in this paper may not in all cases and aspects
be identical to the versions of the codes compared in Ref. [12].

In the present paper, we discuss only the collision term;
i.e., we perform cascade calculations without a mean field. In
a subsequent paper, we plan to study the mean field evolution,
i.e., perform Vlasov calculations without a collision term.
Further possibilities will be discussed in the outlook section.

The treatment of the collision term is the most critical part
in solving a transport equation, since physically it determines
the dissipation in the system and numerically it accounts for
the biggest part of the expense in a calculation. Because of its
nonlinearity, the collision term cannot be accounted for in any
direct solution to the transport equation but is rather integrated
stochastically. This is one reason why most of the hidden pre-
scriptions in different implementations of transport programs

are made here. The evaluation of the collision term has two
main steps, first determining the essentially classical proba-
bility that two (test) particles collide, and second checking the
main quantum ingredient in a transport simulation to determine
whether the final states of a collision are allowed by the Pauli
principle. Both of these steps will be discussed in detail below.

We employed the same principal assessment procedures as
developed in the context of Ref. [12]. Contributors of the partic-
ipating codes performed specified “homework” calculations.
The resulting files were sent to a subgroup of the organizing
committee for evaluation. The results were then discussed
in a brief meeting after the Sixth International Symposium
on Nuclear Symmetry Energy (NuSYM16) in Beijing [16],
and thereafter extensively at the Transport 2017 Workshop,
embedded in the International Collaboration in Nuclear The-
ory (ICNT) Program supported by FRIB at Michigan State
University (MSU) [13]. In between these meetings, updates of
the homework were requested from the contributors.

This paper is organized as follows: After a short intro-
duction, a short description of the two families of transport
approaches is given in Sec. II, stating the main differences
between the approaches and clarifying the terminology. The
homework specifications pertaining to this paper are described
in Sec. III. The results are described in Sec. IV for the collision
probabilities and in Sec. V for the Pauli blocking. Finally,
we discuss the results in Sec. VI and give a summary and
an outlook for future work in Sec. VII.

The comparison in Ref. [12] is the departure point for the
present comparison. In this context, it is of interest to gain
more insight into the codes than provided by the tables in
Ref. [12]. Therefore, as a supplement to Ref. [12] and the
present paper, we will make available a compact description
of all the codes, which will be submitted for publication as
a review paper in the very near future. All together there
are 10 Boltzmann-Vlasov and 11 molecular dynamics codes.
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Participating codes in this paper are listed in Table I. Some
codes of Ref. [12] have dropped out while four codes have
been added. The antisymmetrized molecular dynamics (AMD)
code [34] is not included in the present comparison, since a box
condition in this code is more involved and not comparable to
the treatment in the semiclassical codes.

II. TRANSPORT APPROACHES

In this section, we briefly introduce the transport ap-
proaches. The purpose here is mainly to establish the concepts
and terminology for the discussion that will follow. More
detailed remarks can be found in Ref. [12].

Transport approaches for heavy-ion collisions can be
roughly divided into two families, those of the Boltzmann-
Vlasov type, here collectively referred to as Boltzmann-
Uehling-Uhlenbeck (BUU) approaches, and those of the
molecular dynamics type, here called quantum molecular
dynamics (QMD) approaches, consistent with the terminology
employed in the literature for their most widely used represen-
tatives.

In BUU approaches, the goal is to describe the evolution of
the one-body phase space occupation probability f (�r, �p; t) as
a function of time under the action of a mean field potential
U [f ], usually derived from a density functional, and two-body
collisions specified by an in-medium cross section dσ med/d�.
The nonrelativistic BUU equation reads(

∂

∂t
+ �p

m
· �∇r − �∇rU · �∇p

)
f (�r, �p; t) = Icoll(�r, �p; t) , (1)

with the collision term

Icoll = g

(2πh̄)3

∫
d3p1d�vrel

dσ med

d�
[f ′f ′

1(1 − f )(1 − f1)

− ff1(1 − f ′)(1 − f ′
1)], (2)

where g is the degeneracy, f1 refers to f (�r, �p1; t), primed
quantities refer to a relative state at solid angle �, and
vrel = |�v − �v1| is the relative velocity. The two-body collision,
included above in the collision integral, produces a change
in momenta, �p + �p1 → �p′ + �p′

1 or reversely, with the phase-
space factors f [f ′] accounting for the occupation probabilities
of initial states in the loss [gain] term. The Pauli blocking
factors (1 − f ) [(1 − f ′)] describe the statistical ability to
populate the final states in the fermionic system in the gain
[loss] term. In the case of cascade calculations, the potential
term on the left-hand side is absent. The BUU theory has also
been formulated in a relativistic framework, and actually most
codes in this comparison use a relativistic formulation. For
simplicity and since the potentials are not relevant here, we
show the nonrelativistic form with a momentum-independent
mean-field potential. Comments on the relativistic treatment
of the collision term are given below. The integrodifferential
nonlinear BUU equation is solved numerically. To this end, the
distribution function is represented in terms of finite elements,
so-called test particles [35], as

f (�r, �p; t) = (2πh̄)3

gNTP

ANTP∑
i=1

G(�r − �ri(t)) G̃( �p − �pi(t)) , (3)

where NTP is the number of test particles (TP) per nucleon
(set to 100 in this work), �ri and �pi are the time-dependent
coordinates and momenta of the test particles, and G and G̃
are the shape functions in coordinate and momentum space,
respectively, with a unit norm (e.g., δ functions or normalized
Gaussians). The degeneracy factor g = 4 is to define f (�r, �p,t)
as the spin-isospin averaged phase space occupation probabil-
ity. It is also possible to express the distribution function for
each isospin (or spin) state in a similar way. Upon inserting
the ansatz (3) into the left-hand side of Eq. (1), i.e., without
the collision integral, Hamiltonian equations of motion for the
test particle propagation follow:

d�ri

dt
= �∇pi

H and
d �pi

dt
= −�∇ri

H . (4)

The collision term is accounted for by a Monte Carlo procedure
that usually allows us to interpret its integration in terms of
stochastic collisions between the test particles, according to
their cross section and relative distance from each other. This
is explained in more detail in Sec. IV B. The calculation of
the collision term is numerically the most expensive, as it
nominally scales with the number of test particles as (ANTP)2.
In the full-ensemble method, collisions between all test particle
pairs are considered and the cross section is divided by NTP.
In the nominally less expensive parallel-ensemble method, the
test particles are divided into NTP ensembles of A test particles
each, and collisions are only considered within each ensemble
with the full cross section. For calculating the mean field and
the Pauli blocking factors, the phase-space distributions are
averaged over all ensembles.

In the QMD approach, the evolution of a heavy-ion collision
is formulated in terms of the changes in nucleon coordinates
and momenta, similar to classical molecular dynamics, but with
particles described by wave packets of finite width. They move
under the influence of nucleon-nucleon interactions, which are
usually consistently accounted for by density functionals. The
method can also be viewed as derived from the time-dependent
Hartree method with a product trial wave function of single-
particle states in Gaussian form:

�(�r1, . . . ,�rA; t) =
A∏

i=1

φi(�ri ; t),

φi(�ri ; t) = 1

[2π (	x)2]
3
4

× exp

{
− [�ri − �Ri(t)]2

4(	x)2

}
e(i/h̄) �Pi (t)·�ri . (5)

The centroid positions �Ri(t) and momenta �Pi(t) are treated
as variational parameters within the variational principle for
the time-dependent Hartree equation. The widths 	x are kept
fixed and thus are not variational parameters, in order for the
wave function to be able to describe finite distance structures,
as observed in the fragmentation of colliding nuclei. This
strategy yields equations of motion of the same form as in
BUU for the coordinates of the wave packets. This method
has been extended to include antisymmetrization in the wave
function in the AMD method [34], which makes the equations
of motion more complicated but, in principle, similar. In QMD,
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a stochastic two-body collision term is also introduced and
treated in very much the same way as in BUU, but now for
nucleons and the full cross section, and Pauli-blocking factors
are calculated event by event. Thus, the strategies to simulate
the collision term, as discussed below, are very similar within
the two approaches.

The main difference between the two methods lies in the
amount of fluctuations and correlations in the representation of
the phase-space distribution. In the BUU approach, the phase-
space distribution function is seen as a one-body quantity and
a smooth function of coordinates and momenta and it can be
approximated better by increasing the number of test particles
in the solution. In the limit of NTP → ∞, the BUU equation is
solved exactly. In this limit, the solution is deterministic and
does not contain fluctuations. If fluctuations are considered to
be important, as is the case of studying the cluster and fragment
production, these may be introduced in a complementary man-
ner, in particular through the Boltzmann-Langevin equation,
which adds a fluctuation term on the right-hand side of Eq. (1).
This equation is solved approximately in the codes SMF and
BLOB [23,36]. Of course, numerical fluctuations are present
in practical calculations with a finite number of test particles.

In QMD, the fluctuations are present due to the repre-
sentation in terms of a finite number of wave packets. In
addition, classical correlations are present, if explicit two-body
interactions are used. Thus, in the philosophy of QMD one
wants to go beyond the mean field approach and include
correlations and fluctuations from the beginning. As we will
see in these comparisons, this is at the expense of destroying the
fermionic character of the system more rapidly and of reverting
to a classical system. The fluctuations in QMD-type codes are
regulated and smoothed by choosing the parameter 	x, the
width of the wave packet; cf. Eq. (5). Also the collision term,
which relocates nucleon wave packets in momentum space,
introduces more fluctuations than those for the collision term
in BUU. QMD can be seen as an event generator, where the time
evolution of different events is solved independently and there-
fore the fluctuations among events are not suppressed even in
the limit of infinite number of events. The effects of this differ-
ence in the amount of fluctuations between the two approaches
will clearly be seen in the comparisons that will follow.

Thus fluctuations in transport codes reside partly in the
nonsmoothness of the phase space distribution and are partly
generated by the discrete jumps in momentum space in the
simulation of the collision term. The first originate from
the representation of the phase space distribution by finite
elements. They may be called initial-state fluctuations, since
they exist in the initialized state and are propagated in the evo-
lution of the collision. However, they are of purely statistical
origin and are not determined by physical arguments. These
fluctuations are a property of each individual BUU run or QMD
event, and are larger, as argued above, for QMD approaches.
In addition, there are event-by-event fluctuations in QMD or
fluctuations between different runs in BUU.

III. HOMEWORK DESCRIPTION

The box calculations are performed with periodic bound-
ary conditions. Reflecting boundary conditions are not used

because they could give rise to edge effects, negligible only in
the limit of very large boxes. In contrast, with periodic bound-
ary conditions the box can be kept relatively small with no
significant finite-size effects. The dimensions of the cubic box
are Lα = 20 fm, α ≡ x,y,z. The position of the center of box
is (Lx/2, Ly/2, Lz/2). In a periodic box, a particle that leaves
the box on one side should enter it from the opposite side with
the same momentum. Once a coordinate α ventures outside
of the box, it may be reset with rα → modulo(rα,Lα). Sim-
ilarly, the separation between two points 	rij,α = ri,α − rj,α

must be redefined as 	rij,α → modulo(	rij,α + Lα/2,Lα) −
Lα/2. This method is completely sufficient and will cope
with all structures, as long as the characteristic lengths are
shorter than L/2. These lengths are the widths of the wave
packets or test particles, and the collision distance

√
σ/π ,

which is explained below in Sec. IV B and represents the
interaction range. This periodic box condition applies only to
classical or semiclassical approaches. In quantum mechanical
approaches such as in AMD [34], the implementation of a
periodic box calculation is more involved, since now the wave
functions have to satisfy the boundary condition, implying
that the momenta get discretized in steps of the order of
δp = 2π/L ≈ 62 MeV/c, which is not much smaller than the
Fermi momentum. A special code would have to be written
for this, which would not be comparable to the semiclassical
codes and would also be very different from the code used
for heavy-ion collisions. However, in this box comparison we
want to change the codes as little as possible from those used
for heavy-ion collisions.

In the box calculations presented in this paper, we require no
nuclear mean field and no Coulomb interactions. We further
assume an isotropic constant elastic cross section of 40 mb.
All inelastic processes are turned off. There are no restrictions
on the collision times and energies; in particular a particle
that has already collided in a time step can collide again with
another particle. There is also no threshold for the collision
energy. A time step of 	t = 0.5 or 1.0 fm/c is recommended
in integrating the integrodifferential equations.

The box is initialized with a uniform densityρ = 0.16 fm−3,
with isospin asymmetry zero. This corresponds to A = 1280
nucleons, 640 neutrons, and 640 protons in the box. Particle
positions are initialized randomly from 0 to Lα . In momentum
space, we consider two cases, corresponding to matter at rest
at the temperature of T = 0 and T = 5 MeV. For T = 0 MeV,
the particle momenta are initialized randomly in a sphere with
the Fermi momentum and for T = 5 MeV with the Fermi
distribution, f = 1/{1 + exp [(ε − μ)/T )]}, with ε = p2/2m

and relativistically ε =
√

m2 + p2 − m, with the nucleon mass
m = 938 MeV/c2. The chemical potential μ is obtained from
the normalizing condition 2

(2πh̄)3

∫
f d3p = ρn,p for neutrons

and protons, respectively. In Table II, we list the values of μ,
the average energy per particle ε, and the temperature TB to
which the system equilibrates in the Boltzmann limit while
conserving energy, for both nonrelativistic and relativistic
cases at T = 0 and 5 MeV. Unfortunately, these precise values
of the chemical potentials and the Fermi momentum pF =
263.04 MeV/c were not correctly specified in the homework
description and it turned out that many codes used slightly
different values of these parameters. On their own, these
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TABLE II. Values of the chemical potential μ, the average energy
ε, and the temperature TB for equilibration in the Boltzmann limit for
the starting temperatures in the Fermi distribution of T = 0 and 5
MeV in the relativistic and nonrelativistic cases. The values of ρ =
0.16 fm−3 and m = 938 MeV were assumed. All results are in MeV.

T = 0 MeV T = 5 MeV

μ ε TB μ ε TB

Nonrelativistic 36.882 22.129 14.753 36.306 23.740 15.833
Relativistic 36.184 21.827 14.284 35.544 23.510 15.364

initialization differences can generate differences in the studied
forthcoming collision numbers of up to 2%, which will be
compared in detail in the appendix.

In order to gain insights into the consequences of the Pauli-
blocking algorithms in the different codes, the simulations
are performed with two options. In option OP1, the default
treatment is used, that is the standard for the specific code in
simulating heavy-ion collisions. In OP2, the Pauli-blocking
factor, Pblock = (1 − fi)(1 − fj ), is used with the distribution
function f (for the final states i and j ) calculated from the
Fermi-Dirac distribution at the temperature specified for the
calculation. Specifically, in the T = 0 case the distribution
function is equal to 1 or 0 depending on whether the momentum
is inside or outside of the Fermi sphere and the number of
allowed collisions should be rigorously equal to zero.

The authors of BUU-like codes were asked to provide
results from 10 runs with 100 test particles per nucleon and
those of QMD codes results from 200 runs. Two calculational
modes are considered, C and CB. The mode C is a cascade
mode, i.e., no mean field, without Pauli blocking. The mode
CB is a cascade mode with blocking. When no blocking is
employed, obviously the different blocking options, OP1 and
OP2, do not apply. Altogether, with the two modes (C, CB),
two blocking options (OP1, OP2), and the two temperatures
(T0, T5), there were six sets of calculations to be done, named
CT0, CT5, CBOP1T0, CBOP2T0, CBOP1T5, and CBOP2T5.

We do not include information on running times of the
codes in this comparison. It may be true that the different
strategies to perform the simulation, in particular to evaluate
the collision term, as discussed in Secs. IV and V, have different
calculational expenses. However, this is too dependent on
coding and computers, so we do not consider it very meaningful
to compare running times. In addition, nowadays these are
often not a limiting factor in the simulations, not in a box and
also not usually in heavy-ion collisions. If one wants to obtain
rough estimates, rather than using a different code, one usually
reduces the statistical significance of the simulation, i.e., fewer
events in QMD and fewer test particles in BUU.

IV. RESULTS WITHOUT PAULI BLOCKING

The first task in integrating the collision integral is to deter-
mine possible collision partners and to find the probability of
a collision within a given time step in the absence of blocking.
We denote these as the “attempted” collisions. The next task,
described in Sec. V, is to test the Pauli blocking for the final

state of the collision. If the state is not blocked, then this is a
“successful” collision. In Subsecs. IV A, IV B, and IV C, we
discuss exact limits for the collision rates, the procedures to
determine the collision probability in the different codes, and
the question of correlations between collisions, respectively.
In the final subsection, Subsec. IV D, we compare the results
for the different codes in calculations without Pauli blocking on
momentum distributions and collision rates to the exact limits.

A. Exact limits of collision rates

Without mean field, for a uniform and isotropic distribution
f (�r, �p; t) = f (p; t), the Boltzmann equation to be solved here
is ∂f (p; t)/∂t = Icoll with

Icoll = g

∫
d3p1

(2πh̄)3
d�vrel

dσ med

d�
(f ′f ′

1 − ff1), (6)

Here, the change of momenta in the loss term (the second
term in the parentheses) is �p + �p1 → �p′ + �p′

1 and reversely in
the gain term. The expected rate of two-body collisions in the
volume is

dNcoll

dt
= A

2ρ
g2

∫
d3p d3p1

(2πh̄)6
vrel σ

med f (p) f (p1)

= 1

2
Aρ 〈vrel σ

med〉 . (7)

The quantity vrel and the average depend on the treatment of
relativity. Here “nonrelativistic” results pertain to the use of
vrel = | �p/m − �p1/m| together with the nonrelativistic Fermi-
Dirac or Boltzmann distributions for f (p) and f (p1). The
“quasirelativistic” results pertain to the use of the relativistic
Fermi-Dirac or Boltzmann distributions and vrel = | �p/E −
�p1/E1|, where E = m + ε =

√
m2 + p2. Finally, in the rela-

tivistic case, for the Boltzmann distribution, we have the result

dNcoll

dt
= 1

2
Aρ

1

4m4 TB K2
2 (m/TB)

×
∫ ∞

2m

d
√

s s (s − 4m2) K1(
√

s/TB) σ med , (8)

where Kn is the nth-order modified Bessel function.
In Table III, we give the calculated collision rates in the

three cases of nonrelativistic, quasirelativistic, and relativistic
treatment for Fermi-Dirac distributions of temperature T = 0
and 5 MeV and for the equivalent Boltzmann distributions;
cf. Table II. For a system initialized with the Fermi-Dirac
distribution at T = 0 MeV and constant cross section, the value
is given analytically according to Eq. (7) with 〈vrel〉Fermi =
(36/35)(pF/m) and 〈vrel〉Boltzmann = (4/

√
5π )(pF/m). In some

other cases, the rate can be obtained by numerical evaluation
of the corresponding integrals.

Some points should be made regarding these limiting values
to which the performance of the different codes will be
compared below. First, Table III shows that the nonrelativistic
and two relativistic treatments are different, and thus the codes
should be compared to the limits that represent the correspond-
ing intentions in the codes. Second, it is seen that the collision
rates for a Fermi-Dirac and a Boltzmann distribution are not
very different, with the latter being somewhat lower. For the

034625-6



COMPARISON OF HEAVY-ION TRANSPORT … PHYSICAL REVIEW C 97, 034625 (2018)

TABLE III. Limiting values of collision rates in units of c/fm, in absence of Pauli blocking at the starting temperatures of T = 0 and
5 MeV obtained by different methods. Specifically nonrelativistic, quasirelativistic, and relativistic results are provided for the starting Fermi
distributions and equilibrated Boltzmann distributions (see text). The rows labeled “Cascade” represent the reference values obtained in the
basic cascade model, which is explained in Sec. IV B, where also α and 	t are defined. The last column gives results from the basic cascade
calculation under exactly the CT0 and CT5 conditions, with the rate averaged over the time period from 60 to 140 fm/c.

Fermi Boltzmann Cascade (60–140 fm/c)

T = 0 T = 5 MeV T = 0 T = 5 MeV T = 0 T = 5 MeV

Nonrelativistic Num. int. 118.1a 122.1 115.9a 120.1
Cascade 118.2 122.1 115.9 120.1 122.8 127.3

Quasirelativistic Num. int. 115.0 118.8 112.3 116.3
Cascade 115.0 118.8 112.3 116.3 119.0 123.2

Relativistic Num. int. 111.4 115.4
Cascade (δt = α	t) 114.0 117.8 111.4 115.4 118.1 122.3
Cascade (δt = 	t) 115.2 119.0 112.7 116.7 118.4 122.7

aWithin the displayed accuracy, the result of numerical integration is fully consistent with the analytic expression.

T = 0 distributions, the analytical results are given in the last
paragraph, and they differ by just 2%. The important point is
that the distributions are normalized to the same total energy.
Then the moments of relative velocity 〈|(�v1 − �v2)|n〉 have to be
identical for n = 0 (normalization) and n = 2 (total energy).
Then it is also plausible that they are not very different for
n = 1. This will be of interest later on, since in the evolution of
the system the momentum distribution changes from an initial
Fermi-Dirac to a Boltzmann distribution. The values labeled
“Cascade” in Table III represent reference results obtained
from a completely controlled basic transport code, the details
of which are given at the end of Subsec. IV B. It is used here to
check against the analytical and numerical results, which are
seen to be reproduced essentially exactly.

B. Strategies for collision attempts

We now discuss how the collision probability is determined
in the simulation codes. In most codes, each pair of (test)
particles within an ensemble is tested for a collision at every
time step. Let us consider the possible collision between
particles 1 and 2, specified with (t0,�r1) and (E1, �p1), and (t0,�r2)
and (E2, �p2), respectively, at the current time t0 in the reference
frame of the box (which we call the calculational reference
frame). Generally, there are two necessary conditions for the
collision to occur during the time step. The minimum distance
d⊥ should be within the range of the interaction, and it should
be realized at a time tcoll during that time step. This procedure
is often called the Bertsch prescription, since it was first formu-
lated in the Bertsch–Das Gupta review article [37]. One should
note that the positions and momenta of the particles refer to the
centroids of the wave packets Ri(t) and Pi(t) in QMD, respec-
tively, and in BUU to the centroids of finite-size test particles,
if those are used. This is reasonable, since inclusion of the
width of the wave packet would correspond to an unphysical
increase of the interaction range, which would be particularly
unrealistic in QMD, where the particles represent nucleons.

The characteristics of the collision procedures in the differ-
ent codes are collected in Table IV, which will be explained
in this subsection. The second and third columns show the

distance and time conditions, respectively, for the collision to
occur in a given time step. The last column shows how the order
of two-particle pairs is established to check for collisions.

There is not much ambiguity in the condition for the distance
d⊥. At the point of the closest approach, the separation of
particles 1 and 2 is the purely transverse vector �d⊥ with
regard to the relative velocity vector of the particles. In the
center-of-mass frame of the two particles, their trajectories
�R∗

i (t∗) without a mean field are straight lines pointing along
the constant velocities �v∗

1 = �p∗
1/E

∗
1 and �v∗

2 = �p∗
2/E

∗
2 . The

asterisks represent quantities in the two-particle center-of-mass
frame, while quantities without asterisk are in the calculational
reference frame. As the trajectories of 1 and 2 are known
exactly, the minimum distance can be calculated as

d∗2
⊥ = (�r∗

1 − �r∗
2 )2 − [(�r∗

1 − �r∗
2 ) · �v∗

12]2

v∗2
12

, (9)

with �v∗
12 = �v∗

1 − �v∗
2 . In most of the QMD-type codes, the

distance condition for a collision to occur is πd∗2
⊥ < σ , while

it is πd∗2
⊥ < σ/NTP in BUU-type codes with the full ensemble

method, given that there are NTP times more particles available
for collisions (GiBUU, pBUU, RVUU, SMASH). However, it
is also possible to set other conditions such as πd∗2

⊥ < σmax

together with the probability P = σ/σmax, where σmax is an
arbitrary constant that must be larger than any possible value
of the actual cross section σ . This is the method recommended
in the paper by Bertsch et al. [37].

It is necessary to know when the two particles will collide,
in order to judge whether the collision occurs during the time
interval of the current time step. There are various choices
of the methods which are described in this paragraph for
completeness, though we will eventually see that different
choices result in a difference in the collision rates of the order of
1% for the comparison in this paper. In most of the relativistic
codes, the time of the closest approach is considered in the
two-particle center-of-mass frame, where it may be written as

t∗coll = t∗0 − (�r∗
1 − �r∗

2 ) · �v∗
12

v∗2
12

, (10)
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TABLE IV. Characteristics of collision procedures in different codes and a basic cascade code (for a detailed explanation see text). The
notation P = x stands for a condition that is satisfied randomly with the probability x. Comma-separated conditions stand for the logical
conjunction. Quantities with asterisks are in the two-particle center-of-mass frame, while those without asterisk are in the calculational reference
frame.

Distance condition Time condition Collision order

BUU type
BUU-VM πd∗2

⊥ < σ |t∗
coll − t∗

0 | < 1
2 	t Fixed order

GiBUU πd∗2
⊥ < σ/NTP |t∗

coll − t∗
0 | < 1

2 	t Fixed order
IBUU πd∗2

⊥ < σ |t∗
coll − t∗

0 | < 1
2 	t Fixed order

pBUU i,j ∈ the same Vcell volume P = σ
NTP

1
γVcell

v∗
ij α	t Randomly nominate (i,j ) pairs

RVUU πd∗2
⊥ < σmax/NTP, P = σ/σmax |t∗

coll − t∗
0 | < 1

2 	t Fixed order

SMASH πd∗2
⊥ < σ/NTP t

(ref)
coll ∈ [t0, t0 + 	t] Ordered by t

(ref)
coll

SMF j = closest to i in same ensemble P = 1
2 σvijρi	t Cyclic with random starting for i

QMD type

CoMD j = closest to i, j > ia P = 1 − e−σvij ρi	t Cyclic with random starting for i

ImQMD πd∗2
⊥ < σ |t∗

coll − t∗
0 | < 1

2 γ	t Fixed order
IQMD-BNU πd∗2

⊥ < σ |t∗
coll − t∗

0 | < 1
2 	t Fixed order

IQMD-IMP πd∗2
⊥ < σ |t∗

coll − t∗
0 | < 1

2 γ	t Fixed order
JAM πd∗2

⊥ < σ t̄coll ∈ [t0, t0 + 	t] Ordered by t̄coll

JQMD d∗
⊥ < bmax, P = σ/πb2

max |t̄coll − t0| < 1
2 	t Fixed order

TuQMD πd∗2
⊥ < σ t∗

1−,t∗
2− < t∗

coll < t∗
1+,t∗

2+ Randomly ordered

UrQMD πd∗2
⊥ < σ t

(ref)
coll ∈ [t0, t0 + 	t] Ordered by t

(ref)
coll

Basic cascade

Rel. (δt = α	t) πd∗2
⊥ < σ |t∗

coll − t∗
0 | < 1

2 α	t Fixed order
Rel. (δt = 	t) πd∗2

⊥ < σ |t∗
coll − t∗

0 | < 1
2 	t Fixed order

Quasirelativistic πd
(ref)2
⊥ < σ |t (ref)

coll − t0| < 1
2 	t Fixed order

aIn CoMD, the collision is skipped if the particle i or j has already experienced a collision in the same time step.

corresponding to the minimum distance d∗
⊥ given by Eq. (9).

Note that �r∗
1 and �r∗

2 are the positions at different times t∗1 and t∗2 ,
respectively, in this frame. In Eq. (9), �r∗

1 and �r∗
2 can actually be

any spatial points on the free-propagating trajectories �R∗
1(t∗)

and �R∗
2(t∗), respectively, while Eq. (10) is valid only when t∗0

is chosen by the condition �R∗
1(t∗0 ) − �R∗

2(t∗0 ) = �r∗
1 − �r∗

2 .1 In the
Bertsch prescription [37], the condition of the closest approach
for this time step is set as |(�r∗

1 − �r∗
2 ) · �v∗

12/v
∗2
12 | < 1

2δt which is
equivalent to t∗coll ∈ [t∗0 − 1

2δt, t∗0 + 1
2δt]. Many codes choose

δt = 	t , i.e., the same as the time step in the calculational
reference frame. However, a more suitable choice of δt is found
to be δt = α	t ,2 where α is defined as

α = γ
E∗

1E∗
2

E1E2
(11)

1In fact, this condition is satisfied for t∗
0 = (E∗

2 t
∗
1 + E∗

1 t
∗
2 )/(E∗

1 +
E∗

2 ). For two particles with the same mass, it is t∗
0 = 1

2 (t∗
1 + t∗

2 ).
2When particles are moving with constant velocities and a time step

	t has elapsed in the calculational reference frame, the first term (t∗
0 )

and the second term in Eq. (10) change by the same amount α	t so
that t∗

coll does not depend on the time. One should choose δt = α	t

in the Bertsch prescription to be sure that the time step condition for
the closest approach is satisfied in exactly only one of the time steps.

with γ = 1/
√

1 − β2, where β is the velocity of the center-of-
mass of the colliding pair. We have the usual time dilation factor
α = 1/γ in the limit that the two particles have a common
velocity. A similar relativistic treatment is made in TuQMD,
where the segments of trajectories of both particles for t ∈
[t0 − 1

2	t, t0 + 1
2	t] in the calculational reference frame are

Lorentz transformed to those in the two-particle center-of-mass
frame, �R∗

1(t∗ ∈ [t∗1−,t∗1+]) and �R∗
2(t∗ ∈ [t∗2−,t∗2+]), for which

the closest distance condition is considered. There is yet
another class of codes where the collision points [t∗coll,

�R∗
1(t∗coll)]

and [t∗coll,
�R∗

2(t∗coll)] are transformed to the calculational ref-
erence frame in which the time coordinates tcoll,1 and tcoll,2

are different. For deciding on a collision in a given time
step, the average value t̄coll = 1

2 (tcoll,1 + tcoll,2) is used, e.g.,
t̄coll ∈ [t0, t0 + 	t] in JAM and JQMD. In contrast, in UrQMD
and SMASH, the time of the closest approach observed in the
calculational reference frame

t
(ref)
coll = t0 − (�r1 − �r2) · �v12

v2
12

(12)

is used to judge whether the collision occurs in the current time
step. Note that closest approach is a frame-dependent concept,
so t

(ref)
coll is not the Lorentz transformed quantity of t∗coll.
A different approach, with respect to the closest distance

method discussed above, is employed in pBUU, SMF, and
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CoMD. In pBUU, the collision integral is averaged over the
spatial volume 	V of the cell where a test particle is located
and it is integrated over time step 	t . Thus, the collisions
result from Monte Carlo integration of the collision integral
where the test particles in the cell sample the phase-space
distribution in the initial state of a collision. The collision can
occur between any two particles in a cell no matter whether they
move toward each other or not. The collision probability within
	t between any pair is usually very low. To prevent excessive
sampling of potential collisions that are never completed, a
subsample of pairs is nominated for potential collisions and
they are tested for collisions at enhanced probability. SMF
and CoMD essentially follow the same procedure, but only
consider, in the Monte Carlo integration, one collisional partner
j for each particle i, which is chosen as the closest particle to
i. This procedure can also be seen as a mean-free-path method
[38]. The mean free path of a particle is determined locally
as λ = 1/ρ(r)σ and the collision time between the two test
particles with relative velocity vij is τcoll ≈ λ/vij . Then the
probability for the two test particles to collide in the time step
	t is chosen as proportional to 	t/τcoll = ρσvij	t . The exact
expressions for the collision probability for these codes are
given in Table IV.

In many codes, the collisions within a given time step are
processed for the particle pairs in a fixed order following
the originally chosen particle indices. Alternatively, the order
may be scrambled at the beginning of every time step. Each
pair is considered only once in a time step in these codes.
By contrast, in some codes (UrQMD, JAM, SMASH), the
collisions within a time step are processed according to the
order of the established collision times. In these codes, after
every successful collision, the list of possible future collisions
is suitably updated. Without a mean field, the time step 	t
could in principle be quite long, even taking the evolution until
the end of a simulated reaction event.

Of course, in a relativistic treatment the ordering of the
collision times is frame dependent, and can be different in the
calculational frame and in the rest frame of each particle. Thus
it can happen that for a particle, which scatters with a particle
2 and subsequently with a particle 3 in the calculational frame,
the second collision occurs before the first in the rest frame of
particle 1. Such problems were discussed by Kortemeyer et al.
[39]; however, for ultrarelativistic collisions of center-of-mass
energies of the order of 100 AGeV. In the box calculation,
where typical energies are the Fermi energy of about 35 MeV,
and even in heavy-ion collisions around and below 1 AGeV, as
discussed in Ref. [12], this will happen very rarely. Most rela-
tivistic codes and also our basic cascade code do not take this
possibility into account, but some codes (e.g., JAM) eliminate
a collision in such a situation, which can reduce the collision
rate by ∼1% in the conditions of the present comparison.

We test variations of collision prescriptions by employing a
basic cascade code written specifically for this purpose.3 The
code calculates possible collisions for all the pairs of particles
in each time step of 	t = 0.5 fm/c in a similar way to the
Bertsch prescription, i.e., following the condition of the closest

3The basic cascade code is written by Akira Ono.

approach. The code runs both in relativistic and nonrelativistic
kinematics without any mean field. Different versions of
relativistic calculations can be done with different choices of
δt as listed in the bottom part of Table IV. The quasirelativistic
case, corresponding to the numerical integration in Eq. (7) with
v12 = | �p1/E1 − �p2/E2|, can be simulated with the relativistic
kinematics and initialization, but with an unusual collision
condition of the closest approach in the calculational reference
frame, using the minimum distance

d
(ref)2
⊥ = (�r1 − �r2)2 − [(�r1 − �r2) · �v12]2

v2
12

, (13)

and the corresponding time given by Eq. (12). This code was
used to simulate the numerical integration of Eq. (7) by only
counting the number of attempted collisions without actually
scattering the particles and by initializing the particles at every
time step with Fermi-Dirac or Boltzmann distributions. A
factor of 1280/1279 was applied to the obtained collision
rate in order to correct for the difference in the self-collisions
included in Eq. (7) but excluded in the cascade calculation.
The obtained collision rates are given in the rows “Cascade” in
Table III for each of the cases for Fermi-Dirac and Boltzmann
distributions. They agree essentially exactly with the results
of numerical integration in all the cases of nonrelativistic,
quasirelativistic, and relativistic (δt = α	t) treatments. Some
deviation of about 1% is seen in the relativistic case when the
time dilation effect is ignored in the calculation with δt = 	t .
Thus, the collision prescription with the closest approach
condition is quite sufficient for a rather accurate reproduction
of the collision rate in this simple case without mean field.

C. Repeated collisions and higher-order correlations

To understand the issue of correlations between collisions,
the basic cascade code was run for the prescribed simulation
with two-particle scatterings in the homework condition of
Fermi-Dirac initialization. The averaged collision rates for
the interval 60–140 fm/c are shown in the last columns in
Table III. It will be seen below that by those times the system
has essentially equilibrated to the Boltzmann distribution. It
is noticed that the equilibrated collision rates from the code
are higher than the reference values for a pure Boltzmann
distribution, to which they should be compared. In fact, when
this code is applied with the above Bertsch prescription without
any restriction on the particle pairs for which the closest
approach condition is tested, the equilibrium collision rates
are much higher, i.e., around 150–170 c/fm, depending on
the time step. Similar results are also found in many of the
transport codes compared here. The reason for these very high
rates is that the naively applied Bertsch prescription does not
preclude that particles that just collided may collide again in the
subsequent time steps. The latter happens if the final velocities
point toward each other, which happens 50% of the time in the
chosen statistical procedure. This, however, should not occur
as an independent process. As particles remain within their
interaction range, physically they are within the same collision
process that has been accounted for in the single abrupt change
in the momenta. Or, expressing this in another way, the T
matrix, used to describe cross sections, accounts for ladder
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FIG. 1. Momentum distributions at time t = 0, 20, and 140 fm/c

for simulations without Pauli blocking initialized with Fermi-Dirac
distributions of T = 0 (upper panels) and 5 MeV (lower panels) for
the different BUU codes (left panels) and QMD codes (right panels).
The thick dashed lines (red) represent ideal nonrelativistic Boltzmann
distributions for TB = 14.753 and 15.833 MeV corresponding to T =
0 and T = 5 MeV, respectively.

diagrams. The Boltzmann equation, for which the collision
integral is evaluated, assumes collisions that are independent
of each other and are not repeated. Thus, for a simulation code
seeking a solution of the Boltzmann equation, a condition is
needed which prohibits repeated collisions of the same pair
of particles. We call this a corrected Bertsch prescription. The
collision rates from the basic cascade code with the corrected
prescription are the ones given in the third column in Table III.
They are now closer to the reference values listed under the
Boltzmann distribution, but, in fact, they do not agree with
them exactly. We believe that higher order correlations are
responsible for the remaining discrepancies. For example, after
a pair of (test) particles has collided, one of them could collide
with some other particle and then the same pair could collide
again. This also constitutes a correlation between collisions
which is not considered in the Boltzmann equation and not
accounted for in an exact evaluation of the collision integral.
It would be increasingly complex to eliminate all these higher
order correlations in a simulation code. This discussion shows
that it is not trivial to meet the exact limits in simulations,
due to existence of residual correlation between collisions. Of
course, when we consider Pauli blocking of collisions in the
next section, most of the repeated collisions will be forbidden,
but it is desirable to understand this issue and to modify the
collision criteria accordingly.

D. Results for no-blocking simulations

In this subsection, we discuss the results for collision rates
without Pauli blocking for the different simulation codes. The
modes CT0 and CT5 are initialized in terms of Fermi-Dirac
distributions at temperatures of 0 and 5 MeV, respectively.
Figure 1 shows the momentum distributions at t = 0, 20, and
140 fm/c for T = 0 (upper panels) and 5 MeV (bottom panels)
from the calculations of BUU-type models on the left and of

FIG. 2. Time evolution of the collision rate dNcoll/dt without
Pauli blocking for initializations with T = 0 (upper panels) and
T = 5 MeV (lower panels) for BUU codes (left panels) and QMD
codes (right panels). The codes are identified in the legend.

QMD-type models on the right. The initial distributions agree
with the desired one within the expected statistical errors. As
expected, the distributions finally reach the respective classical
Boltzmann distributions characterized by temperatures given
by energy conservation (Table II). The evolution toward equi-
librium progresses at a rather rapid pace. The distributions from
different codes cluster together at t = 20 fm/c and all are close
to the equilibrated Boltzmann distribution by t = 140 fm/c.

The time evolution of the collision rates dNcoll/dt in the
calculations from the different codes is shown in Fig. 2.
Looking across the codes, the rates are found to settle rather
quickly, within about 10 fm/c, to equilibrium values, except
for CoMD which has large fluctuations. This is consistent with
the pace of the changes in the momentum distributions in Fig. 1
from Fermi-Dirac to Boltzmann form. For most codes, the
early collision rates are consistent with Fermi gas expectations
in Eq. (7) and Table III. As time evolves, however, for some
codes the rates grow and for some codes the rates change little
or slightly drop. By examining Table III, it is observed that, in
fact, the rates should drop only very slightly from the initial
Fermi-Dirac to the equilibrated Boltzmann distributions. The
fact that they rise in some codes, particularly for QMD-type
codes, is likely due to higher order correlations that build up
with time. At the late stage, persistent differences between
equilibrium rates among different codes or groups of codes
are apparent. Given the offset for the vertical scale in Fig. 2,
they are not large but still worth illuminating further.

The equilibrated collision rates averaged over time in the
interval from 60 to 140 fm/c for the different transport codes
are shown in Fig. 3, for T = 0 (upper panels) and T = 5 MeV
(lower panels) initializations. It is seen that the collision rates
agree reasonably well among the different codes, but they do
not agree exactly. In the figure, we show as lines the reference
values of Table III. Thus, the dashed (green) and dotted (purple)
lines in Fig. 3 represent the values for the nonrelativistic and
relativistic Boltzmann distributions, respectively. The solid
(black) line is the result for the equilibrated rate from the basic
cascade code calculation in the relativistic case. The shape (and
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FIG. 3. Collision rates, for systems initialized at T = 0 (CT0,
top, solid symbols) and T = 5 MeV (CT5, bottom, open symbols),
for BUU-type codes (left) and QMD-type codes (right). The lines
represent the reference values given in Table III: dashed (green)
and dotted (purple) are the nonrelativistic and relativistic Boltzmann
rates, respectively; solid (black) is the basic relativistic cascade code
results. The symbols show the results of the codes averaged over
time interval from 60 to 140 fm/c; cf. Fig. 2. The symbols (and
their colors) indicate to which reference values the results of a
code should be compared: circle (green) and triangle (purple) to the
nonrelativistic and relativistic Boltzmann, respectively; square (black)
to the relativistic cascade (see text).

color) of the symbols indicates to which reference value the
code results should be compared.

Except for SMF, CoMD, and pBUU (see Subsec. IV B), the
represented codes use the corrected Bertsch procedure (prior to
this box comparison some codes used the original Bertsch pre-
scription and showed correspondingly much higher rates). The
results for the codes should be compared to the reference values
corresponding to the treatment of dynamics and of relativity
specific for the code, giving hopefully a way to understand
the remaining differences. For example, the rates from BUU
codes that rely on the full ensemble method (GiBUU, pBUU,
SMASH, and RVUU) tend to coincide with those from the
relativistic Boltzmann distribution, around 111 c/fm in the
case of T = 0 initialization. This can be understood since
cross sections are reduced in the full ensemble method and
the chances of scattering back into the vicinity of a preceding
collision partner are correspondingly reduced; i.e., effects of
higher order correlations are suppressed. The rates from QMD
codes and from the BUU codes that rely on the parallel
ensemble method (e.g., IBUU) tend to agree with those from
the relativistic version of the basic cascade model, i.e., around
118 c/fm. In the parallel ensemble method the correlations are
thus similar to those in QMD dynamics. BUU-VM shows unex-
pectedly high collision rates. As discussed above SMF, CoMD,
and in a more general sense also pBUU used the mean-free-
path method, and thus they come close to the corresponding
exact limit, in these cases the nonrelativistic Boltzmann value.

As briefly mentioned in Sec. III, there can be slight dif-
ferences in the initialization between the codes, due to an
inprecise specification in the homework. These contribute to
the differences seen in Fig. 3. In the appendix, the differences
are analyzed more precisely and an attempt is made to separate
these from the intrinsic differences of the codes. The appendix

describes a more precise analysis of the results of this section.
However, it does not affect the global view on the results.

In the global view, the collision rates without blocking in
Fig. 3 are rather close to the reference values (within a few
percent) and the differences between the codes, resulting from
different treatments (relativity, remaining correlations) are of
the order of 10%. Such differences would not essentially affect
the result of a simulation of heavy-ion collisions. Thus we can
say that the treatment of collision probabilities is well under
control. In the next section, we will discuss how this changes
when Pauli blocking is included.

V. RESULTS WITH PAULI BLOCKING

The Pauli blocking is crucial in a transport calculation.
Without it, the distribution very quickly reverts to a Boltzmann
distribution. In this section, we compare the box cascade
calculations including the Pauli blocking factors in the collision
term in Eq. (2). We discuss the option 1 modes CBOP1T0
and CBOP1T5, where the Pauli blocking is handled as in the
normal use of the codes, and the option 2 modes CBOP2T0
and CBOP2T5, where the Pauli blocker is always taken for
the initial Fermi-Dirac distribution at T = 0 and 5 MeV,
respectively.

A. Phase-space occupation probabilities

To take into account the Pauli blocking, one has to calculate
the phase-space occupation probabilities in the final state of
a collision of two (test) particles. This then determines the
blocking factors (1 − f ′)(1 − f ′

1) in the loss term of Eq. (2)
and similarly for the gain term. Different prescriptions are used
in different codes to do this. The calculation of the occupation
probabilities involves some kind of averaging. This is usually
done by spreading particles in addition to a range in position
also over some range in momentum, and by determining the
contribution to the local phase-space blocking by some overlap
of distributions tied to the neighboring test particles. This can
be seen as a sampling of the phase space with finite resolution,
i.e., as an effect of coarse graining. This was studied by Abe
et al. [40], who showed that it effectively introduces classical
dissipation and thus drives the system to a classical distribution.

In the molecular dynamics codes ImQMD, IQMD-BNU,
JAM, JQMD, and UrQMD, the occupation probability f ′

i at
the centroid of the scattered wave packet with final momentum
P ′

i is obtained from the Wigner distribution function corre-
sponding to the QMD wave function given in Eq. (5), with the
self-contribution excluded, i.e.,

f ′
i = fτ ( �Ri, �P ′

i )

= 1

2/(2πh̄)3

1

(πh̄)3

∑
k∈τ (k �=i)

e−( �Ri− �Rk )2/2(	x)2

× e−2(	x/h̄)2( �P ′
i − �Pk )2

(14)

with τ = n or p, which estimates the probability of find-
ing nucleons in a phase-space cell of dimension (2πh̄)3.
The factor 2/(2πh̄)3 results from consideration of the
spin in the phase-space cell. The prefactors combine into
a total factor 4. In TuQMD, the occupation probability
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TABLE V. Pauli-blocking treatments used by different codes in the box calculation comparison.

Code name Occupation probability fi Blocking probabilitya Additional constraints

BUU-VM In sphere,b Rx = 2.76 fm, Rp = 59.04 MeV/c 1 − (1 − fi)(1 − fj ) No
GiBUU In cube,b 	x = 1.4 fm, 	p = 68 MeV/c 1 − (1 − fi)(1 − fj ) No
IBUU In cube,b 	x = 2.0 fm, 	p = 100 MeV/c c 1 − (1 − fi)(1 − fj ) No
pBUU In same and adjacent spatial cellsd 1 − (1 − fi)(1 − fj ) No
RVUU In cube,b 	x = 2 fm, 	p = 100 MeV/c 1 − (1 − fi)(1 − fj ) No
SMASH In sphere,b Rx = 2.2 fm, Rp = 80 MeV/c e 1 − (1 − fi)(1 − fj ) No
SMF In sphere,b Rx = 2.53 fm, Rp = 29 MeV/c f 1 − (1 − fi)(1 − fj ) No
CoMD Overlap of hard spheresg f ′

i , f ′
j < fmax = 1.08j No

ImQMD Overlap of wave packets,h (	x)2 = 2 fm2 1 − (1 − fi)(1 − fj ) No
IQMD-BNU Overlap of wave packets,h (	x)2 = 2 fm2 1 − (1 − fi)(1 − fj ) No
IQMD-IMP Overlap of hard spheres,i Rx = 3.367 fm, Rp = 112.5 MeV/c 1 − (1 − fi)(1 − fj ) No
JAM Overlap of wave packets,h (	x)2 = 2 fm2 1 − (1 − fi)(1 − fj ) No
JQMD Overlap of wave packets,h (	x)2 = 2 fm2 1 − (1 − fi)(1 − fj ) No
TuQMD Overlap of hard spheres,k Rx = 3.0 fm, Rp = 240 MeV/c 1 − (1 − fi)(1 − fj ) Yes
UrQMD Overlap of wave packets,h (	x)2 = 2 fm2 1 − (1 − fi)(1 − fj ) Yesl

aOccupation probability fi replaced by 1 if fi > 1.
bOccupation in spherical or cubic phase space cell with given dimensions.
cInterpolation among neighboring phase-space cells.
dSee Ref. [20] for details.
eWith weighting in coordinate space; see Ref. [22].
fGaussian weight in momentum space.
gSee explanation of hard sphere overlap in the text below Eq. (14).
hOverlap of wave packets, Eq. (14), with given width (	x)2.
if ′

i = 2
h3

∑
k∈τ (k �=i) O

(x)
ik O

(p)
ik ; see explanation of hard sphere overlap in the text below Eq. (14).

jf ′
i is the occupation of the final cell, including the scattered particle; see Ref. [25] for details.

kf ′
i = ∑

k∈τ (k �=i)(O
(x)
ik / 4

3 πR3
x)(O (p)

ik / 4
3 πR3

p) with a surface correction is applied; see Refs. [41,42] for details.
lPhase-space constraint: 4π

3 r3
ik

4π
3 p3

ik � ( h
2 )3/4.

is calculated from an overlap of hard spheres as f ′
i =∑

k∈τ (k �=i)(O
(x)
ik / 4

3πR3
x)(O(p)

ik / 4
3πR3

p), where O
(x)
ik (O(p)

ik ) is the
volume of the overlap region of spheres with the radius
Rx (Rp) of nucleons i and k in coordinate (momentum)
space. In IQMD-IMP, the occupation probability is f ′

i =
2
h3

∑
k∈τ (k �=i) O

(x)
ik O

(p)
ik . In CoMD, a similar procedure is used

but collisions are allowed only if the overlap f ′
i is less than

a chosen small number (in this case, 0.08); i.e., scatterings
are allowed only into essentially empty phase space cells.
On the other hand, BUU-type codes calculate the occupation
probability by counting, with possible weights, numbers of test
particles in a phase-space volume around the scattered particle,
but details of procedures and parameters differ among codes. In
pBUU, another procedure, which could be called an effective
temperature method (see Ref. [20]), is used. The distribution
function in the cell around the final state of the scattered particle
is fitted by a weighted sum of two deformed Fermi-Dirac
distributions, and this is then used for the Pauli blocking.
Abbreviated information on the Pauli blocking treatments of
the participating codes is provided in Table V, which in some
cases updates the entries in Table III of Ref. [12].

B. Evolution of the momentum distribution

The evolution of the momentum space distribution with
Pauli blocking for an initialized Fermi-Dirac distribution at
T = 5 MeV is shown in Fig. 4. A corresponding figure for

T = 0 MeV (mode CBOP1T0) looks very similar, except that
the initial distribution is a sharp Fermi sphere. In principle, the
initialized distributions should be stable in time, if the Pauli
blocking were perfectly efficient. It is seen, however, that the
distributions evolve away from the Fermi-Dirac distribution
toward a Boltzmann distribution. This is the effect, mentioned
above, of the coarse graining of the phase space distribution in
the sampling, effectively introducing dissipation. The progress
of the evolution differs for different codes. Over the monitored
time, the BUU codes succeed rather well to preserve the
fermionic character of the system, while QMD codes generally
do worse, except for the CoMD code. The effectiveness of
blocking is different between BUU and QMD codes, and also
varies within the QMD family. The different behaviors in
Fig. 4 are clearly due to the calculation of the blocking factors.
In the modes CBOP2T0 and CBOP2T5, where the blocking
factors are fixed from the initial Fermi-Dirac distributions, the
calculated dynamic distributions (not shown here) are stable
in all codes and coincide with the prescribed Fermi-Dirac
distributions with good accuracy at all times.

Differences in the Pauli blocking between different codes
can further be seen in Fig. 5, where the energy distributions
of the successful collisions are shown in the upper panels, and
the time-averaged blocking factors, i.e., the ratio Pblock = 〈1 −
(dN/dt)success/(dN/dt)attemp〉, in the lower panels. Results
from the ideal Fermi-Dirac distribution at T = 5 MeV are
also shown as thick-dashed purple lines. The energy threshold
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FIG. 4. Momentum distributions in cascade calculations with
Pauli blocking at t = 0, 20, 80, and 140 fm/c from top to bottom
for T = 5 MeV for BUU codes (left panels) and QMD codes
(right panels) as identified in the legend. The dashed lines are ideal
Boltzmann distributions at TB = 15.833 MeV.

for a collision in the NN rest frame is
√

s = 1.876 GeV. For
reference, the average center-of-mass energy for a pair in a
Fermi-Dirac distribution of T = 5 MeV is about 1.92 GeV and
the average center-of-mass energy when both particles are near
the Fermi surface is 1.95 GeV. The majority of the collisions
are seen to occur at lower energies close to the threshold, where
the collisions should be suppressed most effectively. Near the
Fermi energy, the collision rates are seen to converge better

FIG. 5. Top: Center-of-mass energy distribution of successful
collision number averaged over time for T = 5 MeV in CBOP1.
Bottom: Averaged blocking factors as a function of center-of-mass
energy for colliding pairs. BUU (QMD) codes are shown on the left
(right), as identified in the legend. The thick dashed-purple lines are
for the ideal Fermi-Dirac distribution at T = 5 MeV in the relativistic
case.

FIG. 6. Scatter plots for momentum space occupation for the final
states of all collisions in the first time step of the simulation (see text)
for the SMF and ImQMD models initialized at T = 5 MeV. From left
to right, the panels represent in sequence: (a) results from SMF with
(effectively) about 12 000 test particles per nucleon; (b) results from
SMF with 100 test particles per nucleon and one run; (c) results from
SMF with 10 test particles per nucleon and 10 runs; and (d) results
from ImQMD for 100 runs. The red curves in the panels represent the
Fermi-Dirac distribution at T = 5 MeV; the green curve in the left
panel is the Fermi-Dirac distribution at T = 7 MeV.

among the codes as the blocking becomes less important. An
exception is CoMD, where the blocking probability is higher
than that given by the prescribed Fermi-Dirac distribution.
This is a result of the procedure mentioned above, that the
final states have to be essentially empty for the collision to be
allowed. On the other hand, this leads to a much better blocking
for the states of lower momentum inside the Fermi sphere.
Also, pBUU approaches this distribution very well, due to the
effective temperature method, as mentioned in Subsec. V A.

As evidenced in Fig. 5, the blocking differs considerably
between the two families of codes, but also within the families.
To better understand the origin of differences from integration
over evolution, one can query about any differences when the
momentum distributions are ensured to be the same. Thus,
we asked the code contributors to provide details of the Pauli
blocking only for the first time step of the box simulation,
when the momentum space distribution is still governed by the
initialized Fermi-Dirac distribution. In particular, we collect
the occupation probabilities in momentum space of the final
states of the collision partners for all collisions in the first time
step, and plot them as a scatter plot against the momentum of
the final particle. In Fig. 6, we show in particular the results
for SMF and ImQMD codes, with the SMF results illustrated
by those from various choices of the numbers of test particles
per nucleon.

C. Fluctuations of the phase-space occupation

The scatter plots in Fig. 6 make it evident that there is a
considerable scatter of the simulated occupation probabilities
around the initial T = 5 MeV Fermi-Dirac distribution, which
represents the true underlying occupation probability. The
actual determination of the occupation probabilities in the
dynamical evolution is through a sampling of the momentum
space by different procedures as mentioned before. This leads
to a considerable fluctuation of these occupation probabilities
around the exact distribution and to occupation probabilities
both greater and smaller than the true value. There is a sys-
tematic difference between the BUU- and QMD-type codes as
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exemplified in the results from the SMF and ImQMD codes in
Fig. 6 which are representative for the two types. Specifically,
we can see that fluctuations in the occupation probability are
similar for ImQMD in Fig. 6(d) (1 test particle, 100 events) and
for SMF in Fig. 6(c) (10 test particles, 10 events). However,
in BUU codes the fluctuation depends on the numbers of test
particles used, as can be seen by comparing results from using
10 and 100 test particles per nucleon, respectively, in Figs. 6(b)
and 6(c). The fluctuation is considerably decreased for 100 test
particles.

In a box calculation, it is possible to drastically increase the
effective number of test particles, by calculating the occupation
probabilities not only at the location of the collision but over the
entire box, since the result should be homogenous in coordinate
space. This increases the number of test particles effectively
by the ratio of the volume assigned to a test particle to the
volume of the box, which here was about 120, increasing
the effective number of test particles per nucleon to about
12 000. The resulting scatter plot is shown in Fig. 6(a). Now the
distribution of calculated probabilities approximates far more
closely the prescribed Fermi-Dirac distribution. The scatter
in the probability is greatly reduced. However, it may be
noted that the dynamic occupation probability is closer to a
Fermi-Dirac distribution with T = 7 MeV rather than that with
T = 5 MeV of the initialization. This can be traced to the fact
that a finite Gaussian shape of the test particle in momentum
space is assumed in SMF with a width of 59 MeV/c to obtain
a smoother representation of the momentum space. However,
the initialized momentum distribution in all codes is done with
the centroids of the nucleon wave packets or extended test
particles, i.e., not including the folding with the width. Then the
sampled momentum distribution becomes more diffuse, which,
when interpreted in terms of a Fermi-Dirac distribution of
finite temperature, leads to an increase of the temperature. For
example, if one starts with a sharp Fermi sphere of T = 0 MeV,
then the sampled distribution of the occupation probability
acquires a diffuseness, i.e., an effective temperature. In this
case, for an initialized Fermi-Dirac distribution of T = 5 MeV,
this increases the temperature in effect by about 2 MeV. From
Fig. 6, it is evident that the fluctuations in BUU codes are
effectively controlled by the number of test particles, i.e., by
the resolution of phase space, and can be made arbitrarily small
in principle. In QMD, on the other hand, the fluctuation is
established once a width of the wave packets is chosen and
cannot be decreased by collecting more events. We see here
an immediate consequence of the philosophy of simulating
heavy-ion collisions on the sampling of phase space. The
homework specification essentially corresponds to the cases of
Fig. 6(b) for BUU and Fig. 6(d) for QMD, and thus corresponds
to rather different levels of fluctuations.

Figure 7 gives an overview of the mean of the occupation
probability and its variance obtained for the final state of
all collisions in the first time step in the different BUU and
QMD codes as blue lines and blue error bars. For comparison,
the initialized Fermi-Dirac distribution, which represents the
ideal occupation probability, is plotted as a red line. It is seen
that BUU codes using 100 test particles systematically give a
smaller variance compared to QMD codes. But there are also
differences among BUU codes, depending on the algorithm

FIG. 7. Distribution of occupation probabilities (blue) in the first
time step of the simulation for the T = 5 MeV initialization with
the mean and variance shown by the blue curve and the blue error
bars. Left panels show results for BUU-type codes and right panels
for QMD-type codes. The average blocking probabilities are shown
as the black curve (see text). The Fermi-Dirac distribution with T =
5 MeV used for initialization is represented with the solid line (red).
The gray line and error bars for CoMD are explained in the text.

used. For example, the code pBUU with the particular effective
temperature method (see Subsec. V A) reproduces the given
Fermi distribution almost exactly. In QMD, the variance is not
only larger but the occupation distributions tend to be more
smeared out, with substantial contributions for large momenta,
effectively representing higher temperatures. The occupation
probabilities determine the blocking of the final state, which
is thus strongly influenced by these fluctuations. The usual
procedure in a case where f > 1 is to set f = 1, i.e., to
completely block the collision. However, fluctuations to low
occupation probabilities are retained. Effectively this decreases
the average occupation probability, leading to overall weaker
blocking than in the exact expression. The average blocking
probability shown by the black line is considerably below the
red curve of the Fermi-Dirac distribution. It is generally lower
for the QMD codes because of the larger fluctuation. We recall
that it is the occupation in phase space that determines the
blocking. If the wave packet overlap method [see Eq. (14)]
is used, the volumes in coordinate and momentum space
are inversely correlated. Then in a box calculation without
inhomogeneities, the phase space volume to be sampled does
not depend critically on the width parameter. This may explain
why all the QMD codes that use this method (all, except
IQMD-IMP and CoMD) lead to similar fluctuations. Since
these fluctuation are large also in the interior of the Fermi
sphere, the momentum distributions of QMD codes in Fig. 4
rapidly evolve from Fermi-Dirac to Boltzmann type. It shows
that the way fluctuations are introduced in QMD more quickly
than in BUU destroys the fermionic character of the system
to arrive at an essentially classical description. Because of
its method of blocking, the CoMD panel needs a separate
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FIG. 8. Successful collision rates from the different models in
simulations with Pauli blocking for T = 5 MeV initializations
(CBOP1T5 mode). The square symbols show the results averaged
over the time interval 60–140 fm/c, while stars are the successful
collision rates for the first time step. The black line represents the
reference value calculated with the basic cascade code for a fixed
Fermi-Dirac blocker (CBOP2T5 mode).

explanation: The gray line and error bars represent the mean
and variance of the hard sphere overlaps as a function of the
momentum of a particle. Since collisions are blocked when
this overlap is larger than 0.08, a blocking probability arises
which is given again by the black line. It displays blocking in
good agreement with the expected Fermi-Dirac curve for lower
momenta, but results in overblocking for higher momentum
particles, as was already seen in Fig. 5.

D. Average collision rates with blocking

Figure 8 displays the successful collision rates in sim-
ulations with Pauli blocking for T = 5 MeV initialization
for the different codes (CBOP1T5 mode). Shown are the
time-averaged rates for the time interval 60–140fm/c as square
symbols and the rates for the first time step as star symbols. The
solid (black) line represents the result of the basic cascade code,
when the Pauli blocker is fixed to the initialized Fermi-Dirac
distribution for T = 5 MeV, to which the code results should
be compared. As was seen in Fig. 4 in the first time step
the momentum distributions are still the initialized Fermi-
Dirac distributions, while at later times they have changed by
various amounts toward Boltzmann distributions, particularly
for QMD codes. Even for these codes, the effect is not very
large, which might be due to the fact that the collision rates
for equivalent Fermi-Dirac to Boltzmann distributions do not
change very much, as was seen in Table III (though the ideal
rates actually go down). The successful collision rates for QMD
are considerably higher than the BUU rates. This is consistent
with the findings for the first time step in Fig. 7, that the
effective blocking probability in QMD codes is lower, and is
seen to be the case also for the full time evolution. Again there
are considerable differences among the codes. To compare with
reference values, we calculate numerically (using the options
CBOP2T0 and CBOP2T5) the exact successful collision rates
for a Fermi-Dirac distribution at a given temperature with the
basic cascade code. For T = 0, it should, of course, be zero.
For T = 5 MeV, the reference successful rate value is about 3.5

c/fm for relativistic case (3.4 c/fm for nonrelativistic), which
is shown as a black line in Fig. 8. For T = 7 MeV, which, as
shown in Fig. 6, approximately takes into account the effect of
the finite width of the particles in momentum space, it is about
5.4 c/fm. The pBUU code, with the special effective temper-
ature method to obtain blocking probabilities (Subsec. V A),
succeeds rather well to obtain these limits. The SMF rate with
100 test particles is about 10.5 c/fm. In the calculation with
the effectively increased number of test particles, shown in
Fig. 6(a), the rate drops to about 6 c/fm, and thus comes close to
the exact value for the effective temperature ofT = 7 MeV. The
CoMD code reproduces the reference value rather well. This
may be due to the good blocking of the low momentum states,
while the stronger blocking of the high momentum states, seen
in Fig. 7, does not contribute so much to the total collision rate.
Generally, the collision rates of BUU codes (except pBUU) lie
in the range of 10–23 c/fm, while for QMD codes (except
CoMD) they are in the range of 23–40 c/fm.

VI. DISCUSSION

Reiterating, the evaluation of the collision term has two
main steps, first determining the probability that two (test) par-
ticles collide, and second, determining whether the final states
of a collision are allowed by the Pauli principle. In the box cal-
culations, these two steps can be studied separately with respect
to the convergence of the different codes. Furthermore, box
calculations allow one to obtain reference values from kinetic
theory or from transparent numerical calculations using a basic
cascade code. Thus one can make quantitative comparisons of
various codes with respect to these two ingredients. Relative
to the exact limits, there is an additional effect of an artificial
increase of the effective temperature due to the smearing of the
momenta of the (test) particles both in BUU and QMD. This
effect is not very significant in view of the other differences.

A. Collision probabilities

Figure 3 has shown that the collision probabilities are well
under control in many codes, after an additional constraint
was introduced to eliminate repeated collisions between the
same pair of particles which are not present in the kinetic
theory. There are also good conceptual arguments to eliminate
repeated collisions between the same particles, since the effec-
tive in-medium cross section is thought of as a T matrix, which
sums repeated collisions. The residual differences between the
Boltzmann theory and the simulations resulting from higher
order correlations are small enough that they are not expected to
influence the interpretation of heavy-ion collisions in essential
way. Most of the codes provide results that converge to the
expected analytical limit to within 1%. For the collision proba-
bilities, these limits provide benchmarks for all transport code.
This is s especially useful for new codes under development
and codes that did not participate in this comparison.

B. Pauli blocking

The second ingredient being tested is the Pauli blocking of
the final states of a collision which is important and drastically
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influences the evolution of phase space occupations. Figures 7
and 8 have shown that the effectiveness of the Pauli blocking,
however, differs substantially among the different codes and
from the reference values. For Fermi-Dirac distributions, the
successful collisions are expected to be 〈dNcoll/dt〉 = 0 for
T = 0 and ∼3.5 c/fm for T = 5 MeV, respectively. However,
the actual numbers are much higher, more so for QMD codes
than BUU codes. Our investigation has revealed that the
blocking in simulation codes is subject to large fluctuations
which destroy the fermionic character of a system in a time
scale of 10–100 fm/c, depending on the code. Numerical
fluctuations in the representation of phase space are controlled
in different ways in BUU and QMD approaches. They depends
on choices of parameters: in BUU on the combination of the
shape and the number of test particles, and in QMD on the
chosen width of the wave packets. With the parameters chosen
here, which are typical for the use in heavy-ion collisions, the
successful collision rates for BUU codes are mostly reasonably
near the reference values, while those for QMD codes are
consistently much above them.

C. Fluctuations

Fluctuations in transport theory are presently a much dis-
cussed issue. They are the main venue to go beyond dissipative
mean field dynamics. Fluctuations have direct observable con-
sequences in the decomposition of the dynamically unstable
system into fragments and clusters during the expansion phase
of a heavy-ion collision. The amount of fluctuations is the
basic difference between BUU and QMD codes. This was
discussed in greater detail in Sec. II on transport approaches.
In BUU theories, the problem is, in principle, understood:
The fluctuations are related to the number of test particles
per nucleon and can be reduced to zero in the limit of infinite
test particle number. Beyond the statistical fluctuation, one can
introduce a fluctuation term incorporated into the Boltzmann-
Langevin theory. Of course, the specification of the fluctuation
term is far from settled. Some codes (SMF, BLOB [36],
and IBL [8,43]) attempt practical approximations. In QMD
codes, the fluctuations are essentially controlled by the width
parameter of the wave packets, which is not constrained by
theory. The width parameter also controls the fluctuations due
to the collision term, which relocates entire wave packets in
momentum space. Thus QMD incorporates fluctuations and
correlations into the transport approach from the beginning,
which, on the other hand, more quickly deteriorates the
fermionic nature of the system.

Of course, there are methods to reduce the fluctuations in
the calculated occupations, such as by increasing the number
of test particles in BUU codes, or by using wider wave packets
in QMD. However, fluctuations are physical in heavy-ion
collisions and lead to observable effects. Thus they should
not be arbitrarily suppressed. The question of how to properly
treat the fluctuation in transport theories remains an open one.
In this comparison, we do not attempt to solve this issue but
show the consequences of the different strategies and ideas
in the transport codes used for the interpretation of nuclear
collisions.

D. Evaluation

As a result of the present study, we are able to make
statements about the effectiveness of various procedures in
the simulations of transport theories. Even though the de-
termination of the collision probabilities converges rather
well among all codes, as was seen in Fig. 3, there are still
methods that are more effective in reproducing kinetic theory
without higher order correlations. These are methods to specify
collision probabilities locally by a statistical criterion, as in the
mean-free-path method, rather than by geometrical criteria, as
in the Bertsch prescription. This should be even more useful if
one wants to account for three-body collisions in the future.

With respect to the Pauli blocking it is more difficult to
make definite statements. As discussed above, the effectiveness
of Pauli blocking is strongly influenced by the amount of
fluctuations in a code, the treatment of which is a matter
of debate particularly between BUU and QMD approaches.
But also within the same approach, the effectiveness of Pauli
blocking seems to be better in a local statistical description. As
an example, the pBUU code, which shows the best blocking
behavior, locally fits the distribution function of the final state
by a weighted sum of two deformed Fermi-Dirac distributions,
which is then used for the blocking probability (Subsec. V A).
A particular case is the procedure adopted by CoMD, which
by construction prevents occupations larger than about 1.1 of
phase-space cells. It was seen that this leads to very good
blocking of low-momentum states but to a stronger blocking
at higher momenta than given by the reference values.

VII. SUMMARY AND OUTLOOK

The present study of cascade box calculations is part of the
Transport Simulation Code Evaluation Project to understand
better transport simulations of heavy-ion collisions and to
estimate and improve their reliability. In the previous com-
parison of different codes for Au + Au heavy-ion collision
at intermediate energies in Ref. [12], we observed differences
in observable effects, and it was suspected that these mainly
originate from the treatment of the collision term. The current
study suggests that while the collision probability is well under
control, the effectiveness of Pauli blocking was found to differ
substantially among the different codes and with respect to the
reference values. This is caused by the amount of fluctuations
in the representation of phase space, which is controlled in
different ways in different codes. The present study allows us
to make recommendations for the more effective procedures
to evaluate the collision term.

In the box simulations, we discuss these effects of the Pauli
blocking in the rather extreme case of a cold or lightly warmed
Fermi-Dirac distribution. In a real heavy-ion collision, the
distribution is rather quickly characterized by high effective
temperatures, where effects of the violation of the Pauli
principle should be less important. Moreover, in many codes
an option is used to disallow collisions between particles of the
same nucleus, before there has been a collision with a particle
of the other nucleus. This also could eliminate many of the
spurious collisions seen here. However, these effects should
be checked in further tests of real heavy-ion simulations.

034625-16



COMPARISON OF HEAVY-ION TRANSPORT … PHYSICAL REVIEW C 97, 034625 (2018)

We also note that the present code comparison, unlike the
comparison of full heavy-ion collisions in Ref. [12], allows
us to make statements about the performance of the codes,
since the results can be compared to the exact limits. The
performance of some codes has already been improved relative
to the original codes used in the first results of the homework.
On the other hand, one should be careful not to optimize the
procedures specifically for box calculations, which may not be
applicable in real heavy-ion collisions. For example, in a box
calculation one could improve the Pauli blocking by averaging
the occupation numbers over larger volumes of phase space,
but this would be inappropriate in heavy-ion collisions since
it would average out variations which are due to the finiteness
of the system.

The code evaluation project for transport simulations will
continue particularly in the box calculation mode. An ongo-
ing project is the study of the mean field propagation. The
propagation can also be affected by fluctuations and can affect
observables in reaction simulations. In box simulations, the
action of the mean field and the impact of fluctuations can
be compared against limiting results from Landau theory. A
further direction is the investigation of momentum-dependent
mean fields, which are known to be important to give a
reasonable reproduction of observed collective variables like
isoscalar and isovector flow. Another ongoing project is the
study of particle production which has been important to
constrain the isovector properties of the equation of state, in
particular the symmetry energy at higher densities, e.g., by
observing the π−/π+ ratio. Here predictions of simulations
of heavy-ion collisions have given widely differing results.
Pion observables involve new physics input for the mean
fields and inelastic cross sections, but also new procedures
in the simulations. In principle, they also bring in Bose-
Einstein statistics into a kinetic theory. This has recently been
investigated in box calculations for gluon systems [44], but in
our energy domain it was shown, e.g., in the pBUU code, that
it is irrelevant. We have started to test the pion production in
the framework of box cascade calculations without blocking,
which from this study are well under control.
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APPENDIX: DETAILED COMPARISON
OF ATTEMPTED COLLISIONS

As shown by the comparison in Subsec. IV D, the agreement
of the attempted collision rates among codes and with respect
to the reference values is rather satisfactory compared to the
problem in Pauli blocking. Nevertheless, if we consider the
well-defined numerical procedures described in Subsec. IV B,
any deviations beyond statistical uncertainties indicate that
there remain some hidden differences between codes which
should preferably be eliminated in the future. The following
analysis allows very precise comparison between the reference
values and the code results, by separating the initialization
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FIG. 9. Collision rates in calculations without Pauli blocking vs the average kinetic energy ε̄ for the different codes averaged over the time
interval 60–140 fm/c. The thick lines (blue and green for relativistic and nonrelativistic codes, respectively) connect the values for the two
initial conditions of T = 0 and T = 5 MeV. The values for the reference cases from Tables II and III are given as thin lines on which the vertical
bars indicate the values of ε̄ for T = 0 and T = 5 MeV.

differences discussed in Sec. III from the intrinsic differences
of codes. Agreements and deviations can be analyzed more
clearly here than was possible in Sec. IV. The comparisons
here may be useful for the code authors to improve their codes.

We start with the idea that the attempted collision rate for
each code should be a smooth function of the conserved total
energy of the system or the average kinetic energy per nucleon
denoted by ε̄. Ideally, these functions of ε̄ should be compared
between different codes and with respect to the reference
values (or functions). In our homework, the calculations were
done in a relatively narrow range of ε̄ from 22 to 24 MeV
(see Table II). Since the attempted collision rate should scale
with the velocity, we may expect that the function typically
behaves like ∼√

ε̄, which can be well approximated by a
linear function in the narrow range. In our homework, the
calculations have been done for two initial temperatures T = 0
and T = 5 MeV, corresponding to two values of ε̄ = ε̄0 and
ε̄5, respectively. We therefore have sufficient information to
construct the linear function for each code. As a consequence
of the initialization differences, different codes yield different
values of ε̄0 and ε̄5. However, the constructed linear function
does not depend on the choice of the two points of ε̄ at
which the function is evaluated. Thus the comparison of
the constructed linear functions is free from the influence
of different choices of ε̄0 and ε̄5 by different codes, and
therefore we can make comparisons here with much higher
precision.

The results shown in Fig. 3 are compared in a more detailed
view in Fig. 9, where the collision rates are shown versus
the average kinetic energy per nucleon ε̄. For each code, the
points corresponding to ε̄0 and ε̄5 (for the two nominal initial
temperatures T = 0 and 5 MeV, respectively) are connected
by a thick line which we call the “code line” below. We have
checked that the energy is perfectly conserved in all the codes in
the box simulations. In the figure, reference lines are also drawn
with thin lines. Using the information on ε̄0 and ε̄5 in Table II
and on the reference collision rates in Table III, we construct
these linear functions for the different kinematic treatments.
The correct values of ε̄0 and ε̄5 are shown as vertical bars on
the reference lines.

If a code line lies on the corresponding reference line,
we can consider that the collision procedure in the code is
working precisely as expected. Good examples are JQMD
and UrQMD, for which the code lines are perfectly on the
reference line for the relativistic values obtained by the basic
cascade code (δt = α	t). These two codes, as well as the basic
cascade code, actually use the best relativistic time condition to
judge the collision attempt, though they adopt three different
formulations for the condition (see Table IV). If a code line
is shifted off the corresponding reference line but has the
same slope, we consider this to be a systematic deviation.
Slight deviations in ImQMD and IQMD-IMP may be due to a
different time condition (see Tables IV and III), but it seems
that for other codes there are also unknown or undescribed
sources of systematic deviations. The observed deviations are
small in many cases except for BUU-VM. If the slope of the
code line is different from the reference line, as, e.g., for pBUU,
SMF, and CoMD, it is more difficult to say something about
the reason, which should be investigated further.

Even if the code lines are on the same reference line (e.g.,
compare IBUU, JQMD, and UrQMD), we notice that they
have different lengths and/or they are shifted from each other
along the reference line. This simply indicates that different
codes chose different initialization parameters corresponding
to different values of ε̄0 and ε̄5. This problem affects the
collision rates plotted in Fig. 3. For example, the initialization
made by JQMD corresponds to a relatively large value of ε̄5

and therefore a high collision rate as apparently shown in Fig. 3
for T = 5 MeV. By observing the situations of all the codes,
the calculated collision rates in Fig. 3 are different from those
for the correct values of ε̄0 or ε̄5 by about 2% at maximum. On
the other hand, this problem does not affect our comparisons
here as long as we compare lines as linear functions.

To understand further the agreements and discrepancies, we
examine the results from calculations of the blocking option 2
(CBOP2T0 and CBOP2T5) where the blocking probability is
evaluated using the analytic Fermi-Dirac distribution function
for the given temperature. No collisions are successful at T = 0
and collisions are quite rare atT = 5 MeV compared to the case
of CT5 without blocking. The actual distribution of nucleon
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FIG. 10. The same as Fig. 9 but for the attempted collision rates when the collisions are Pauli blocked with the probabilities evaluated with
the analytic Fermi-Dirac distribution function (CBOP2T0 and CBOP2T5). Results are not available for GiBUU. The blue thick line for CoMD
(dNatt./dt = 136.6 and 139.0 c/fm for CBOP2T0 and CBOP2T5, respectively) is outside of the plotted region.

momenta is very well kept in the Fermi-Dirac form. Thus
the CBOP2T0 and CBOP2T5 modes test the collision attempt
procedures under the best control of the nucleon distribution
and without the concern of correlations of repeated collisions.
Figure 10 shows the collision attempt rates for the CBOP2T0
and CBOP2T5 modes in a similar way to Fig. 9. We see that
four QMD-type codes (JAM, JQMD, TuQMD, and UrQMD)
and the pBUU and SMASH codes agree very well with the
reference line for the relativistic case with the Fermi-Dirac
distribution obtained by the basic cascade code with δt = α	t .
These codes are exactly the codes that use correct relativistic
time conditions as discussed in Sec. IV B with Table IV. The
IBUU code is unusual because it uses another time condition
but agrees with the same relativistic Fermi-Dirac reference line.
It is understood that the rate is higher for ImQMD, IQMD-
BNU, and IQMD-IMP because these codes use other time con-
ditions. The slopes of lines for pBUU and SMF agree with the
reference lines better here than for CT0 and CT5. For BUU-VM

and CoMD (the code line is outside the plotted range), the large
differences are observed between CT0 (CT5) without blocking
and CBOP2T0 (CBOP2T5) with well-defined blocking. The
GiBUU did not provide results for Fig. 10.

In this appendix, comparisons were made for the attempted
collision rates with much higher precision than in Sec. IV.
We have clearly seen very good agreements with the expected
reference values as well as some deviations, depending on
the codes. Although observed deviations are not large in
most cases, these diagnostics results should be useful for
the code authors to improve their codes. Problems found in
Fig. 10 should be investigated urgently since they are probably
related to the fundamental prescription for collision attempts.
Problems which appear only in Fig. 9 (e.g., pBUU, SMASH,
SMF, and JAM), or the different directions of deviation when
comparing Figs. 10 and 9 (e.g., BUU-VM, RVUU, CoMD, and
QMD-BNU), may indicate an unexpected effect of a successful
collision to subsequent collision attempts.
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