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Using experimental data to test an n-body dynamical model coupled with an
energy-based clusterization algorithm at low incident energies
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Employing the quantum molecular dynamics (QMD) approach for nucleus-nucleus collisions, we test the
predictive power of the energy-based clusterization algorithm, i.e., the simulating annealing clusterization
algorithm (SACA), to describe the experimental data of charge distribution and various event-by-event correlations
among fragments. The calculations are constrained into the Fermi-energy domain and/or mildly excited nuclear
matter. Our detailed study spans over different system masses, and system-mass asymmetries of colliding partners
show the importance of the energy-based clusterization algorithm for understanding multifragmentation. The
present calculations are also compared with the other available calculations, which use one-body models, statistical

models, and/or hybrid models.
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I. INTRODUCTION

It is well accepted that multifragmentation plays decisive
role in understanding reaction dynamics [1-12]. The theo-
retical description of this phenomena is debated equally by
two types of models: (i) statistical models (based on the
assumption of thermal equilibrium) and (ii) dynamical models
(capable of following reaction dynamics from the start to the
end). The main disadvantage of statistical models such as
the microcanonical multifragmentation model (MMM) [13],
the statistical multifragmentation model (SMM), [14], etc. is
that they completely disregard reaction dynamics and, more-
over, one has to start the calculations assuming some initial
conditions (such as temperature, excitation energy, freeze-out
volume, fragmenting-source size, etc.) either parametrized
or obtained from some experimental determinations [13,14].
On the other hand, dynamical models have the advantage of
following the reaction dynamics from the start to the end
where matter is fragmented. These models include numerically
different solutions of the time evolution of the one-body
or n-body dynamics [8—12,15,16]. The understanding of the
fragment formation is considered to be well governed by the
n-body models because of the perseverance of event-by-event
correlations among nucleons.

A typical transport model generates a phase space of
nucleons only, so one has to use a clusterization algorithm
to identify multibound fragments. In the literature, several
attempts have been reported in this direction [12,17-22].
In one of the first attempts, fragments were identified on
the basis of spatial correlations among nucleons at the fag
end of the collisions [12]. This algorithm was dubbed the
“minimum spanning tree” (MST) method and is found to
explain experimental results only for limited entrance channels
[22,23]. Therefore, various improvements were also proposed
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to obtain realistic fragments such as introducing additional
momentum constraints among nucleons, restructuring frag-
ments, or subjecting each fragment to fulfill binding-energy
constraints, etc. [18-22]. These methods helps in improving
the consistency of calculations with experimental results, but
only for the central reactions. The failure of the QMD + MST
model (to explain experimental results) also raised questions
about the reliability of the QMD model to describe the density
fluctuations and excitation energies for mildly excited nuclear
matter [5]. Based on these results, the need for statistical decay
codes such as SMM and GEMINI was also felt [14,24]. On the
other hand, contrary to the above results, Muller et al. [25]
showed that the decay properties of excited nuclei are well
reproduced in the n-body QMD model.

Another question regards the timescale of the formation
of fragments. The noble clusterization algorithm called the
“early cluster recognition algorithm” (ECRA) [26] based on
the simulated annealing technique was introduced in this
regard. It showed the early formation of clusters. Based on
the same annealing method, the simulated annealing cluster-
ization algorithm (SACA) [27] and the fragment recognition
in general application (FRIGA) [28] were later put forward.
The consistency of QMD + SACA method with experimental
results scraps many gray areas of QMD model (or in general
for models based on the n-body theories), proposed on the
basis of results obtained by using the MST method as fragment
identifier [29,30]. To add to this, even the timescale of the
fragment realization has been significantly improved compared
with MST or its variants. Note that, in all these studies [29,30],
only average observables with limited entrance channels were
used. To get in-depth knowledge of the dynamics of reactions,
one also has to investigate more complex observables.

With the advancement of the technology, it has become
possible to accurately detect the charged as well as uncharged
particles. As a result, more exclusive and complex observables
have been constructed. In this regard, Rivet et al. [31] and
Frankland er al. [6] put forward one of the complete sets
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of experimental data for the reactions of '*Xe 4 '”Sn and
133Gd + 233U at incident energies of 32 and 36 MeV /nucleon,
respectively. They mainly reported the charge distribution of
fragments, the event-by-event distribution of the three largest
charges, multiplicity distribution of fragments, and the bound-
charge distribution within each event. Both Rivet et al. [31] and
Frankland et al. [6] tried to reproduce these results by using
one-body models, the stochastic initialization method (SIM),
and Brownian one-body dynamics (BOB) calculations coupled
with the statistical decay code SIMON [32].

On the other hand, Raduta et al. [33] employed MMM
calculations with two fragment-formation conditions [13,33]
and deexcitation code at later times of the reaction [34]. In
MMM calculations, a complete equilibrium hypothesis was
considered whereas, in the case of SIM and BOB calculations,
collisions were first done by using BNV equations with a
stochastic force term added to calculations at the time when
the system enters the spinodal region and continuously, respec-
tively. The equilibrium hypothesis was applied at later times,
~200 fm/c, followed by statistical decay codes to deexcite the
fragments [32].

A careful analysis of literature shows that the reactions
40Ca 4 *°Ca [35] and "7 Au + "7 Au [7] were also performed
at the same excitation energies, where charge distribution
and event-by-event distribution of the first six largest charges
(for '7Au + 7 Au reaction) were reported. To confront the
experimental results of 40Ca 4+ *0Ca [35] reactions, initial
conditions were followed by using BNV and BUU calculations
and injected into several statistical models of Sa and Gross
[36], Richert and Wagner [37], and GEMINI [24]. The results of
197 Au 4 7 Au were confronted with the statistical multifrag-
mentation model with two-model source conditions [7].

Interestingly, to best of our knowledge, no n-body
dynamical model such as the QMD model was ever robust
against these experimental results. At the same time, as we see
from above, the multitude of models were needed to explain
experimental data partially or full. In the present paper, we
plan to see the compatibility of the QMD model coupled with
the SACA method to describe the observables that check the
event-by-event correlations among fragments and to judge
whether applying a multitude of theoretical models for a
single experimental result is indeed needed or it is just failure
of the statistical or dynamical models for not being able to
describe experimental data by using an individual model. The
choice of these experimental observables is made by keeping
in mind the following:

(1) Although the mass and asymmetry varies drastically in
these reactions, their corresponding excitation energy
is same in all these reactions.

(2) The availability of theoretical calculations of one-
body dynamical models [6,31], statistical models
[7,13,33,34], and/or hybrid models (where dynamical
models are coupled with statistical models) [24,35—
37] gives us a unique opportunity to do comparative
analysis.

This paper is structured as follows: Sec. II gives a very brief
information of our primary model QMD and clusterization

algorithm SACA. A detailed comparison of our calculations
and the above-mentioned experimental data together with other
model predictions is presented in Sec. III. Conclusions are
drawn in Sec. IV.

II. THE MODEL

A. Quantum molecular dynamics model

The quantum molecular dynamics (QMD) model [12] is a
classical many-body theory in which some quantum features
due to the fermionic nature of nucleons are also included.
The QMD model simulates the reactions and generates the
phase-space of nucleons on an event-by-event basis. Here each
nucleon in the colliding system is represented by a Gaussian
in momentum and coordinate space as
7 M]
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Mean position 7;(t) and momentum p;(¢) are the two time-
dependent parameters. The centroids of these Gaussian wave
packets propagate in coordinate and momentum space accord-
ing to classical equations of motion:
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where H is the total Hamiltonian of the nucleon consisting
of Skyrme, Yukawa, and Coulomb interactions. We basically
follow the framework of Ref. [12]. For details of the model,
we refer the reader to our previous works [19,22,27,29,30].
Since in the QMD model, the time evolution of collisions
is done at the nucleonic level, therefore, it is necessary to
transform nucleonic information into fragment information by
means of fragment-recognition algorithm. We used SACA as
the fragment identifier in the present study.

B. Simulated annealing clusterization algorithm

This noble algorithm is based on the principle of energy
minimization of fragmenting system and allows the fast re-
alization of fragment structures [27]. According to this algo-
rithm, a group of nucleons are part of a bound fragment if their
total binding energy per nucleon ¢; is less than a certain value:

Ay

6= 3| V=5 -+ 3V
i=1 j;él
< EgingAy, (3)

with Egjpg = —4.0MeVif Ay > 3 and Egjpg = 0.0 otherwise.
In the above equatlon Ay is the number of nucleons in
fragment and p ;™ is the center-of-mass momentum of that
fragment. The purpose of implementing a binding-energy
check is to reject the unbound fragments which will decay at
later times. The details of the algorithm are given in Ref. [27].

III. RESULTS AND DISCUSSIONS

For the present analysis, thousands of events were simulated
for the reactions of “*Ca + “°Ca, '¥Xe + '"°Sn, °Gd + 238U,
and 7Au + '7Au at incident energies of 35, 32, 36, and
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FIG. 1. The normalized charge distribution obtained in the central
reactions of '®Xe + ''Sn and > Gd + ***U at an incident energy of
32 and 36 MeV /nucleon, respectively. The stars represent experiment
data [6] and squares represent the calculations of QMD coupled with
SACA algorithm. The results of previous attempts [6,31] are also
displayed for comparison.

35 MeV /nucleon, respectively. The soft equation of state
along with energy-dependant nucleon-nucleon cross section
was employed. The phase space of nucleons was then injected
into SACA to obtain fragment information.

In Fig. 1, we display the normalized charge distribu-
tion obtained in the central reactions of '*’Xe + '”Sn and
155Gd + 238U at incident energies of 32 and 36 MeV /nucleon,
respectively. In these reactions, the system mass varies from
248 to 393 units, whereas the excitation energy per nucleon
of the composite system formed during the reaction is almost
constant (~7 MeV /nucleon). It was observed experimentally
(stars) [6] that the charge distribution of both systems is almost
identical, whereas their fragment multiplicities (IMFs) scale
with the total charge of the colliding systems (4.4 in the case
of 'Xe + "9Sn and 6.4 in the case of °Gd + 233U).

In the first place, Rivet er al. [31] and Frankland er al.
[6] made efforts to reproduce these experimental observations
by solving Boltzmann—Nordheim—Vlasov (BNV) equation in
the initial steps, then performing simulations by using the
stochastic initialization method (SIM) (by Rivet et al. [31]) and
Brownian one-body dynamics (BOB) (by Frankland ez al. [6])
calculations to determine intermediate times of the reaction.
In both of these calculations, fragments were obtained by
employing the minimum density cut and were realized at the
time when multiplicity of various fragments saturates. In SIM
calculations, the correct density fluctuations were added to the
system when it enters into instability region, but afterward

standard one-body calculations were performed due to the lack
of source term. On the other hand, in the case of BOB calcula-
tions, the density fluctuations were continuously acting due to
the addition of a stochastic force term to the mean field. There-
fore, the BOB calculations were considered more advanced
than the SIM calculations. The fragments obtained from these
models were excited; therefore, the deexcitation code SIMON
(approximately after 200 fm/c) [32] was used to obtain realistic
fragment structures. One should understand that the sources of
different excitation energy and density produce a similar den-
sity distribution, although the system having smaller Coulomb
barriers for fragment formation requires smaller temperature
to break into fragments. They observed that SIM 4 SIMON
(dashed double-dotted histograms) calculations deviate in re-
producing the experimentally observed yield of the fragments
withZ; = 5,6and Z; > 25, whereas no such discrepancy was
observed in case of BOB + SIMON calculations (dashed-dotted
histograms). It should also be noted that in both cases of
SIM or BOB + SIMON to make theoretical studies compatible
with the experimental observations, the velocity component
was added to fragments, lowering the excitation energy of the
fragments. In the present calculations, QMD + SACA (open
squares) not only reproduces the experimental trends but also
the absolute values of the charge yields of all fragments.
The observation time for '>’Xe + ''°Sn and "°Gd + 23%U
reactions depends on the rate of expansion of the nuclear
matter; in the present study it is taken as 60 fm/c and 90 fm/c,
respectively. The bottleneck in the QMD + SACA results is
that one can realize the fragment configuration at the times
when the nucleonic system is still in a highly nonequilibrium
phase (or compressional phase) of the reaction. Note that even
the fragments that are realized in compressional phase are not
excited but are in their respective ground states.

Furthermore, in Fig. 2, we display the non-normalized
charge distribution for the central reactions of '*’Xe +
198n and '°Gd + 28U at incident energies of 32 and
36 MeV/nucleon, respectively. The solid lines in the figure
represent the experimental observations. In earlier attempts
to explain this experimental data, Raduta et al. [33] used the
microcanonical multifragmentation model (MMM) to follow
the initial phase of the reaction. At later times of the reac-
tion, identified fragments were deexcited (approximately after
500 fm/c) by using the Weisskopf evaporation scheme [34].
They did employ two extreme freeze-out scenarios. In one case,
fragments were considered as hard spheres placed into a spher-
ical freeze-out recipient and the fragments were not allowed
to overlap with each other as well as with the receptacle wall
(hereafter called calculation 1) [13]. In other case, no hard-core
interactions were considered (hereafter called calculation 2)
[33]. The corresponding results of calculations 1 and 2 are
denoted by crossed triangles and crossed circles, respectively.
The MMM calculations with both these freeze-out conditions
were able to reproduce the experimental data consistently [33].
The results of present calculations remain same as discussed
earlier. Here again, QMD 4 SACA is able to reproduce the
experimental results reasonably well.

It should be noted that, in the present calculations, the
system evolves from the initial to the final state of the reaction
with the effect of mean-field and collision terms; thus, no
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FIG. 2. The charge distribution obtained in the central reactions
of Xe +'°Sn and 'S Gd + 28U at an incident energy of 32
and 36 MeV /nucleon, respectively. The solid histograms represent
experiment data [33] and the squares represent the calculations of
QMD coupled with the SACA algorithm. The results of previous
attempts [33] are also displayed for comparison.

equilibrium hypothesis is considered, as was assumed in other
model calculations [6,31-33]. With the SACA method, we are
able to reproduce the experimental charge distribution to all
orders of magnitude. Also, no free parameters are used in the
present analysis as were taken in all other model calculations
to explain the experimental observations [33]. Moreover, the
striking point of the QMD + SACA method is the faster
realization of the fragment structures compared with all other
previously used model results. Therefore, this method can
shed light on the earlier dynamics of the fragment formation.
Motivated by these results, let us see in the following the com-
patibility of QMD + SACA to explain some more complex ob-
servables used in the literature to study fragment properties [6].

In Fig. 3, we present the probability distribution of
the first three largest charges emitted in the reactions of
129%e + 119Sn and 'Gd 42U at incident energies of 32
and 36 MeV/nucleon, respectively. The comparison of the
probability distribution of the first three largest charges with the
experimental observations allows us to check the reproduction
of the event-by-event charge partition. If one compares the
probability distribution of the largest charge, it can be inferred
that the Z; > 25 region in the total charge distribution (see
Fig. 2) is dominated by the first largest charge only. The results
of BOB + SIMON [6] and MMM [33] calculations are also
shown for comparative study. Symbols carry same meaning
as in Fig. 2. It was observed that all these models reproduce
the experimental data reasonably well. When we compare
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FIG. 3. The probability distribution of the first three largest
charges emitted in central reactions of '*Xe + '"Sn (top panels)
and '°Gd + 28U (bottom panels) at incident energies of 32 and
36 MeV /nucleon, respectively. Crossed triangles and crossed circles
represent, respectively, the results of calculations 1 and 2 within the
framework of the MMM model [33]. Other symbols have the same
meaning as in Fig. 2.

our present calculations with experimental observations, we
see that QMD + SACA consistently explains the experimental
data of the probability distribution of the first, second, and third
largest charges. The increasing difference between the average
charges for the two reactions when going from the first to the
second and the third largest charges is also well accounted for
by the QMD + SACA calculations. This reflects the adequate
description of the event charge distribution for the first three
largest charges within each event. By observing these results,
in the following we present results of event-by-event analysis
of other observables.

InFig. 4 (left panels), we display the probability distribution
of the multiplicities of the IMFs [Z; > 5] for the central
reactions of '®Xe 4+ '"”Sn (top-left panels) and 'Gd +
28U (bottom-left panel) at incident energies of 32 and 36
MeV /nucleon, respectively. In the right panel is the probability
distribution of the total charge emitted as bound IMFs [bound
IMFs (Zpoung) in the present case is the sum of all fragment
charges with Z; > 5] for the "> Gd + #*®U reactions. We also
show the results of earlier attempts, i.e., SIM + SIMON [31]
(dash double-dotted histograms), BOB + SIMON [6] (dash-
dotted histograms), MMM [33] calculations (calculations 1
and 2 are represented by crossed triangles and crossed circles,
respectively) for comparison. Note that, in case of the Zpound
distribution, results are not available with the SIM + SIMON
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FIG. 4. Probability distribution of multiplicities of IMFs emit-
ted in central reactions of 'Xe + '"°Sn (top-left panels) and
155Gd + 28U (bottom-left panel) at incident energies of 32 and
36 MeV /nucleon, respectively [13,33]. In the right panel is the
probability distribution the charge of the IMFs emitted as bound
fragments for the reactions of '>Gd 4 ***U at an incident energy
of 36 MeV /nucleon. Symbols have the same meaning as in Figs. 1
and 2.

and BOB + SIMON models. It can be observed from the figure
that the SIM + SIMON (see dash double-dotted histograms)
calculations show some discrepancy in reproducing the higher
multiplicities for the reaction of '*Xe + ''”Sn. This inade-
quacy has been attributed to the lack of some kind of many-
source dynamics in this model. The results become consistent
when the BOB model was used in place of the SIM model. It
was also observed that the results of MMM calculations, both
for probability of multiplicities as well as Zpgyng distribution,
are consistent with the experimental observations, irrespective
of the two different source parameters used in the calculations.
Although, overprediction of the Zy,ung peak was observed. In
the present calculations, the QMD + SACA method is able to
reproduce both the probability distribution of the multiplicities
of IMFs as well as the probability distribution of the sum
of charges of IMFs reasonably well. The slight overpredic-
tion in case of >Gd + ?**U is due to the slight variation
in the time chosen for final realization of the fragments.
These results show the ability of SACA to identify fragment
structures, irrespective of the fact that the nucleonic matter
is still in a compressional phase. This happens because, in
the SACA method, emphasis is on minimizing the system
binding energy and not on checking the spatial separation
between two nucleons. All the above results (from Figs. 1
to 4) are excellent examples governing the significance of
the energy-based clusterization algorithm (SACA) to describe
multifragmentation. These findings contribute to the solidity
of the QMD + SACA approach to describe the fragmentation
phenomena in the Fermi-energy domain.

Furthermore, with a thorough survey of the literature, we
find that there exist other experimental results (e.g., for the
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FIG. 5. The charge distribution obtained in the central reactions
of ¥“Ca + “°Ca at an incident energy of 35 MeV /nucleon. The stars
represent the experiment data [35], and solid, dotted, and dashed
histograms represent the calculations of Sa and Gross [36], Richert
and Wagner [37], and GEMINI [24] models, respectively. The calcula-
tion obtained by using QMD coupled with SACA are represented by
open squares.

central reactions of **Ca 4 *°Ca [35]and '*" Au + '*’ Au[7]) at
nearly the same incident energy (35 MeV /nucleon). We shall,
along with earlier-discussed results, also check the consistency
of QMD + SACA results for these reactions. This gives us a
unique opportunity to map the compatibility of QMD + SACA
approach by keeping the excitation energy constant but varying
the system mass as well as the mass asymmetry of colliding
partners in the Fermi-energy domain. Also for these systems,
theoretical calculations using statistical models are available in
the literature, which will also help to produce a better picture
of the fragmentation [7,35].

In Fig. 5, we show the fragment charge distribution for
the central reaction of “°Ca + “’Ca at an incident energy of
35 MeV /nucleon [35]. Hagel et al. [35] attempted to confront
the experimental results for this reaction with various statistical
calculations. To reproduce this fragment charge distribution,
collisions were followed by using the Landau—Vlasov and
BUU calculations until 70 fm/c¢ and initial source conditions
were estimated. Then, after estimating pre-equilibrium emis-
sion using Boltzmann master equation initial conditions of
Ay, =70, Z; = 34, and E* = 420 MeV (here A, Z,, and E*
are mass, charge, and excitation energy of the source fragment)
were determined and injected into statistical models of Sa and
Gross (solid histograms) [36], Richert and Wagner (dotted
histograms) [37], and GEMINI (dashed histograms) [24]. It is
worth mentioning here that models of Sa and Gross, Richert
and Wagner, and GEMINI are based on the simultaneous mul-
tifragmentation, sequential binary decay, and statistical decay
calculations. They observed that the GEMINI model predicted a
large production of Z; = 1,2 and a very low production in the
3< Zy < 15 along with large value for heavy fragments.
Compared to this, Richert and Wagner model calculations
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FIG. 6. The charge distribution obtained in the central reaction
of "7Au+ “7Au at an incident energy of 35 MeV /nucleon. The
stars represent the experimental data points extracted from Ref. [7].
The calculations obtained by using QMD + SACA are represented by
open squares. The results of the statistical multifragmentation model
(SMM) are also displayed for comparison [7].

gave a lesser value of heavy fragments and enhanced one
in the intermediate charge bins. The experimental data were
best described by the statistical multifragmentation code of
Sa and Gross. In the present calculations, QMD + SACA,
interestingly, reproduced the experimental data, suppressing
the structural effect of magicity of colliding nuclei.

Next, in Fig. 6, we compare our calculations for the
charge distribution of the central reactions of '*’Au + '’ Au
at an incident energy of 35 MeV /nucleon with experimental
observations. For this system, it was observed that the radial
kinetic energy of the fragments was small and thus, the
assumption of equilibrium was not far from reality. Therefore,
the statistical models could be checked for their compatibility.
In this direction, Agostino et al. [7] used the SMM model
with two source conditions to reproduce the experimental
results. For simplicity, the different source conditions A =
343,Z, = 138, E¥ = 6.0MeV, p = pp/3and A, = 315,Z, =
126, EY = 4.8 MeV, p = py/6 (here Ay, Z,, EY, and p are
mass, charge, excitation energy of the source fragment, and
freeze-out density, respectively) are denoted by SMM (s1) and
SMM (s2), respectively. The results of SMM (s1) and SMM (s2)
are represented by dashed and dash-dotted lines, respectively.
It was reported that both SMM (s1) and SMM (s2) were able
to reproduce the experimental observations despite different
source conditions. The results of the present calculations are
repetitive of the earlier results, i.e., QMD + SACA reproduces
the experimental charge distribution very nicely, although
the slower expansion rate means that the fragments remain
overlapped in coordinate space for longer durations. Therefore,
the use of clusterization algorithms based on the spatial
constraints cannot give realistic fragments. The other option is
that one should wait for longer durations (~1000 fm/c) to let
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FIG. 7. Probability distribution of first six largest charges emit-
ted in central reactions of '°’Au + '’ Au at an incident energy of
35 MeV /nucleon [7]. Symbols have the same meaning as in Fig. 6.

the fragments separate out physically, which unfortunately is
not allowed with molecular dynamics models (due to spurious
emission of nucleons at latter times). From the figure, we also
see that QMD + SACA shows similar results as that observed
previously by using the SMM model [7].

In Fig. 7, we present the charge partition within each event
for the first six largest charges obtained in the central reactions
of '7Au + '7Au at an incident energy of 35 MeV /nucleon.
Again, we see that the results obtained by using the QMD +
SACA approach are the same as obtained earlier by using
SMM model calculations. Note that the SMM [14] and QMD
[12] models are based on entirely different assumptions. In
the SMM model, the composite system is assumed to be in a
equilibrated state; on the other hand, the QMD model follows
the system according to the dynamical equations and collision
terms. These are very surprising results, which make the
question “is multifragmentation is statistical or dynamical?”
more cumbersome.

Combining all these results and previously reported results
in Refs. [27,29,30], it becomes clear that the QMD + SACA
calculation reproduces experimental results very consistently
over a wide range of entrance channels.

Finally, we feel that the calculated charge and probability
distributions of first, second, third, fourth, fifth, and sixth
largest charges, distribution of fragment multiplicities and
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bound-charge distribution within each event presented here
are very robust and thus the comparison with the experimental
data remains fully meaningful. The overall agreement between
experimental data and theoretical results using QMD + SACA
is satisfactory in Fermi-energy domain. This study also shows
the importance of the energy-based clusterization algorithm
to describe fragmentation data. The same set of experimental
data was also explained by using one-body as well as statistical
approaches, but all these models identify the fragments only
at later times, so they are less useful to explore the early
dynamics of the reaction. Furthermore, as noted, one needs a
heap of algorithms and models to explain a single experimental
datum. On the other hand, with QMD + SACA one can find the
fragment structures at early times, making it a powerful tool to
study and explore the dynamics involved in the compressional
phase of the reaction. Here as shown, just one model is enough
and there is no need to apply a large number of models.
Moreover, no assumption of any kind or fitting of parameters
is made in SACA method to explain experimental data.

IV. SUMMARY

We have presented an exclusive comparison of the quantum
molecular dynamics model coupled with the energy-based

clusterization algorithm, i.e., simulating annealing clusteri-
zation algorithm with experimental data in the Fermi-energy
domain. Our results span over different system masses and
system-mass asymmetries have been tested with the complex
experimental data based on the event-by-event observables and
not only with the global (average) observables. A detailed
comparison of our calculations with one-body, statistical,
and/or hybrid models was also made to get better picture
of fragmentation. Our analysis shows that the energy-based
clusterization algorithm coupled with the n-body dynamical
model is more suitable to understand the dynamics involved
in fragment formation because the fragments can be realized
early, at times when the nucleonic matter is still in highly
nonequilibrium conditions. Our calculations also rule out the
need of a large number of models to explain single experimen-
tal observations.
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