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Origin of a maximum of the astrophysical S factor in heavy-ion fusion
reactions at deep subbarrier energies
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The hindrance phenomenon of heavy-ion fusion cross sections at deep subbarrier energies often accompanies a
maximum of an astrophysical S factor at a threshold energy for fusion hindrance. We argue that this phenomenon
can naturally be explained when the fusion excitation function is fitted with two potentials, with a larger (smaller)
logarithmic slope at energies lower (higher) than the threshold energy. This analysis clearly suggests that the
astrophysical S factor provides a convenient tool to analyze the deep subbarrier hindrance phenomenon, even
though the S factor may have a strong energy dependence for heavy-ion systems unlike that for astrophysical
reactions.
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I. INTRODUCTION

Coupled-channels calculations [1], taking into account low-
lying collective excitations of colliding nuclei as well as several
transfer channels, have enjoyed a great success in reproducing
experimental fusion excitation functions for many heavy-ion
systems at energies around the Coulomb barrier [2–6]. The
effect of channel coupling has now been well understood in
terms of fusion barrier distributions [3,7,8], that is, fusion
cross sections are given as a weighted sum of those for a few
eigenbarriers.

In 2002, Jiang et al. measured fusion excitation function
for the 60Ni + 89Y system down to the 100 nb and discovered
for the first time that fusion cross sections fall off much
steeper at deep subbarrier energies as compared to a theoretical
extrapolation based on the coupled-channels calculations [9].
Subsequently, a similar deep subbarrier fusion hindrance has
been found also in many other systems, see Ref. [5] and
references therein. Two theoretical models have been proposed
in order to interpret this phenomenon, based either on the sud-
den approximation [10,11] or on the adiabatic approximation
[12–14]. Even though the origin of the hindrance is different
in these two models, both of them expose the importance of
dynamical effects after two colliding nuclei touch with each
other [15].

The deep subbarrier fusion hindrance phenomenon has
often been analyzed in terms of the astrophysical S factor
[5,16], even though the S factor itself may not provide a
useful tool for heavy-ion reactions—unlike light systems in
which penetration of the Coulomb repulsive potential makes
a dominant contribution to reaction dynamics. A somewhat
surprising observation was that the experimental data often
show a maximum in astrophysical S factor as a function of
incident energy [5]. Jiang et al. argued that deep subbarrier

hindrance sets in at the peak energy of the astrophysical S
factor [5]. See also Ref. [17], which briefly discusses, in terms
of the action integral, the relation between the logarithmic slope
of fusion excitation functions and the astrophysical S factor.

Even though the threshold energy so determined well
follows the value of several global internucleus potentials at
the touching configuration [15], the exact cause of the S factor
maximum has not yet been clarified. One could question if
the S factor can be used as a representation of fusion cross
sections, provided that the physical meaning of the S factor
maximum is clarified. The aim of this paper is to address this
question. To this end, we introduce a two-potential fit to fusion
cross sections at deep subbarrier energies [18], and show that
the S factor maximum can be naturally accounted for with this
method. An important fact here is that the energy derivative of
the astrophysical S factor is determined by a cancellation of
two terms, that is, the nuclear and the Coulomb contributions,
and the relative importance between them changes precisely
around the threshold energy for fusion hindrance.

II. TWO-POTENTIAL FIT AND THE
ASTROPHYSICAL S FACTOR

In Ref. [18], we have fitted an experimental fusion excitation
function for several systems using a single-channel potential
model. To this end, we used two different Woods-Saxon
potentials for the subbarrier and the deep subbarrier energy
regions, which we define as the regions in which a fusion cross
section is between 10−2 and 100 mb, and below 10−3 mb,
respectively. Examples of the fit are shown in Figs. 1(a) and
2(a) for the 64Ni + 64Ni and 28Si + 64Ni systems, respectively.
The values for the Woods-Saxon potentials are listed in Table I
(note that we have used a slightly different parameter set for
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FIG. 1. The fusion cross sections (top) and the astrophysical S

factor (bottom) for the 64Ni + 64Ni system. The astrophysical S factor
is scaled with η0 = 75.23 (see text), and is given in units of (mb MeV).
The solid curves denote the result of the two-potential fit, whereas
the dashed curves show an extrapolation of the calculations to the
region outside the fitting areas. The experimental data are taken from
Ref. [19].

the 64Ni + 64Ni system from that shown in Ref. [18] in order
to get a better fit for the astrophysical S factor). In general, the
surface diffuseness parameter a in the Woods-Saxon potential
is around 0.65 fm in the subbarrier region, however, it increases
to a much larger value in the deep subbarrier region [17].
In Ref. [18], we defined the threshold energy for the deep
subbarrier hindrance, Ethr, as the energy at which the fusion
excitation functions obtained with the two potentials cross with
each other.

The astrophysical S factor,

S̃(E) = Eσfus(E) e2π(η−η0), (1)

is plotted in the bottom panel of Figs. 1 and 2. Here, σfus(E)
is the fusion cross section at energy E, and η = ZP ZT e2/h̄v
is the Sommerfeld parameter, ZP and ZT being the atomic
number of the projectile and the target, respectively, and v
being the velocity for the relative motion in the center of
mass frame. For the purpose of a clear presentation, we scale
the S factor by introducing a constant η0 in the exponent.
As one can see in the figures, the energy dependence of the
S factor changes at the threshold energy, Ethr. At energies
below the threshold energy, the S factor has a positive slope,
whereas the slope becomes negative at energies above Ethr. As
a consequence, the astrophysical S factor takes a maximum at
E = Ethr.
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FIG. 2. Same as Fig. 1, but for the 28Si + 64Ni system. The
astrophysical S factor is scaled with η0 = 41.25. The experimental
data are taken from Ref. [20].

In order to understand the energy dependence of theS factor,
let us take its first energy derivative [5,16]. From Eq. (1), one
obtains

1

S̃

dS̃

dE
= L(E) − πη

E
, (2)

where

L(E) = 1

Eσfus

d

dE
(Eσfus) = d

dE
ln(Eσfus) (3)

is the logarithmic slope of a fusion excitation function [5,16].
One can see that the energy derivative of the astrophysical S
factor consists of two terms. The first term, L(E), originates
from the nuclear potential, while the second term, πη/E,

TABLE I. Parameters for the Woods-Saxon potential defined
by V (r) = −V0/{1 + exp[(r − R0)/a]}, with R0 = r0(A1/3

P + A
1/3
T ),

where AP and AT are the mass number of the projectile and the target
nuclei, respectively. The subbarrier region is defined as the energy
region in which a fusion cross section is between 10−2 and 100 mb,
while the deep subbarrier region is the region in which a fusion cross
section is below 10−3 mb.

Systems Regions V0 (MeV) r0 (fm) a (fm)

64Ni + 64Ni subbarrier 180 1.15 0.676
deep subbarrier 98.0 1.1 1.1

28Si + 64Ni subbarrier 70.5 1.2 0.71
deep subbarrier 46.5 1.19 0.99
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FIG. 3. The first derivative of the astrophysical S factor
(1/S̃) dS̃/dE for the 64Ni + 64Ni system. The dashed and the dotted
curves show the first and the second terms in Eq. (2), respectively,
while the solid curves show the sum of these two contributions. The
top panel is obtained with the potential for the subbarrier region, while
the bottom panel with the potential for the deep subbarrier region.

originates from the pure Coulomb interaction. These two terms
have opposite signs, and a strong cancellation may occur.
Figures 3 and 4 show those contributions separately for the
64Ni + 64Ni and 28Si + 64Ni reactions, respectively. The top
and the bottom panels of these figures are obtained with the
potentials for the subbarrier and the deep subbarrier regions,
respectively (see Table I). For the potentials for the subbarrier
region, the logarithmic slope (the dashed lines) is relatively
small, and the second term in Eq. (2) (the dotted lines) gives
a larger contribution. The energy derivative of the S factor is
then negative at subbarrier energies. That is, the astrophysical
S factor is a decreasing function of energy in this region. On the
other hand, for the potentials for the deep subbarrier region,
the logarithmic slope is considerably larger than that in the
subbarrier region, and the first term in Eq. (2) is comparable
to the second term. Consequently, the energy derivative of
the S factor is slightly positive in the deep subbarrier region
(see the solid lines), and thus theS factor becomes an increasing
function of energy. This observation is consistent with the
astrophysical S factors shown in Figs. 1 and 2.

This analysis provides an interesting view of the astrophys-
ical S factor for deep subbarrier fusion reactions. As has been
argued in Refs. [5,16], the maximum of astrophysical S factor
is well related to the deep subbarrier hindrance phenomenon.
The hindrance of fusion cross sections leads to a steep falloff
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FIG. 4. Same as Fig. 3, but for the 28Si + 64Ni system.

of fusion cross sections, and thus a large logarithmic slope.
When the logarithmic slope becomes larger than πη/E, the
S factor has a positive slope as a function of energy. As the
energy increases, the logarithmic slope of fusion excitation
function then turns to a normal value at the threshold energy,
which results in a negative slope of S factor. This leads to a
maximum in astrophysical S factor at E = Ethr. We mention
that Jiang et al. proposed to find the value of Ethr by looking
for an intersect between the logarithmic slope, L(E), and a
function πη/E [16], which has provided a convenient and
efficient way to define the threshold energy for deep subbarrier
fusion hindrance [5].

There remains the question concerning the cause of the
change in the logarithmic slope of fusion excitation functions at
the threshold energy, and the amount logarithmic slope changes
for each system. In order to address the latter question, one
would need microscopic calculations, such as those carried out
in Ref. [14] for vibrational excitations in a two-body system.
This is beyond the scope of this paper, and we defer it to a
future study. On the other hand, it is likely that dynamical
effects after the touching configuration play an important role
[15] for the deep subbarrier fusion hindrance. A static effect,
such as the reaction Q value, has also been conjectured [5], for
which the argument is that a fusion cross section must drop to
zero at the reaction threshold for a system with a negative Q
value. Even though this effect should certainly appear at some
energy as long as the Q value is negative, it would be less
important than the dynamical effect, since the deep subbarrier
fusion hindrance has been observed not only in systems with a
negativeQvalue but also in systems with a positiveQvalue [5].

034623-3



HAGINO, BALANTEKIN, LWIN, AND THEIN PHYSICAL REVIEW C 97, 034623 (2018)

III. SUMMARY

We discussed the relation between a maximum of astro-
physical S factor and the hindrance phenomenon in heavy-ion
fusion reactions at deep subbarrier energies. To this end,
we applied the method of two-potential fit to fusion cross
sections. We showed that the logarithmic slope increases at
deep subbarrier energies, which results in a positive energy
slope in astrophysical S factor, whereas the energy slope is
negative at subbarrier energies. This leads to a maximum
in astrophysical S factor, which has been observed in many
systems. This analysis provides a clear interpretation of the S
factor maximum, which occurs as a consequence of the change
in the logarithmic slope of fusion excitation function at the
threshold energy for the hindrance.

The astrophysical S factor has originally been introduced
for light systems in order to remove the trivial energy depen-
dence of the Coulomb penetration factor, so that an extrapola-
tion of fusion cross sections down to astrophysically relevant
energies can be done easily. Although this original purpose

of introducing an astrophysical S factor does not apply to
heavy-ion systems, the analysis presented in this paper clearly
shows that the S factor can still be used as a convenient tool to
analyze the deep subbarrier hindrance phenomenon, especially
to identify the threshold energy for the hindrance.
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