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Background: The nuclear optical potential is a successful tool for the study of nucleon-nucleus elastic scattering
and its use has been further extended to inelastic scattering and other nuclear reactions. The nuclear density of the
target nucleus is a fundamental ingredient in the construction of the optical potential and thus plays an important
role in the description of the scattering process.
Purpose: In this paper we derive a microscopic optical potential for intermediate energies using ab initio
translationally invariant nonlocal one-body nuclear densities computed within the no-core shell model (NCSM)
approach utilizing two- and three-nucleon chiral interactions as the only input.
Methods: The optical potential is derived at first order within the spectator expansion of the nonrelativistic
multiple scattering theory by adopting the impulse approximation. Nonlocal nuclear densities are derived from
the NCSM one-body densities calculated in the second quantization. The translational invariance is generated by
exactly removing the spurious center-of-mass (COM) component from the NCSM eigenstates.
Results: The ground-state local and nonlocal densities of 4,6,8He, 12C, and 16O are calculated and applied to optical
potential construction. The differential cross sections and the analyzing powers for the elastic proton scattering
off these nuclei are then calculated for different values of the incident proton energy. The impact of nonlocality
and the COM removal is discussed.
Conclusions: The use of nonlocal densities has a substantial impact on the differential cross sections and improves
agreement with experiment in comparison to results generated with the local densities especially for light nuclei.
For the halo nuclei 6He and 8He, the results for the differential cross section are in a reasonable agreement with the
data although a more sophisticated model for the optical potential is required to properly describe the analyzing
powers.
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I. INTRODUCTION

The nuclear optical potential [1] is a successful tool for
the investigation of nucleon-nucleus (NA) elastic scattering,
allowing us to compute the differential cross section and the
spin polarizations in several regions of the nuclear chart and
for a wide range of energies. Its use has also been extended to
inelastic scattering calculations and to generate the distorted
waves that are used to compute the differential cross section in
other nuclear reactions.

Optical potentials can be obtained phenomenologically or
microscopically and they are both characterized by a real part
describing the nuclear attraction, and an imaginary part, which
takes into account the loss of the reaction flux from the elastic
channel into the other channels.
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Phenomenological potentials assume a certain shape of
the nuclear density distribution, which depends on several
adjustable parameters that are functions of the energy and the
nuclear mass number [2–4]. These potentials are properly set
up in order to optimize the fit to the experimental data of the NA
elastic scattering. Of course, due to the fit, these potentials work
very well in situations where experimental data are available,
but they lack predictive power.

On the contrary, microscopic optical potentials do not
depend on any adjustable parameters making them more
appealing for the investigation of new unstable nuclei where
experimental data are not yet available. The computation of
such potentials requires, in principle, the solution of the full
nuclear many-body problem that has to be solved using two-
and three-nucleon forces as the only input. Unfortunately, such
a goal is beyond our actual capabilities and thus some approx-
imations are needed in order to derive a suitable expression of
the optical potential. Several different approaches are currently
under development and a complete list can be found in Ref. [5].

In this paper we adopt the approach based on the nucleon-
nucleon (NN) t matrix, that was first theoretically justified
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by Chew [6] and Watson et al. [7,8] in the early 1950s,
and successively by Kerman, McManus, and Thaler [9], who
developed the Watson multiple scattering theory and expressed
the optical potential in terms of the free NN scattering ampli-
tudes. Within this framework the optical potential is obtained
from two basic ingredients: the NN t matrix and the matter
distribution of the nucleus. Several years later, with the advent
of high-accuracy NN potentials, there was a renewed interest in
finding a rigorous treatment of the NA scattering theory and it
became possible to compute the NA optical potential directly
in momentum space. Many theoretical efforts [10–31] have
been devoted to improving multiple scattering theory in order
to obtain a suitable expression for the optical potential capable
of reproducing the elastic scattering data. Similar approaches
[32–43] based on the g matrix were also developed to include
the effects of the nuclear medium on the struck target nucleon
interacting with the projectile.

As stated above, the NA optical potential is obtained from
the NN t matrix and the nuclear density. Thus, for a consistent
calculation it is important to compute these two quantities
using the same NN interaction. In Ref. [44] we explored
the possibility of using NN chiral potentials [45–51] at the
fourth order (N3LO) to compute the optical potential and
study the order-by-order convergence in the chiral expansion,
comparing the theoretical results for the scattering observables
with the experimental data. In that work we used the factorized
model [21], with the optical potential computed as the product
of the free NN t matrix and the nuclear density. Within
this framework, the calculated potential is nonlocal, but the
nonlocality only comes from the t matrix.

In Ref. [52] we performed the same analysis with the same
model but using the new NN chiral potentials at the fifth order
(N4LO) developed by Epelbaum, Krebs, and Meißner [53,54]
and Entem, Machleidt, and Nosyk [55,56], respectively. The
conclusion was that convergence in the chiral expansion was
basically achieved and further improvements of the model can
only be obtained by reducing the number of approximations
made to derive the expression for the optical potential. Thus,
the next step to improve the model consists of following what
has been done in the past and computing the optical potential
by performing the folding integral of the NN t matrix with
the nuclear density. Of course, the knowledge of a nonlocal
density matrix is required.

The purpose of the current work is to use the same NN
interaction to compute both the NN t matrix and the nuclear
density and to thus achieve another step toward a consistent
microscopic calculation of the NA optical potential. In par-
ticular, in this paper we generalize the method introduced in
Ref. [57] to construct microscopic nonlocal one-body density
within the no-core shell model (NCSM) [58] approach. The
NCSM is an ab initio technique, which employs realistic two-
and three-nucleon forces and treats all A nucleons in the
nucleus as active degrees of freedom. It is particularly well
suited for the description of light nuclei, being able to account
for many-nucleon correlations producing high-quality wave
functions.

The paper is organized as follows. In Sec. II, divided into
three subsections, we describe the theoretical framework used
to compute the proton-nucleus (pA) scattering observables.

In Sec. II A we introduce the general scattering problem in
momentum space between the incident proton and the target
nucleus, which is described by the many-body Lippmann-
Schwinger (LS) equation. This equation is then separated into
one equation for the scattering amplitude and another one
for the optical potential, which, after some manipulations and
approximations, is reduced to the folding integral between the
free NN t matrix and the nonlocal nuclear density. In Sec. II B
we then briefly describe the main features of the NCSM and we
give the details of the chiral interactions that we used to perform
our calculations. In Sec. II C we give the general expressions for
the nonlocal densities and explain how we removed the COM
contribution. In Sec. III we present results for the nonlocal
and local densities computed with two- and three-body chiral
interactions.

In Sec. IV we discuss differential cross sections and the
analyzing powers computed using the nonlocal and local
densities presented in Sec. III. This section is divided into two
subsections: in Sec. IV A we present the scattering observables
for 4He, 12C, and 16O, for different values of the incident proton
energy in the laboratory frame, while in Sec. IV B, we show the
results obtained for the two halo nuclei 6He and 8He. Finally,
in Sec. V we draw our conclusions.

II. THEORETICAL FRAMEWORK

A. Optical potential

The pA elastic scattering problem is described in momen-
tum space by the (A + 1)-body LS equation for the transition
operator

T = V + V G0(E)T , (1)

where V represents the external interaction between the in-
coming proton and the target nucleus and G0(E) is the free
propagator for the (A + 1)-nucleon system. Unfortunately, the
solution of Eq. (1) is beyond our actual capabilities and so some
approximations are needed in order to accurately compute
the T matrix without having to treat the full many-nucleon
problem. To do this, we follow the standard approach and we
introduce the projection operators P and Q, where P projects
onto the elastic channel, and they satisfy the completeness
relation P + Q = 1. With these operators Eq. (1) can be split
in two equations, one for the T operator,

T = U + UG0(E)PT, (2)

and one for the optical potential operator U ,

U = V + V G0(E)QU . (3)

In this work we consider the presence of only two-nucleon
forces for the optical potential derivation, and thus the external
interaction can be written as

V =
A∑

i=1

v0i , (4)

where v0i is the two-body potential describing the interaction
between the projectile and the ith target nucleon. Since we
are interested in the elastic scattering process, we can act with
the P operator on both sides of Eq. (2) to obtain the elastic
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transition operator,

Tel ≡ PT P = PUP + PUPG0(E)PTel . (5)

This is a simple one-body equation and can be easily solved
with standard techniques once we know the operator PUP .
Thus, the problem is finding a suitable expression for the
operator U that makes PUP calculable. To do this, we adopt
the spectator expansion [28] and after introducing the single-
scattering approximation and the impulse approximation, the
operator U can be written as

U =
A∑

i=1

t0i , (6)

where t0i is the free NN t matrix and satisfies

t0i = v0i + v0igi t0i , (7)

with

gi = 1

E − h0 − hi + iε
, (8)

being the free NN propagator. Here, h0 is the kinetic energy
of the projectile and hi the kinetic energy of the ith target
nucleon. Acting with the P operator on Eq. (6) and after some
manipulations, we obtain the expression for the first-order full-
folding optical potential

U (�q, �K; ω) =
∑

α=n,p

∫
d3 �P η( �P ,�q, �K)

× tpα

[
�q,

1

2

(
A + 1

A
�K − �P

)
; ω

]

× ρα

(
�P − A − 1

2A
�q, �P + A − 1

2A
�q
)

. (9)

The variables �q and �K in Eq. (9) represent the momentum
transfer and the total momentum, respectively, while �P is the
integration variable. The quantity tpα is the proton-nucleon free
t matrix, ρα is the nuclear density matrix, and η is the Møller
factor, which imposes the Lorentz invariance of the flux when
we pass from the NA to the NN frame in which the t matrices
are evaluated. The energy ω at which the t matrix is evaluated
is fixed at one half the kinetic energy of the incident proton in
the laboratory frame. The structure of the t matrix in the NN
frame is given by

tpα(�κ ′,�κ) = t cpα(�κ ′,�κ) + i �σ · n̂NN t lspα(�κ ′,�κ), (10)

where �κ and �κ ′ represent the initial and final relative momenta,
�σ are the Pauli matrices, and n̂NN is a unit vector defined
as n̂NN = (�κ ′ × �κ)/|�κ ′ × �κ|. Here t cpα and t lspα are the central
and the spin-orbit parts of the t matrix, respectively. Inserting
Eq. (10) into Eq. (9) and after some variable transformations,
the general structure of the optical potential is given by

U (�q, �K; ω) = Uc(�q, �K; ω) + i

2
�σ · �q × �K Uls(�q, �K; ω), (11)

where Uc and Uls are the central and the spin-orbit parts of
the optical potential. Once Eq. (9) is computed, it is possible
to solve Eq. (5) and from its on-shell value we can compute

the scattering observables as specified in Ref. [44]. Finally,
the Coulomb interaction between the incoming proton and the
target nucleus is included as specified in Refs. [23,24].

B. NCSM

The evaluation of Eq. (9) requires the knowledge of the
nuclear density matrix, which is then folded with the free NN
scattering matrix to give the optical potential. The A-nucleon
eigenstates needed to calculate the one-body density matrix are
computed in this work with the ab initio NCSM method [58].
Within this framework, nuclei are considered as systems of A
nonrelativistic pointlike nucleons interacting through realistic
internucleon interactions. All nucleons are active degrees of
freedom and the translational invariance of observables, as
well as the angular momentum and parity of the nucleus under
consideration, are conserved. The many-body wave function
is expanded over a complete set of antisymmetric A-nucleon
harmonic oscillator (HO) basis states containing up to Nmax

HO excitations above the lowest possible configuration. The
basis is further characterized by the frequency 	 of the
HO well.

The NCSM wave functions are computed by diagonaliz-
ing the translationally invariant nuclear Hamiltonian, which
includes NN and in general also three-nucleon (3N ) forces:

Ĥ |AλJπT 〉 = EJπ T
λ |AλJπT 〉 , (12)

with λ labeling eigenstates with identical JπT . Convergence
of the HO expansion with increasing Nmax values is accel-
erated by the use of similarity renormalization group (SRG)
transformations of the NN and 3N interactions [59–63]. While
this technique ensures a faster convergence, it may introduce a
further dependence on the momentum-decoupling scale λSRG

if the unitarity of the SRG transformation is violated.
In this work, we used the chiral potential at N4LO recently

developed by Entem, Machleidt, and Nosyk [55,56] with
a cutoff � = 500 MeV employed in the regulator function
introduced to deal with the infinities in the LS equation. In the
text this will be denoted as NN-N4LO(500). For calculations of
nuclear densities, we also included the three-nucleon potential
at the next-to next-to leading order (N2LO) with simultaneous
local [64] and nonlocal regularization. The three-body com-
ponent has a local cutoff of 650 MeV and a nonlocal cutoff of
500 MeV. The ci low-energy constants (LECs) were selected
as recommended in Ref. [56], while the LECs cD and cE were
determined in the A = 3,4 systems. Further details will be
given elsewhere. We note that this type of 3N interaction was
applied for the first time in Ref. [65] although in combination
with a different NN interaction and with different LECs. It
will be denoted as 3Nlnl, making the notation for the total
interaction utilized for the densities NN-N4LO(500)+3Nlnl.

We have applied the NN-N4LO(500)+3Nlnl to s- and
p-shell nuclei (details will be given elsewhere) and determined
that the SRG unitarity is under control for λSRG in the range of
1.6–2.0 fm−1 and that the HO frequency of h̄	 = 20 MeV is
suitable for nuclei investigated in this work. To demonstrate
convergence of our results, we present basis size (Nmax)
dependence studies in the subsequent sections. Finally, let
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us note that the Nmax = 8 calculations for 12C and 16O were
obtained using importance-truncated NCSM basis [66,67].

In addition to nuclear density calculations with SRG-
evolved NN-N4LO(500)+3Nlnl interaction, we also computed
the 4He density with just the bare NN-N4LO(500) to achieve
the best consistency of the optical potential construction. See
Sec. IV for further discussion.

C. Nonlocal nuclear density

With the knowledge of the A-nucleon eigenstates it is
possible to compute the density matrix needed in Eq. (9).
In the current work we generalize the method of Ref. [57]
to generate nonlocal one-body density matrices and in the
following we provide the general formulas. For all the details
and the notation we refer the reader to Ref. [57]. We note that
the main difference between our approach and the recently
presented approach of Ref. [68] resides in the way we remove
the COM contribution, which in this work is done directly in
coordinate space, while in Ref. [68] the same is achieved by
first transforming the densities to momentum space, removing
the COM contributions there and transforming back if needed.

In coordinate representation, the nonlocal form of the
nuclear density operator is defined as

ρop(�r,�r ′) =
A∑

i=1

(|�r〉〈�r ′|)i =
A∑

i=1

δ(�r − �ri)δ(�r ′ − �r ′
i ) . (13)

The matrix element of this operator between a general initial
and final state obtained in the Cartesian coordinate single-
particle Slater determinant (SD) basis is written as (compare
to Eq. (5) in Ref. [57] for the local density)

SD〈AλjJjMj |ρop(�r,�r ′)| AλiJiMi〉SD

=
∑ 1

Ĵf

(JiMiKk|Jf Mf )
(
Y ∗

l1
(r̂) Y ∗

l2
(r̂ ′)

)(K)
k

×Rn1,l1 (|�r |)Rn2,l2 (|�r ′|)

× (−1)l1+l2+K+j2+ 1
2 ĵ1ĵ2K̂

{
j2 l2

1
2

l1 j1 K

}

× (−1)

K̂
SD〈Aλf Jf || (a†

n1,l1,j1
ãn2,l2,j2

)(K) ||AλiJi〉SD.

(14)

In Eq. (14), the NCSM eigenstates (12) have the subscripts
SD denoting that we used the Slater determinant HO basis
that includes COM degrees of freedom as opposed to the
translationally invariant Jacobi coordinate HO basis [69].
The isospin and parity quantum numbers are suppressed for
simplicity. Further, η̂ = √

2η + 1 and Rn,l(|�r|) is the radial
HO wave function with the oscillator length parameter b =√

h̄
m	

, where m is the nucleon mass. The one-body density
matrix elements are introduced in the second quantization,

SD〈Aλf Jf || (a†
n1,l1,j1

ãn2,l2,j2 )(K) ||AλiJi〉SD . Both �r and �r ′ are
measured from the center of the HO potential well. Conse-
quently, the density contains a spurious COM component.

We require the removal of the COM component from the
nonlocal density. This is enabled by the factorization of the

Slater determinant and Jacobi eigenstates,

〈�r1 . . . �rA �σ1 . . . �σA�τ1 . . . �τA|AλJM〉SD

= 〈�ξ1 . . . �ξA−1 �σ1 . . . �σA�τ1 . . . �τA|AλJM〉φ000(�ξ0), (15)

with COM component, labeled in Eq. (15) as φ000(�ξ0), given
as the N = 0 HO state with �ξ0 proportional to the A-nucleon
COM coordinate. The translational invariance can be then
obtained by employing the same procedure outlined for local
densities in Ref. [57] on the COM contaminated nonlocal
density. The matrix element of the translationally invariant
operator, ρ trinv

op (�r − �R,�r ′ − �R), between general initial and
final states is then given by (compare to Eq. (16) in Ref. [57]
for the local density)

〈AλjJjMj |ρ trinv
op (�r − �R,�r ′ − �R)| AλiJiMi〉

=
(

A

A − 1

) 3
2 ∑ 1

Ĵf

(JiMiKk|Jf Mf )

× (MK )−1
nln′l′,n1l1n2l2

(Y ∗
l (̂�r − �R) Y ∗

l′ (
̂�r ′ − �R))(K)

k

×Rn,l

(√
A

A − 1
|�r − �R|

)
Rn′,l′

(√
A

A − 1
|�r ′ − �R|

)

× (−1)l1+l2+K+j2− 1
2 ĵ1ĵ2

{
j1 j2 K

l2 l1
1
2

}

×SD〈Aλf Jf || (a†
n1,l1,j1

ãn2,l2,j2

)(K) ||AλiJi〉SD, (16)

where

(MK )nln′l′,n1l1n2l2

=
∑
N1,L1

(−1)l+l′+K+L1

{
l1 L1 l
l′ K l2

}
l̂ l̂′

× 〈nl00l|N1L1n1l1l〉 1
A−1

〈n′l′00l′|N1L1n2l2l
′〉 1

A−1
. (17)

In Eq. (16), the Rn,l(
√

A
A−1 |�r − �R|) is the radial HO wave

function in terms of a relative Jacobi coordinate, �ξ =
−

√
A

A−1 (�r − �R). The (MK )nln′l′,n1l1n2l2
matrix (17) introduced

in Ref. [57] includes generalized HO brackets of the form
〈nl00l|N1L1n1l1l〉d corresponding to a two-particle system
with a mass ratio of d, as outlined in Ref. [70].

The nonlocal density expressions presented here can be
related to the local density ones in Ref. [57] by setting

ρ(�r) = ρ(�r,�r) . (18)

For both the COM contaminated and translationally invariant
nonlocal density we recover the corresponding local density,
as expected. This procedure is detailed in the Appendix for the
case of the translationally invariant density. The normalization
of the nonlocal density is consistent with Ref. [57] such that
the integral of the local form,∫

d�r 〈AλJM|ρop(�r,�r)|AλJM〉 = A, (19)

returns the number of nucleons for both (14) and (16).
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Finally, let us note that the proton and neutron densities are
obtained simply by introducing ( 1

2 ± tzi) factors, respectively,
in Eq. (13), which then results in the creation and annihilation
operators aquiring a proton or neutron index as the COM
operators commute with isospin operators. The normalization
(19) then changes to Z and N for the proton and neutron density
respectively.

D. Nonlocal density in momentum space

In Sec. II C we presented the general expressions for the
nonlocal densities in coordinate space, but the evaluation of
Eq. (9) for the optical potential requires the knowledge of the
ground-state density in momentum space. In the following we
show how this was done. For the ground state of even-even
nuclei, considered in this work, the angular momenta Ji and Jf

in Eq. (14) and Eq. (16) are equal to zero: this gives k = K = 0
and consequently l′ = l. Thus, Eq. (14) and Eq. (16) can be
expressed in a general form as

ρ(�r,�r ′) =
∑

l

ρl(r,r
′)(Y ∗

l (r̂) Y ∗
l (r̂ ′))(0)

0 , (20)

where ρl(r,r ′) is obtained summing the radial part over all
the other quantum numbers. The angular part can be easily
evaluated as

(Y ∗
l (r̂) Y ∗

l (r̂ ′))(0)
0 = (−1)l

√
2l + 1

4π
Pl(cos ω), (21)

where Pl are the Legendre polynomials and ω is the angle
between �r and �r ′. In momentum space, the expression of the
density is given by

ρ( �p, �p ′) = 1

2π2

∑
l

ρl(p,p′)(−1)l
√

2l + 1Pl(cos γ ), (22)

where γ is the angle between �p and �p ′. The radial part ρl(p,p′)
is finally obtained as

ρl(p,p′) =
∫ ∞

0
drr2

∫ ∞

0
dr ′r ′ 2jl(pr)ρl(r,r

′)jl(p
′r ′), (23)

where jl are the spherical Bessel functions.

III. NONLOCAL DENSITY RESULTS

In this section we show the results for the nonlocal den-
sities obtained from the NCSM wave functions and using
the approach described in Sec. II C. The SRG-evolved NN-
N4LO(500)+3Nlnl interaction was used in all results dis-
cussed in the section. As a test of the importance of COM
removal, we computed for 4,6,8He, 12C, and 16O the trans-
lational invariant and COM contaminated nuclear densities
given by Eq. (16) and Eq. (14), respectively. Figure plots of
the COM contaminated density are labeled “wiCOM” while
the translationally invariant density plots are labeled “trinv”.
The ground-state densities of the nuclei are shown with all
angular dependence factorized out for plotting.

To appreciate the significance of spurious COM removal in
light nuclei, consider the comparison between the wiCOM and
trinv nonlocal density of 4He shown in Fig. 1. An Nmax = 14
basis space is used with a flow parameter λSRG = 2.0 fm−1.

FIG. 1. Ground-state 4He nonlocal neutron density calculated
with an Nmax = 14 basis space, an oscillator frequency of h̄	 =
20 MeV, and a flow parameter of λSRG = 2.0 fm−1.

The tremendous difference between the trinv density and the
wiCOM density is easily recognizable at small r and r ′. We
notice that the trinv density has sharper features at peaks and
tends to decay more rapidly than the wiCOM density. The
COM contamination appears to suppress the nuclear density
at small r and r ′ values.

In Fig. 2 we present the proton and neutron nonlocal
densities for 6He using a Nmax = 12 basis space with a
flow parameter λSRG = 2.0 fm−1. As in the case of 4He, the
translationally invariant density behaves significantly different
from the spurious COM contaminated density. We still see that
the COM tends to smooth the density over larger r and r ′ values,
suppressing it for small r and r ′. However, we see a minor
reduction in peak amplitude and sharpness when compared
to the differences observed in 4He. Notably, the COM term
diminishes with A so we expect a reduction in the importance
of its removal as we go to higher A-nucleon systems. This
trend is further noticeable in Fig. 3, which shows results for
the nonlocal density of 8He using the same λSRG parameter and
a Nmax = 10 basis space.

FIG. 2. Ground-state 6He proton and neutron nonlocal densities
calculated with a Nmax = 12 basis space, an oscillator frequency of
h̄	 = 20 MeV, and a flow parameter of λSRG = 2.0 fm−1. Proton
densities are shown in blue and neutron densities are shown in red.
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FIG. 3. Ground-state 8He proton and neutron nonlocal densities
calculated with a Nmax = 10 basis space, an oscillator frequency of
h̄	 = 20 MeV, and a flow parameter of λSRG = 2.0 fm−1. Proton
densities are shown in blue and neutron densities are shown in red.

In Fig. 4 we present the nonlocal neutron density for 12C
and 16O. For both nuclei we use Nmax = 8 basis space with
λSRG = 1.8 fm−1 and 2.0 fm-1 for 12C and 16O, respectively.
Unlike the results for 4He and 6He, we see only minor
effects from the process of COM removal. As expected, with
increasing A-nucleon number the effect of COM removal is
further suppressed to a point at which it becomes difficult to
differentiate between the COM contaminated density and the
translationally invariant density.

FIG. 4. Ground-state nonlocal neutron densities calculated with
an Nmax = 8 importance truncated NCSM basis for 12C and 16O. An
oscillator frequency of h̄	 = 20 MeV, and a flow parameter of λSRG =
1.8 fm-1 and λSRG = 2.0 fm-1 are used, respectively.

FIG. 5. Comparison between COM contaminated (dashed
wiCOM) and translationally invariant (solid trinv) local neutron
densities for 4He, 6He, 12C, and 16O.

However, if we investigate the local densities of these nuclei
in Fig. 5, we see more apparent differences between the COM
contaminated and translationally invariant densities in higher
A-nucleon systems.

Given the sizable differences between the translationally
invariant and COM contaminated density in the case of light
nuclei, we expect a significant impact on observables related
to the nonlocal density. This will be further discussed in
Sec. IV. It is expected that some observables may amplify the
effects observed and thus better gauge the importance of COM
removal being performed on nuclei such as 16O. The nonlocal
densities of these heavier nuclei must be further investigated
in order to fully determine the importance of COM removal.

In Fig. 6 and Fig. 7 we present Nmax convergence plots for
4He and 16O. We see that for 4He we achieve rapid convergence
with the NN-N4LO(500)+3Nlnl interaction and a basis size of
Nmax = 14. Even in 16O we see good convergence trends in the

FIG. 6. Nmax convergence for the translationally invariant (a) and
the COM contaminated (b) local neutron densities for 4He.
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FIG. 7. (a) Standard Nmax convergence comparison. (b) Long-
range Nmax comparison. Both plots use the translationally invariant
neutron density of 16O.

local density at the basis size of Nmax = 8 in the whole range
up to ∼6 fm.

Since we use the HO basis, all of our densities have un-
physical asymptotic behavior due to the Gaussian tail resulting
from the basis expansion. Naturally, the tail should behave
exponentially. In the logarithmic plot in Fig. 7(b), we can see a
very slow convergence at long distances. Notice, though, that
these effects occur maximally on the order of ∼10−8 and so are
not of serious concern in particular in the present application
to high-energy NA scattering.

IV. SCATTERING OBSERVABLES

In this section we present the results for the scattering
observables computed with Eq. (9) and using the density
matrices shown in the previous section. The density matrices
are related to the density profiles ρα(q) of the nucleus by

ρα(q) =
∫

d3 �P ρα

(
�P − A − 1

2A
�q, �P + A − 1

2A
�q
)

, (24)

and they respect the normalization of Eq. (19), that in mo-
mentum space it is given by ρα(q = 0) = N,Z. The trinv
and wiCOM density matrices, that are used in Eq. (9) and
in Eq. (24), are obtained as specified in Sec. II D. Moreover,
in order to assess how these new nonlocal densities improve
the calculation of the optical potential, we compare the results
computed with Eq. (9) with those obtained using the simpler
factorized optical potential

U (�q, �K; ω) = η(�q, �K)
∑

α=n,p

tpα

[
�q,

A + 1

2A
�K; ω

]
ρα(q), (25)

whereρα(q) is the same of Eq. (24), but in this case it is obtained
computing the Fourier transform of the local density [57] in
coordinate space:

ρα(q) = 4π

∫ ∞

0
drr2j0(qr)ρα(r) . (26)
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FIG. 8. Neutron and proton nuclear density profiles for 4He, 12C,
and 16O. The results named as “local” were obtained from Eq. (26),
while the results named as “nonlocal” were obtained from Eq. (24).
For 12C and 16O we also include the nuclear profile computed within
a relativistic mean-field description of spherical nuclei. The densities
were computed with the NN-N4LO(500)+3Nlnl interaction with
h̄	 = 20 MeV, λSRG = 2.0 fm−1, and for different values of Nmax.

Of course, it is possible to compute ρα(q) using Eq. (24) and
then calculate the scattering observables using Eq. (25). In
this case, the only difference between the results computed
with Eq. (9) and Eq. (25) comes from the treatment of the
folding integral and not from the densities. Below we provide
an example for such a calculation.

Finally, it is important to notice that Eq. (9) and Eq. (25)
are both obtained including only the NN interaction and they
do not contain any contribution from the three-nucleon forces.
This makes our results not fully consistent, but, at present,
the inclusion of the three-nucleon forces in the model for the
optical potential represents a very difficult task. Thus, our
results have been obtained using either Eq. (9) or Eq. (25),
where the scattering part of the optical potential was computed
with the only NN-N4LO(500) interaction, while the nuclear
densities were computed with the NN-N4LO(500)+3Nlnl in-
teraction. Another important aspect is represented by the SRG
method, that has been used to evolve the NN interaction for the
calculation of the densities, but not for the calculation of the
NN t matrix, where the bare interaction has been employed.
Below we discuss this consistency problem with more details.

A. Results for 4He, 12C, and 16O

Since the densities are one of the two basic ingredients for
the calculation of the optical potential, we start our discussion
from the neutron and proton nuclear density profiles. In Fig. 8
we show the results for ρα(q), calculated for 4He, 12C, and 16O,
using trinv local and nonlocal densities. The results obtained
from nonlocal densities were computed using Eq. (24), while
the results for the local ones were computed using Eq. (26).
Moreover, for 12C and 16O we also show the nuclear density
profiles computed within the relativistic mean-field (RMF)
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FIG. 9. (a) Differential cross sections as functions of the lab-
oratory scattering angle computed from trinv local and nonlocal
densities. The dashed line is obtained from Eq. (25) with the density
profile computed using Eq. (24). (b) Differential cross sections as
functions of the laboratory scattering angle computed from wiCOM
and trinv nonlocal densities. All cross sections were computed for the
4He(p,p)4He reaction at 200 MeV (laboratory energy) and using the
bare NN-N4LO(500) interaction for the calculation of the free NN t

matrix. All densities were computed with the NN-N4LO(500)+3Nlnl
interaction with Nmax = 14, h̄	 = 20 MeV, and λSRG = 2.0 fm−1.
Experimental data are taken from Ref. [71].

description [76,77] of spherical nuclei. As can be seen, the
profiles obtained from nonlocal densities exhibit a larger extent
toward higher values of momentum transfer and the largest
difference is obtained for 4He, that is thus chosen to analyze
the differences between local and nonlocal, wiCOM and trinv
calculations.

In Fig. 9(a) we present the results for the differential cross
section of proton elastic scattering off 4He obtained using
trinv local and nonlocal densities, computed with the NN-
N4LO(500)+3Nlnl interaction. The cross section computed
with the trinv nonlocal density (thick solid line) was obtained
using Eq. (9) while the cross section computed with the trinv
local density (thin solid line) was calculated using Eq. (25). As
can be seen, the advantage of using these new nonlocal den-
sities is evident. Although the two calculations give basically
the same results for angles smaller than 40◦, after this value the
difference between the two curves starts to increase and around
100◦ the discrepancy is about two orders of magnitude. The
result computed with the nonlocal density is able to describe
the experimental data, showing a good agreement up to 100◦
and then slightly overestimating them. In order to assess the
benefit produced by using Eq. (9), we also show the result
(dashed line) obtained from Eq. (25) but with the density profile
computed using Eq. (24) with the trinv nonlocal density. Here
the only difference between this result and the one displayed
with the thick solid line is that, in the second case, the folding
integral has been performed. As can been seen the two curves
display the same trend and are close to each other, although

the dashed line always overestimates the experimental data.
This result is not surprising and it is a consequence of the
different behavior of the density profiles displayed in Fig. 8.
Instead, in Fig. 9(b) we compare the results for the differential
cross section obtained with trinv (thick solid line) and wiCOM
(thin solid line) nonlocal densities. Since the effect of the COM
contamination diminishes with A, 4He is still the best candidate
to analyze the effect produced on the scattering observables,
as it will be the largest. In fact, we can see that in this case the
discrepancy between the two results starts to increase beyond
40◦ and the COM contamination in the density produces a cross
section that differs from that one obtained with the trinv density
by one order of magnitude. We also computed the scattering
observables with wiCOM densities for 12C and 16O and, as
expected, we found a smaller but non-negligible effect.

Before we show the scattering observables for other ener-
gies and for other nuclei we want to discuss the consistency
of our calculations. As outlined in Sec. II A, the model for the
optical potential only includes the two-body NN interaction
and thus is not completely consistent with the densities,
that were obtained with two- and three-body interactions.
Moreover, the calculation of the densities was performed with
the SRG-evolved NN potential, while for the calculation of
the t matrix we used the bare NN interaction. Unfortunately,
the inclusion of three-nucleon forces in the optical potential is
a difficult task and it cannot be performed at the moment. In
principle, fully consistent results can be produced if only the
NN bare interaction is used to compute the density and the t
matrix, but, in practice, this procedure is feasible only for very
light nuclei, such as 4He. In fact, the three-body interaction
is important to produce realistic binding energies and radii,
and the SRG evolution of the NN potential is necessary to
obtain converged results at smaller model space sizes. This is
particularly important for nuclei such as 12C and 16O as they
require large model spaces, which prohibits the calculation of
the nuclear wave functions with only the NN bare interaction.
In Fig. 10 we consider the 4He(p,p)4He reaction at 200 MeV
in the laboratory frame and we display the differential cross
section computed with three different trinv nonlocal densities.
In the first case (dashed line) the density was obtained with the
SRG-evolved NN-N4LO(500) potential plus the SRG-induced
three-nucleon forces (3Nind), in the second case (thin solid
line) we used the SRG-evolved NN-N4LO(500) potential plus
the full three-nucleon forces (3Nlnl), as shown in Fig. 9, and in
the third case (thick solid line) the density was computed with
only the bare NN-N4LO(500) potential and it thus represents
the fully consistent calculation. The result obtained with only
the NN potential reproduces the experimental data very well
up to 100◦ and it is in good agreement with the other curves,
especially with the one obtained with the full three-nucleon
interaction. Here, it is important to notice that to obtain a
converged density with the only NN-N4LO(500) bare potential
we performed our calculations up to Nmax = 18. That specifies
a much larger model space than one used for the other densities.
We also investigated the h̄	 dependence of the results obtained
with the bare NN potential, performing our calculations for
h̄	 = 20, 24, and 28. In all these cases our findings were very
close to each other with a slightly appreciable difference only
at very large scattering angles.
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FIG. 10. Differential cross sections as functions of the laboratory
scattering angle computed from trinv nonlocal densities for the
4He(p,p)4He reaction at 200 MeV (laboratory energy) and using the
bare NN-N4LO(500) interaction for the calculation of the free NN t

matrix. The densities were computed with the SRG-evolved NN-
N4LO(500) interaction plus the three-body SRG-induced (3Nind) or
the full three-body (3Nlnl) interaction in the first two cases, while
we used the only bare NN-N4LO(500) interaction in the third case.
In the first two cases the results were obtained with Nmax = 14,
h̄	 = 20 MeV, and λSRG = 2.0 fm−1, while in the third case we
used Nmax = 18 and h̄	 = 20 MeV. Experimental data are taken from
Ref. [71].

In Fig. 11 we show the differential cross section for the
same reaction and the same interaction considered above, but
computed at 72 and 156 MeV, respectively. Similarly, for these
lower energies the calculations performed with trinv nonlocal
densities provide a better description of the experimental data.
At 156 MeV the overall shape of the cross section is reproduced
and there is a good agreement with the data for angles up to
70◦, while for larger angles they are somewhat overestimated.
We also see that for large angles the difference between the
two theoretical results is about two orders of magnitude. At
72 MeV the situation is a bit different. In fact, we remind the
reader that the expression for the optical potential was obtained
in the impulse approximation, which consists of neglecting the
coupling between the struck target nucleon and the residual
nucleus. This is a good approximation for energies around 200
MeV and beyond, but it cannot provide a good description of
the experimental data at lower energies, where the medium
effects are more important. We also see that in this case the
difference between the two theoretical curves persists and the
nonlocal density provides an overall reasonable description of
the data with a good agreement for angles up to 60◦.

For the sake of completeness, in Fig. 12 we show the
results for the analyzing power (Ay) for energies where
experimental data exist. Reproducing Ay is always difficult
since this observable is more sensitive than the differential
cross section and a good description of the data can only be
achieved with the proper inclusion of effects that are missing
in the current calculations. Of course, it is not surprising that
the data at 72 MeV are not reproduced well, and this can be
easily explained by the lack of medium effects due to the
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FIG. 11. Differential cross sections in the pA center-of-mass
frame computed from trinv local and nonlocal densities for the
4He(p,p)4He reaction at the incident proton energy in the labora-
tory frame of (a) 72 MeV and (b) 156 MeV, respectively. For all
calculations the density was computed with the SRG-evolved NN-
N4LO(500)+3Nlnl interaction at Nmax = 14 and with h̄	 = 20 MeV
and λSRG = 2.0 fm−1, while the free NN t matrix was computed
with the bare NN-N4LO(500) interaction. Experimental data are taken
from Refs. [72,73].

impulse approximation. At 200 MeV the theoretical results
match data for small angles but they seem to be shifted toward
larger angles. Beyond 60◦, Ay obtained with the local density
exhibits a local maximum and then it displays an unphysical
upward trend, while the result obtained with the nonlocal
density reaches an almost constant value.

-0.5

0

0.5

1

A
y

trinv local
trinv nonlocal

0 20 40 60 80 100 120
θ

lab
 [deg]

-1

-0.5

0

0.5

1

A
y

72 MeV
4
He (p,p)

4
He

NN-N
4
LO(500)+3Nlnl

4
He (p,p)

4
He

200 MeV

(a)

(b)

N
max

 = 14    λ
SRG

 = 2.0 fm
-1

FIG. 12. The same as in Fig. 11 but for the analyzing power at
the incident proton energy in the laboratory frame of (a) 72 MeV
and (b) 200 MeV, respectively. Experimental data are taken from
Refs. [71,72].
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FIG. 13. Differential cross sections in the pA center-of-mass
frame computed from trinv local and nonlocal densities for the
12C(p,p)12C reaction at the incident proton energy in the laboratory
frame of (a) 122, (b) 160, and (c) 200 MeV, respectively. For all
calculations the densities were computed with the SRG-evolved
NN-N4LO(500)+3Nlnl interaction at Nmax = 8 and with h̄	 = 20
MeV and λSRG = 1.8 fm−1, while the free NN t matrix was computed
with the bare NN-N4LO(500) interaction. Experimental data are taken
from Ref. [74].

In Fig. 13 we show the results for the differential cross
section of proton elastic scattering off 12C computed with the
trinv local and nonlocal densities at the three laboratory ener-
gies of 122, 160, and 200 MeV, respectively. Also in this case
the results were obtained using the NN-N4LO(500)+3Nlnl
interaction for the calculation of the densities and with the
NN-N4LO(500) interaction for the NN t matrix. For this target
nucleus we see that the difference between the results obtained
with local and nonlocal densities is much smaller than the one
obtained for 4He, and both curves are in very good agreement
with the experimental data, especially at 200 MeV, which is a
proper energy for the impulse approximation. In particular, for
this energy the curve computed with the nonlocal density gives
a good description of the experimental data in the region of the
second minimum, while for all three energies the agreement
between theoretical results and data is a bit less accurate in a
region of about 10◦ of width after the first minimum.

Additionally, for 12C we show the calculations for the
analyzing power in Fig. 14. For all energies the theoretical
results give a reasonable description of the experimental data,
reproducing their general shape, but the agreement with them
is poor, especially at larger angles and lower energies. The
calculations performed with the local density seem to be shifted
toward smaller angles with respect the values of the two
minima of the data, that are instead better reproduced by the
nonlocal densities.

In Fig. 15 and Fig. 16 we show the differential cross
section and the analyzing power for the 16O(p,p)16O reaction,
computed at the laboratory energies of 100, 135, and 200 MeV,
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FIG. 14. The same as in Fig. 13 but for the analyzing power.

respectively. Of course, the calculations have been performed
with the same interaction used for 12C. In this case the results
with local and nonlocal densities are close to each other and the
experimental data of the differential cross section are globally
well reproduced by our calculations, although after the first
minimum they are slightly overestimated. Concerning the Ay ,
the theoretical curves display a reasonable shape, but, again,
the agreement with the data is poor near minima.

Finally, in order to make a comparison with other methods,
we generated local densities for 12C and 16O using a RMF
approach [76,77], the same employed in our previous works
[44,52]. In Fig. 17 we show the results for the differential cross
section and the analyzing power for the 12C(p,p)12C reaction
at 200 MeV, obtained with our new trinv nonlocal density,
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FIG. 15. The same as in Fig. 13 but for the 16O(p,p)16O reaction
at the laboratory energy of (a) 100, (b) 135, and (c) 200 MeV,
respectively. Experimental data are taken from Ref. [75].
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FIG. 16. The same as in Fig. 15 but for the analyzing power.

and we compare them with those obtained using Eq. (25)
with a RMF local density. For the cross section, the two
curves give very similar results and are in agreement with the
experimental data, but in the region of the second minimum
the result obtained with the RMF density underestimates the
data. The same behavior is reflected in the Ay , where the
general shape of the second minimum is not reproduced. In
Fig. 18 we show the same calculations for the 16O(p,p)16O
reaction. In this case the situation is a bit different. The general
description of the data is good; at large angles the differential
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FIG. 17. (a) Differential cross section and (b) analyzing power
in the pA center-of-mass frame computed from local RMF and
trinv nonlocal densities for the 12C(p,p)12C reaction at the incident
proton energy in the laboratory frame of 200 MeV. In all calculations
the free NN t matrix was computed with the bare NN-N4LO(500)
interaction, while the trinv nonlocal density was computed with the
NN-N4LO(500)+3Nlnl interaction. Experimental data are taken from
Ref. [74].
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FIG. 18. The same as in Fig. 17 but for the 16O(p,p)16O reaction.
Experimental data are taken from Ref. [75].

cross section is underestimated by the curve obtained with the
RMF density, while it is overestimated by the one obtained with
the trinv nonlocal density. The main difference with respect to
the results of Fig. 17 is that the curve corresponding to the
trinv density seems to be shifted toward larger angles; this
is particularly evident for the analyzing power. This behavior
could be partially explained looking at Fig. 8, which shows
that for 12C the RMF profile is close to the trinv nonlocal one
and equal to the profile obtained with the trinv local density.
This is not true for 16O where the difference is larger.

B. Results for 6,8He

We now present the results for proton elastic scattering off
6He and 8He. These nuclei are characterized by the presence
of a neutron halo surrounding an α core. Due to this exotic
structure, an adequate description of such systems requires
more sophisticated approaches and many theoretical papers
have been devoted to this [57,82–110]. In this current work
we use the model for the optical potential, based on the
impulse approximation, to test the new nonlocal densities in
the description of the differential cross section. For the sake
of completeness we also show the results for the analyzing
power, but, as reported in Refs. [90,111], we do not expect
that the model is able to describe the experimental data for this
observable. In this regard, improved results could be obtained
introducing medium contributions of the residual nucleus on
the struck target nucleon, and adopting the cluster description
of Refs. [104,106], developed to include the internal dynamics
of halo nuclei, such as 6,8He.

As we did in the previous section, we start our discussion by,
in Fig. 19, displaying the neutron and proton density profiles.
Once again, the local ones are obtained from Eq. (26) and the
nonlocal profiles are obtained using Eq. (24). All calculations
were performed using the same interaction employed for
stable nuclei. The only difference is represented by the Nmax

parameter used to define the model space for the densities, that
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FIG. 19. The same as in Fig. 8 but for 6,8He.

is equal to 12 for 6He and 10 for 8He. In this case, the results
obtained with the nonlocal densities exhibit a larger extent
toward higher values of momentum transfer, as was observed
for stable nuclei in Fig. 8. Moreover, looking at the results
for proton profiles, it is interesting to notice how the differ-
ence between the two curves, that is maximum for 4He (see
Fig. 8), is systematically reduced with the increasing neutron
number.

In Fig. 20 and in Fig. 21 we present the results for the dif-
ferential cross section and the analyzing power computed at 71
MeV for elastic proton scattering off 6He and 8He, respectively.
The experimental data are taken from Refs. [78,80,112,113],
where the elastic scattering of 6He and 8He off a polarized
proton target has been measured at a laboratory kinetic energy
of 71 MeV/nucleon. In both cases the local density seems
to give the best description of the cross section, while the
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FIG. 20. (a) Differential cross section and (b) analyzing power in
the pA center-of-mass frame computed from trinv local and nonlocal
densities for elastic scattering of 6He at the projectile energy of 71
MeV/nucleon. For all calculations the densities were computed with
the SRG-evolved NN-N4LO(500)+3Nlnl interaction at Nmax = 12
and with h̄	 = 20 MeV and λSRG = 2.0 fm−1, while the free NN t

matrix was computed with the bare NN-N4LO(500) interaction.
Experimental data are taken from Refs. [78,79].
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FIG. 21. The same as in Fig. 20 but for 8He and Nmax = 10.
Experimental data are taken from Ref. [80,81].

results obtained with the nonlocal density overestimate the
experimental data, especially at large angles, beyond the
first minimum. As stated above, the energy of the scatter-
ing process is too low and the nuclei under consideration
require a more sophisticated description, so it is not surprising
that our results cannot reproduce the data for the analyzing
power.

As we did in Sec. III, we display in Fig. 22 the Nmax

convergence pattern of the differential cross section for 8He,

FIG. 22. Convergence pattern for the differential cross section
in the pA center-of-mass frame computed from (a) trinv local and
(b) nonlocal densities for elastic scattering of 8He at the projectile
energy of 71 MeV/nucleon. For all calculations the densities were
computed with the SRG-evolved NN-N4LO(500)+3Nlnl interaction
at Nmax = 10 and with h̄	 = 20 MeV and λSRG = 2.0 fm−1, while
the free NN t matrix was computed with the bare NN-N4LO(500)
interaction. Experimental data are taken from Ref. [80,81].
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FIG. 23. The same as in Fig. 20 but at the projectile energy of 200
MeV/nucleon.

computed with local and nonlocal densities. In both cases
we see that the curves obtained at Nmax = 0 overestimate
the experimental data and with the increasing value of this
parameter the cross section is pushed down. For the local
density, the final result obtained at Nmax = 10 is in a good
agreement with the data, while for the nonlocal density it still
overestimates the data. We performed the same calculations
also for 4He and 6He finding similar patterns, but in those
cases the difference between the curves is smaller and for 4He
is not appreciable.

Finally, in Fig. 23 and in Fig. 24 we show our predictions
for the differential cross section and the analyzing power of
6He and 8He computed at 200 MeV using the same interaction
employed in previous calculations. Here it is particularly
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FIG. 24. The same as in Fig. 21 but at the projectile energy of
200 MeV/nucleon.

interesting to notice the different behaviour displayed by the
analyzing power around 50◦, that is negative for 6He and
positive for 8He.

V. SUMMARY AND CONCLUSIONS

The purpose of this work was to achieve another step toward
a consistent calculation of a microscopic optical potential,
using chiral interactions as the only input. We extended the
approach of Ref. [57] to generate ab initio translationally
invariant nonlocal one-body densities. These densities were
then used to construct a microscopic optical potential for
elastic proton-nucleus scattering, which was derived at the
first order within the spectator expansion [28,29,31] of the
nonrelativistic multiple scattering theory and assuming the
impulse approximation. The optical potential was computed
performing the folding integral between two basic ingredients:
the free NN t matrix and the nuclear density matrix. The t
matrix was computed using the NN-N4LO(500) chiral inter-
action [55,56], while the density matrices were obtained using
the NN-N4LO(500)+3Nlnl chiral interaction, which includes
the N2LO three-nucleon force with simultaneous local and
nonlocal regularization [64,65].

The calculation of the nonlocal densities requires the
knowledge of the many-body nuclear wave functions, which
in our case were obtained from the ab initio NCSM approach.
This method employs realistic two- and three-nucleon forces
and is particularly suited for the description of light nuclei,
because all nucleons are treated as active degrees of free-
dom. This allows us to include many-nucleon correlations in
our calculations that consequently provide high-quality wave
functions.

In Sec. III we displayed the plots of the neutron and
proton nonlocal densities for 4,6,8He, 12C, and 16O, obtained
using NCSM. All results were shown with and without the
COM removal, in order to better appreciate the difference.
As illustrated in the results, the sizable differences between
the wiCOM and trinv density motivate the need for procedural
COM removal in light nuclei if accurate density-related observ-
ables are to be computed. We expect that some observables will
amplify the effects observed by COM removal and thus better
gauge the importance of the procedure in heavier nuclei. In ad-
dition, the production of a general nonlocal density will allow
for proper ab initio treatment of densities in density-dependent
calculations and reduce the number of approximations.

In Sec. IV we used the nonlocal densities to compute the
optical potential and then the pA elastic scattering observables.
We performed our calculations for all nuclei considered in
Sec. III and for different kinetic energies of the incident proton
in the laboratory frame. We chose 4He as a case study to analyze
the differences between the scattering observables obtained
with nonlocal and local densities, as well as with trinv and
wiCOM densities. Our results display a great improvement
obtained with the trinv nonlocal density, compared with those
obtained with the local one, which allowed us to describe the
experimental data of the differential cross section up to large
values of the scattering angles. Similar conclusions, but with
a smaller difference, were also found for 12C and 16O. We
also tested our densities in the description of the scattering
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observables for 6,8He, finding also in this case a reasonable
agreement with the experimental data of the differential cross
section, especially for 6He.

In conclusion, these ab initio translationally invariant non-
local one-body densities provide a better description of the
experimental data for pA elastic scattering, especially for
light systems such as 4He. Although we found good results
for stable nuclei, the model for the optical potential that we
used was not good enough to describe exotic nuclei with halo
structure, such as 6,8He. Future calculations, based on more
sophisticated methods, could provide interesting results for
such systems, in particular for the analyzing power, which
seems to display different behavior for 6He and 8He. Finally,
as future improvements, we also plan to include three-body
interactions in the model for the optical potential as well as
medium effects to better describe experimental data at lower
energies.
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APPENDIX

Here we present the relationship between the nonlocal
translationally invariant density presented here and the local
version derived in Ref. [57]. We recall the formula for the
translationally invariant nonlocal density (16),

〈AλjJjMj |ρ trinv
op (�r − �R,�r ′ − �R)| AλiJiMi〉

=
(

A

A − 1

) 3
2 ∑ 1

Ĵf

(JiMiKk|Jf Mf )(MK )−1
nln′l′,n1l1n2l2

(Y ∗
l (̂�r − �R) Y ∗
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}
SD〈Aλf Jf || (a†

n1,l1,j1
ãn2,l2,j2

)(K) ||AλiJi〉SD. (A1)

To get the local form of the density, we need to evaluate ρ trinv
op (�r − �R,�r ′ − �R)|�r=�r ′ .

〈AλjJjMj |ρ trinv
op (�r − �R)| AλiJiMi〉

=
(

A

A − 1

) 3
2 ∑ 1

Ĵf

(JiMiKk|Jf Mf )(MK )−1
nln′l′,n1l1n2l2
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(√
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)(K) ||AλiJi〉SD. (A2)

We then uncouple the spherical harmonics and make use of

(Y ∗
l (r̂) Y ∗

l′ (r̂))(K)
k =

∑
K,k

√
(2l + 1)(2l′ + 1)

4π (2K + 1)
(l 0 l′ 0|K0) Y ∗

Kk(r̂) (A3)

to arrive at our result. However, in order to match Ref. [57] we use the following relation for the matrix elements of a spherical
harmonic from Ref. [114],〈

l1
1

2
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2
j2
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We substitute (A3) and (A4) into the nonlocal translationally invariant nuclear density to obtain

〈AλjJjMj |ρ trinv
op (�r − �R)| AλiJiMi〉

=
(
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) 3
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which is the expected form of the local density derived in Ref. [57].

034619-14



MICROSCOPIC OPTICAL POTENTIALS DERIVED FROM … PHYSICAL REVIEW C 97, 034619 (2018)

[1] P. Hodgson, The Optical Model of Elastic Scattering (Claren-
don Press, Oxford, 1963).

[2] R. L. Varner, W. J. Thompson, T. L. McAbee, E. J. Ludwig,
and T. B. Clegg, Phys. Rept. 201, 57 (1991).

[3] A. J. Koning and J. P. Delaroche, Nucl. Phys. A 713, 231 (2003).
[4] S. P. Weppner, R. B. Penney, G. W. Diffendale, and G. Vittorini,

Phys. Rev. C 80, 034608 (2009).
[5] W. H. Dickhoff, R. J. Charity, and M. H. Mahzoon, J. Phys. G:

Nucl. Part. Phys. 44, 033001 (2017).
[6] G. F. Chew, Phys. Rev. 80, 196 (1950).
[7] K. M. Watson, Phys. Rev. 89, 575 (1953).
[8] N. C. Francis and K. M. Watson, Phys. Rev. 92, 291 (1953).
[9] A. K. Kerman, H. McManus, and R. M. Thaler, Ann. Phys.

(NY) 8, 551 (1959).
[10] R. Crespo, R. C. Johnson, and J. A. Tostevin, Phys. Rev. C 41,

2257 (1990).
[11] R. Crespo, R. C. Johnson, and J. A. Tostevin, Phys. Rev. C 44,

R1735 (1991).
[12] R. Crespo, R. C. Johnson, and J. A. Tostevin, Phys. Rev. C 46,

279 (1992).
[13] R. Crespo, R. C. Johnson, and J. A. Tostevin, Phys. Rev. C 48,

351 (1993).
[14] R. Crespo, R. C. Johnson, and J. A. Tostevin, Phys. Rev. C 50,

2995 (1994).
[15] H. F. Arellano, F. A. Brieva, and W. G. Love, Phys. Rev. Lett.

63, 605 (1989).
[16] H. F. Arellano, F. A. Brieva, and W. G. Love, Phys. Rev. C 41,

2188 (1990).
[17] H. F. Arellano, F. A. Brieva, and W. G. Love, Phys. Rev. C 42,

652 (1990).
[18] H. F. Arellano, F. A. Brieva, W. G. Love, and K. Nakayama,

Phys. Rev. C 43, 1875 (1991).
[19] H. F. Arellano, W. G. Love, and F. A. Brieva, Phys. Rev. C 43,

2734 (1991).
[20] H. F. Arellano, F. A. Brieva, and W. G. Love, Phys. Rev. C 50,

2480 (1994).
[21] C. Elster and P. C. Tandy, Phys. Rev. C 40, 881 (1989).
[22] C. Elster, T. Cheon, E. F. Redish, and P. C. Tandy, Phys. Rev.

C 41, 814 (1990).
[23] C. R. Chinn, C. Elster, and R. M. Thaler, Phys. Rev. C 44, 1569

(1991).
[24] C. Elster, L. C. Liu, and R. M. Thaler, J. Phys. G: Nucl. Part.

Phys. 19, 2123 (1993).
[25] C. R. Chinn, C. Elster, and R. M. Thaler, Phys. Rev. C 47, 2242

(1993).
[26] C. R. Chinn, C. Elster, and R. M. Thaler, Phys. Rev. C 48, 2956

(1993).
[27] C. R. Chinn, C. Elster, R. M. Thaler, and S. P. Weppner, Phys.

Rev. C 51, 1418 (1995).
[28] C. R. Chinn, C. Elster, R. M. Thaler, and S. P. Weppner, Phys.

Rev. C 52, 1992 (1995).
[29] C. Elster, S. P. Weppner, and C. R. Chinn, Phys. Rev. C 56,

2080 (1997).
[30] C. Elster and S. P. Weppner, Phys. Rev. C 57, 189 (1998).
[31] S. P. Weppner, C. Elster, and D. Hüber, Phys. Rev. C 57, 1378

(1998).
[32] H. V. von Geramb, K. Amos, L. Berge, S. Bräutigam, H.

Kohlhoff, and A. Ingemarsson, Phys. Rev. C 44, 73 (1991).
[33] P. J. Dortmans and K. Amos, J. Phys. G: Nucl. Part. Phys. 17,

901 (1991).
[34] P. J. Dortmans and K. Amos, Phys. Rev. C 49, 1309 (1994).

[35] S. Karataglidis, P. J. Dortmans, K. Amos, and R. de Swiniarski,
Phys. Rev. C 52, 861 (1995).

[36] P. J. Dortmans, K. Amos, and S. Karataglidis, J. Phys. G: Nucl.
Part. Phys. 23, 183 (1997).

[37] J. Negele and E. Vogt, Advances in Nuclear Physics, Advances
in Nuclear Physics, Vol. 25 (Springer, New York, 2006).

[38] H. F. Arellano, F. A. Brieva, and W. G. Love, Phys. Rev. C 52,
301 (1995).

[39] H. F. Arellano, F. A. Brieva, M. Sander, and H. V. von Geramb,
Phys. Rev. C 54, 2570 (1996).

[40] H. F. Arellano and H. V. von Geramb, Phys. Rev. C 66, 024602
(2002).

[41] H. F. Arellano and E. Bauge, Phys. Rev. C 76, 014613 (2007).
[42] F. J. Aguayo and H. F. Arellano, Phys. Rev. C 78, 014608

(2008).
[43] H. F. Arellano and E. Bauge, Phys. Rev. C 84, 034606

(2011).
[44] M. Vorabbi, P. Finelli, and C. Giusti, Phys. Rev. C 93, 034619

(2016).
[45] D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001 (2003).
[46] E. Marji, A. Canul, Q. MacPherson, R. Winzer, C. Zeoli, D. R.

Entem, and R. Machleidt, Phys. Rev. C 88, 054002 (2013).
[47] L. Coraggio, J. W. Holt, N. Itaco, R. Machleidt, and F.

Sammarruca, Phys. Rev. C 87, 014322 (2013).
[48] F. Sammarruca, L. Coraggio, J. W. Holt, N. Itaco, R. Machleidt,

and L. E. Marcucci, Phys. Rev. C 91, 054311 (2015).
[49] L. Coraggio, A. Covello, A. Gargano, N. Itaco, D. R. Entem,

T. T. S. Kuo, and R. Machleidt, Phys. Rev. C 75, 024311
(2007).

[50] R. Machleidt and D. Entem, Phys. Rep. 503, 1 (2011).
[51] E. Epelbaum, W. Glöckle, and U.-G. Meißner, Nucl. Phys. A

747, 362 (2005).
[52] M. Vorabbi, P. Finelli, and C. Giusti, Phys. Rev. C 96, 044001

(2017).
[53] E. Epelbaum, H. Krebs, and U.-G. Meißner, Phys. Rev. Lett.

115, 122301 (2015).
[54] E. Epelbaum, H. Krebs, and U. G. Meißner, Eur. Phys. J. A 51,

53 (2015).
[55] D. R. Entem, N. Kaiser, R. Machleidt, and Y. Nosyk, Phys.

Rev. C 91, 014002 (2015).
[56] D. R. Entem, R. Machleidt, and Y. Nosyk, Phys. Rev. C 96,

024004 (2017).
[57] P. Navrátil, Phys. Rev. C 70, 014317 (2004).
[58] B. R. Barrett, P. Navrátil, and J. P. Vary, Prog. Part. Nucl. Phys.

69, 131 (2013).
[59] F. Wegner, Ann. Phys. (N.Y.) 506, 77 (1994).
[60] S. K. Bogner, R. J. Furnstahl, and R. J. Perry, Phys. Rev. C 75,

061001 (2007).
[61] R. Roth, S. Reinhardt, and H. Hergert, Phys. Rev. C 77, 064003

(2008).
[62] S. Bogner, R. Furnstahl, and A. Schwenk, Prog. Part. Nucl.

Phys. 65, 94 (2010).
[63] E. D. Jurgenson, P. Navrátil, and R. J. Furnstahl, Phys. Rev.

Lett. 103, 082501 (2009).
[64] P. Navrátil, Few-Body Syst. 41, 117 (2007).
[65] E. Leistenschneider et al., Phys. Rev. Lett. 120, 062503

(2018).
[66] R. Roth and P. Navrátil, Phys. Rev. Lett. 99, 092501 (2007).
[67] R. Roth, Phys. Rev. C 79, 064324 (2009).
[68] M. Burrows, C. Elster, G. Popa, K. D. Launey, A. Nogga, and

P. Maris, Phys. Rev. C 97, 024325 (2018).

034619-15

https://doi.org/10.1016/0370-1573(91)90039-O
https://doi.org/10.1016/0370-1573(91)90039-O
https://doi.org/10.1016/0370-1573(91)90039-O
https://doi.org/10.1016/0370-1573(91)90039-O
https://doi.org/10.1016/S0375-9474(02)01321-0
https://doi.org/10.1016/S0375-9474(02)01321-0
https://doi.org/10.1016/S0375-9474(02)01321-0
https://doi.org/10.1016/S0375-9474(02)01321-0
https://doi.org/10.1103/PhysRevC.80.034608
https://doi.org/10.1103/PhysRevC.80.034608
https://doi.org/10.1103/PhysRevC.80.034608
https://doi.org/10.1103/PhysRevC.80.034608
https://doi.org/10.1088/1361-6471/44/3/033001
https://doi.org/10.1088/1361-6471/44/3/033001
https://doi.org/10.1088/1361-6471/44/3/033001
https://doi.org/10.1088/1361-6471/44/3/033001
https://doi.org/10.1103/PhysRev.80.196
https://doi.org/10.1103/PhysRev.80.196
https://doi.org/10.1103/PhysRev.80.196
https://doi.org/10.1103/PhysRev.80.196
https://doi.org/10.1103/PhysRev.89.575
https://doi.org/10.1103/PhysRev.89.575
https://doi.org/10.1103/PhysRev.89.575
https://doi.org/10.1103/PhysRev.89.575
https://doi.org/10.1103/PhysRev.92.291
https://doi.org/10.1103/PhysRev.92.291
https://doi.org/10.1103/PhysRev.92.291
https://doi.org/10.1103/PhysRev.92.291
https://doi.org/10.1016/0003-4916(59)90076-4
https://doi.org/10.1016/0003-4916(59)90076-4
https://doi.org/10.1016/0003-4916(59)90076-4
https://doi.org/10.1016/0003-4916(59)90076-4
https://doi.org/10.1103/PhysRevC.41.2257
https://doi.org/10.1103/PhysRevC.41.2257
https://doi.org/10.1103/PhysRevC.41.2257
https://doi.org/10.1103/PhysRevC.41.2257
https://doi.org/10.1103/PhysRevC.44.R1735
https://doi.org/10.1103/PhysRevC.44.R1735
https://doi.org/10.1103/PhysRevC.44.R1735
https://doi.org/10.1103/PhysRevC.44.R1735
https://doi.org/10.1103/PhysRevC.46.279
https://doi.org/10.1103/PhysRevC.46.279
https://doi.org/10.1103/PhysRevC.46.279
https://doi.org/10.1103/PhysRevC.46.279
https://doi.org/10.1103/PhysRevC.48.351
https://doi.org/10.1103/PhysRevC.48.351
https://doi.org/10.1103/PhysRevC.48.351
https://doi.org/10.1103/PhysRevC.48.351
https://doi.org/10.1103/PhysRevC.50.2995
https://doi.org/10.1103/PhysRevC.50.2995
https://doi.org/10.1103/PhysRevC.50.2995
https://doi.org/10.1103/PhysRevC.50.2995
https://doi.org/10.1103/PhysRevLett.63.605
https://doi.org/10.1103/PhysRevLett.63.605
https://doi.org/10.1103/PhysRevLett.63.605
https://doi.org/10.1103/PhysRevLett.63.605
https://doi.org/10.1103/PhysRevC.41.2188
https://doi.org/10.1103/PhysRevC.41.2188
https://doi.org/10.1103/PhysRevC.41.2188
https://doi.org/10.1103/PhysRevC.41.2188
https://doi.org/10.1103/PhysRevC.42.652
https://doi.org/10.1103/PhysRevC.42.652
https://doi.org/10.1103/PhysRevC.42.652
https://doi.org/10.1103/PhysRevC.42.652
https://doi.org/10.1103/PhysRevC.43.1875
https://doi.org/10.1103/PhysRevC.43.1875
https://doi.org/10.1103/PhysRevC.43.1875
https://doi.org/10.1103/PhysRevC.43.1875
https://doi.org/10.1103/PhysRevC.43.2734
https://doi.org/10.1103/PhysRevC.43.2734
https://doi.org/10.1103/PhysRevC.43.2734
https://doi.org/10.1103/PhysRevC.43.2734
https://doi.org/10.1103/PhysRevC.50.2480
https://doi.org/10.1103/PhysRevC.50.2480
https://doi.org/10.1103/PhysRevC.50.2480
https://doi.org/10.1103/PhysRevC.50.2480
https://doi.org/10.1103/PhysRevC.40.881
https://doi.org/10.1103/PhysRevC.40.881
https://doi.org/10.1103/PhysRevC.40.881
https://doi.org/10.1103/PhysRevC.40.881
https://doi.org/10.1103/PhysRevC.41.814
https://doi.org/10.1103/PhysRevC.41.814
https://doi.org/10.1103/PhysRevC.41.814
https://doi.org/10.1103/PhysRevC.41.814
https://doi.org/10.1103/PhysRevC.44.1569
https://doi.org/10.1103/PhysRevC.44.1569
https://doi.org/10.1103/PhysRevC.44.1569
https://doi.org/10.1103/PhysRevC.44.1569
https://doi.org/10.1088/0954-3899/19/12/015
https://doi.org/10.1088/0954-3899/19/12/015
https://doi.org/10.1088/0954-3899/19/12/015
https://doi.org/10.1088/0954-3899/19/12/015
https://doi.org/10.1103/PhysRevC.47.2242
https://doi.org/10.1103/PhysRevC.47.2242
https://doi.org/10.1103/PhysRevC.47.2242
https://doi.org/10.1103/PhysRevC.47.2242
https://doi.org/10.1103/PhysRevC.48.2956
https://doi.org/10.1103/PhysRevC.48.2956
https://doi.org/10.1103/PhysRevC.48.2956
https://doi.org/10.1103/PhysRevC.48.2956
https://doi.org/10.1103/PhysRevC.51.1418
https://doi.org/10.1103/PhysRevC.51.1418
https://doi.org/10.1103/PhysRevC.51.1418
https://doi.org/10.1103/PhysRevC.51.1418
https://doi.org/10.1103/PhysRevC.52.1992
https://doi.org/10.1103/PhysRevC.52.1992
https://doi.org/10.1103/PhysRevC.52.1992
https://doi.org/10.1103/PhysRevC.52.1992
https://doi.org/10.1103/PhysRevC.56.2080
https://doi.org/10.1103/PhysRevC.56.2080
https://doi.org/10.1103/PhysRevC.56.2080
https://doi.org/10.1103/PhysRevC.56.2080
https://doi.org/10.1103/PhysRevC.57.189
https://doi.org/10.1103/PhysRevC.57.189
https://doi.org/10.1103/PhysRevC.57.189
https://doi.org/10.1103/PhysRevC.57.189
https://doi.org/10.1103/PhysRevC.57.1378
https://doi.org/10.1103/PhysRevC.57.1378
https://doi.org/10.1103/PhysRevC.57.1378
https://doi.org/10.1103/PhysRevC.57.1378
https://doi.org/10.1103/PhysRevC.44.73
https://doi.org/10.1103/PhysRevC.44.73
https://doi.org/10.1103/PhysRevC.44.73
https://doi.org/10.1103/PhysRevC.44.73
https://doi.org/10.1088/0954-3899/17/6/012
https://doi.org/10.1088/0954-3899/17/6/012
https://doi.org/10.1088/0954-3899/17/6/012
https://doi.org/10.1088/0954-3899/17/6/012
https://doi.org/10.1103/PhysRevC.49.1309
https://doi.org/10.1103/PhysRevC.49.1309
https://doi.org/10.1103/PhysRevC.49.1309
https://doi.org/10.1103/PhysRevC.49.1309
https://doi.org/10.1103/PhysRevC.52.861
https://doi.org/10.1103/PhysRevC.52.861
https://doi.org/10.1103/PhysRevC.52.861
https://doi.org/10.1103/PhysRevC.52.861
https://doi.org/10.1088/0954-3899/23/2/006
https://doi.org/10.1088/0954-3899/23/2/006
https://doi.org/10.1088/0954-3899/23/2/006
https://doi.org/10.1088/0954-3899/23/2/006
https://doi.org/10.1103/PhysRevC.52.301
https://doi.org/10.1103/PhysRevC.52.301
https://doi.org/10.1103/PhysRevC.52.301
https://doi.org/10.1103/PhysRevC.52.301
https://doi.org/10.1103/PhysRevC.54.2570
https://doi.org/10.1103/PhysRevC.54.2570
https://doi.org/10.1103/PhysRevC.54.2570
https://doi.org/10.1103/PhysRevC.54.2570
https://doi.org/10.1103/PhysRevC.66.024602
https://doi.org/10.1103/PhysRevC.66.024602
https://doi.org/10.1103/PhysRevC.66.024602
https://doi.org/10.1103/PhysRevC.66.024602
https://doi.org/10.1103/PhysRevC.76.014613
https://doi.org/10.1103/PhysRevC.76.014613
https://doi.org/10.1103/PhysRevC.76.014613
https://doi.org/10.1103/PhysRevC.76.014613
https://doi.org/10.1103/PhysRevC.78.014608
https://doi.org/10.1103/PhysRevC.78.014608
https://doi.org/10.1103/PhysRevC.78.014608
https://doi.org/10.1103/PhysRevC.78.014608
https://doi.org/10.1103/PhysRevC.84.034606
https://doi.org/10.1103/PhysRevC.84.034606
https://doi.org/10.1103/PhysRevC.84.034606
https://doi.org/10.1103/PhysRevC.84.034606
https://doi.org/10.1103/PhysRevC.93.034619
https://doi.org/10.1103/PhysRevC.93.034619
https://doi.org/10.1103/PhysRevC.93.034619
https://doi.org/10.1103/PhysRevC.93.034619
https://doi.org/10.1103/PhysRevC.68.041001
https://doi.org/10.1103/PhysRevC.68.041001
https://doi.org/10.1103/PhysRevC.68.041001
https://doi.org/10.1103/PhysRevC.68.041001
https://doi.org/10.1103/PhysRevC.88.054002
https://doi.org/10.1103/PhysRevC.88.054002
https://doi.org/10.1103/PhysRevC.88.054002
https://doi.org/10.1103/PhysRevC.88.054002
https://doi.org/10.1103/PhysRevC.87.014322
https://doi.org/10.1103/PhysRevC.87.014322
https://doi.org/10.1103/PhysRevC.87.014322
https://doi.org/10.1103/PhysRevC.87.014322
https://doi.org/10.1103/PhysRevC.91.054311
https://doi.org/10.1103/PhysRevC.91.054311
https://doi.org/10.1103/PhysRevC.91.054311
https://doi.org/10.1103/PhysRevC.91.054311
https://doi.org/10.1103/PhysRevC.75.024311
https://doi.org/10.1103/PhysRevC.75.024311
https://doi.org/10.1103/PhysRevC.75.024311
https://doi.org/10.1103/PhysRevC.75.024311
https://doi.org/10.1016/j.physrep.2011.02.001
https://doi.org/10.1016/j.physrep.2011.02.001
https://doi.org/10.1016/j.physrep.2011.02.001
https://doi.org/10.1016/j.physrep.2011.02.001
https://doi.org/10.1016/j.nuclphysa.2004.09.107
https://doi.org/10.1016/j.nuclphysa.2004.09.107
https://doi.org/10.1016/j.nuclphysa.2004.09.107
https://doi.org/10.1016/j.nuclphysa.2004.09.107
https://doi.org/10.1103/PhysRevC.96.044001
https://doi.org/10.1103/PhysRevC.96.044001
https://doi.org/10.1103/PhysRevC.96.044001
https://doi.org/10.1103/PhysRevC.96.044001
https://doi.org/10.1103/PhysRevLett.115.122301
https://doi.org/10.1103/PhysRevLett.115.122301
https://doi.org/10.1103/PhysRevLett.115.122301
https://doi.org/10.1103/PhysRevLett.115.122301
https://doi.org/10.1140/epja/i2015-15053-8
https://doi.org/10.1140/epja/i2015-15053-8
https://doi.org/10.1140/epja/i2015-15053-8
https://doi.org/10.1140/epja/i2015-15053-8
https://doi.org/10.1103/PhysRevC.91.014002
https://doi.org/10.1103/PhysRevC.91.014002
https://doi.org/10.1103/PhysRevC.91.014002
https://doi.org/10.1103/PhysRevC.91.014002
https://doi.org/10.1103/PhysRevC.96.024004
https://doi.org/10.1103/PhysRevC.96.024004
https://doi.org/10.1103/PhysRevC.96.024004
https://doi.org/10.1103/PhysRevC.96.024004
https://doi.org/10.1103/PhysRevC.70.014317
https://doi.org/10.1103/PhysRevC.70.014317
https://doi.org/10.1103/PhysRevC.70.014317
https://doi.org/10.1103/PhysRevC.70.014317
https://doi.org/10.1016/j.ppnp.2012.10.003
https://doi.org/10.1016/j.ppnp.2012.10.003
https://doi.org/10.1016/j.ppnp.2012.10.003
https://doi.org/10.1016/j.ppnp.2012.10.003
https://doi.org/10.1002/andp.19945060203
https://doi.org/10.1002/andp.19945060203
https://doi.org/10.1002/andp.19945060203
https://doi.org/10.1002/andp.19945060203
https://doi.org/10.1103/PhysRevC.75.061001
https://doi.org/10.1103/PhysRevC.75.061001
https://doi.org/10.1103/PhysRevC.75.061001
https://doi.org/10.1103/PhysRevC.75.061001
https://doi.org/10.1103/PhysRevC.77.064003
https://doi.org/10.1103/PhysRevC.77.064003
https://doi.org/10.1103/PhysRevC.77.064003
https://doi.org/10.1103/PhysRevC.77.064003
https://doi.org/10.1016/j.ppnp.2010.03.001
https://doi.org/10.1016/j.ppnp.2010.03.001
https://doi.org/10.1016/j.ppnp.2010.03.001
https://doi.org/10.1016/j.ppnp.2010.03.001
https://doi.org/10.1103/PhysRevLett.103.082501
https://doi.org/10.1103/PhysRevLett.103.082501
https://doi.org/10.1103/PhysRevLett.103.082501
https://doi.org/10.1103/PhysRevLett.103.082501
https://doi.org/10.1007/s00601-007-0193-3
https://doi.org/10.1007/s00601-007-0193-3
https://doi.org/10.1007/s00601-007-0193-3
https://doi.org/10.1007/s00601-007-0193-3
https://doi.org/10.1103/PhysRevLett.120.062503
https://doi.org/10.1103/PhysRevLett.120.062503
https://doi.org/10.1103/PhysRevLett.120.062503
https://doi.org/10.1103/PhysRevLett.120.062503
https://doi.org/10.1103/PhysRevLett.99.092501
https://doi.org/10.1103/PhysRevLett.99.092501
https://doi.org/10.1103/PhysRevLett.99.092501
https://doi.org/10.1103/PhysRevLett.99.092501
https://doi.org/10.1103/PhysRevC.79.064324
https://doi.org/10.1103/PhysRevC.79.064324
https://doi.org/10.1103/PhysRevC.79.064324
https://doi.org/10.1103/PhysRevC.79.064324
https://doi.org/10.1103/PhysRevC.97.024325
https://doi.org/10.1103/PhysRevC.97.024325
https://doi.org/10.1103/PhysRevC.97.024325
https://doi.org/10.1103/PhysRevC.97.024325


GENNARI, VORABBI, CALCI, AND NAVRÁTIL PHYSICAL REVIEW C 97, 034619 (2018)

[69] P. Navrátil, G. P. Kamuntavičius, and B. R. Barrett, Phys. Rev.
C 61, 044001 (2000).

[70] L. Trlifaj, Phys. Rev. C 5, 1534 (1972).
[71] G. A. Moss, L. G. Greeniaus, J. M. Cameron, D. A. Hutcheon,

R. L. Liljestrand, C. A. Miller, G. Roy, B. K. S. Koene, W. T.
H. van Oers, A. W. Stetz, A. Willis, and N. Willis, Phys. Rev.
C 21, 1932 (1980).

[72] S. Burzynski, J. Campbell, M. Hammans, R. Henneck, W.
Lorenzon, M. A. Pickar, and I. Sick, Phys. Rev. C 39, 56 (1989).

[73] V. Comparat, R. Frascaria, N. Fujiwara, N. Marty, M. Morlet,
P. G. Roos, and A. Willis, Phys. Rev. C 12, 251 (1975).

[74] http://www.nndc.bnl.gov/exfor/exfor.htm.
[75] http://www.physics.umd.edu/enp/jjkelly/datatables.htm.
[76] T. Nikšić, N. Paar, D. Vretenar, and P. Ring, Comput. Phys.

Commun. 185, 1808 (2014).
[77] T. Nikšić, D. Vretenar, P. Finelli, and P. Ring, Phys. Rev. C 66,

024306 (2002).
[78] S. Sakaguchi, Y. Iseri, T. Uesaka, M. Tanifuji, K. Amos, N.

Aoi, Y. Hashimoto, E. Hiyama, M. Ichikawa, Y. Ichikawa,
S. Ishikawa, K. Itoh, M. Itoh, H. Iwasaki, S. Karataglidis, T.
Kawabata, T. Kawahara, H. Kuboki, Y. Maeda, R. Matsuo, T.
Nakao, H. Okamura, H. Sakai, Y. Sasamoto, M. Sasano, Y.
Satou, K. Sekiguchi, M. Shinohara, K. Suda, D. Suzuki, Y.
Takahashi, A. Tamii, T. Wakui, K. Yako, M. Yamaguchi, and
Y. Yamamoto, Phys. Rev. C 84, 024604 (2011).

[79] A. Korsheninnikov, E. Nikolskii, C. Bertulani, S. Fukuda, T.
Kobayashi, E. Kuzmin, S. Momota, B. Novatskii, A. Ogloblin,
A. Ozawa, V. Pribora, I. Tanihata, and K. Yoshida, Nucl. Phys.
A 617, 45 (1997).

[80] S. Sakaguchi, T. Uesaka, N. Aoi, Y. Ichikawa, K. Itoh, M. Itoh,
T. Kawabata, T. Kawahara, Y. Kondo, H. Kuboki, T. Nakamura,
T. Nakao, Y. Nakayama, H. Sakai, Y. Sasamoto, K. Sekiguchi,
T. Shimamura, Y. Shimizu, and T. Wakui, Phys. Rev. C 87,
021601 (2013).

[81] A. Korsheninnikov, K. Yoshida, D. Aleksandrov, N. Aoi, Y.
Doki, N. Inabe, M. Fujimaki, T. Kobayashi, H. Kumagai,
C.-B. Moon, E. Nikolskii, M. Obuti, A. Ogloblin, A. Ozawa,
S. Shimoura, T. Suzuki, I. Tanihata, Y. Watanabe, and M.
Yanokura, Phys. Lett. B 316, 38 (1993).

[82] A. Ghovanlou and D. R. Lehman, Phys. Rev. C 9, 1730 (1974).
[83] D. R. Lehman and W. C. Parke, Phys. Rev. C 28, 364 (1983).
[84] M. Zhukov, B. Danilin, D. Fedorov, J. Bang, I. Thompson, and

J. Vaagen, Phys. Rep. 231, 151 (1993).
[85] A. Csótó, Phys. Rev. C 48, 165 (1993).
[86] K. Varga, Y. Suzuki, and Y. Ohbayasi, Phys. Rev. C 50, 189

(1994).
[87] J. Wurzer and H. M. Hofmann, Phys. Rev. C 55, 688 (1997).
[88] B. S. Pudliner, V. R. Pandharipande, J. Carlson, S. C. Pieper,

and R. B. Wiringa, Phys. Rev. C 56, 1720 (1997).
[89] B. Danilin, I. Thompson, J. Vaagen, and M. Zhukov, Nucl.

Phys. A 632, 383 (1998).
[90] S. P. Weppner, O. Garcia, and C. Elster, Phys. Rev. C 61, 044601

(2000).
[91] S. Karataglidis, P. J. Dortmans, K. Amos, and C. Bennhold,

Phys. Rev. C 61, 024319 (2000).

[92] D. V. Fedorov, E. Garrido, and A. S. Jensen, Few-Body Syst.
33, 153 (2003).

[93] A. S. Jensen, K. Riisager, D. V. Fedorov, and E. Garrido,
Rev. Mod. Phys. 76, 215 (2004).

[94] E. Caurier and P. Navrátil, Phys. Rev. C 73, 021302 (2006).
[95] S. Karataglidis, Y. Kim, and K. Amos, Nucl. Phys. A 793, 40

(2007).
[96] R. Crespo, A. Moro, and I. Thompson, Nucl. Phys. A 771, 26

(2006).
[97] R. Crespo and A. M. Moro, Phys. Rev. C 76, 054607 (2007).
[98] N. Itagaki, M. Ito, K. Arai, S. Aoyama, and T. Kokalova, Phys.

Rev. C 78, 017306 (2008).
[99] S. Bacca, A. Schwenk, G. Hagen, and T. Papenbrock, Eur. Phys.

J. A 42, 553 (2009).
[100] K. Khaldi, C. Elster, and W. Glöckle, Phys. Rev. C 82, 054002

(2010).
[101] E. T. Ibraeva, M. A. Zhusupov, O. Imambekov, and S. K.

Sakhiev, Phys. Part. Nuclei 42, 847 (2011).
[102] K. Kaki, Y. Suzuki, and R. B. Wiringa, Phys. Rev. C 86, 044601

(2012); 86, 059904(E) (2012).
[103] S. Bacca, N. Barnea, and A. Schwenk, Phys. Rev. C 86, 034321

(2012).
[104] S. P. Weppner and C. Elster, Phys. Rev. C 85, 044617

(2012).
[105] C. Elster, A. Orazbayev, and S. P. Weppner, Few-Body Syst.

54, 1399 (2013).
[106] A. Orazbayev, C. Elster, and S. P. Weppner, Phys. Rev. C 88,

034610 (2013).
[107] C. Ji, C. Elster, and D. R. Phillips, Phys. Rev. C 90, 044004

(2014).
[108] C. Romero-Redondo, S. Quaglioni, P. Navrátil, and G. Hupin,

Phys. Rev. Lett. 113, 032503 (2014).
[109] C. Romero-Redondo, S. Quaglioni, P. Navrátil, and G. Hupin,

Phys. Rev. Lett. 117, 222501 (2016).
[110] S. Quaglioni, C. Romero-Redondo, P. Navratil, and G. Hupin,

arXiv:1710.07326 [nucl-th].
[111] D. Gupta, C. Samanta, and R. Kanungo, Nucl. Phys. A 674, 77

(2000).
[112] M. Hatano, H. Sakai, T. Wakui, T. Uesaka, N. Aoi, Y. Ichikawa,

T. Ikeda, K. Itoh, H. Iwasaki, T. Kawabata, H. Kuboki, Y.
Maeda, N. Matsui, T. Ohnishi, T. K. Onishi, T. Saito, N.
Sakamoto, M. Sasano, Y. Satou, K. Sekiguchi, K. Suda, A.
Tamii, Y. Yanagisawa, and K. Yako, Eur. Phys. J. A 25, 255
(2005).

[113] T. Uesaka, S. Sakaguchi, Y. Iseri, K. Amos, N. Aoi, Y.
Hashimoto, E. Hiyama, M. Ichikawa, Y. Ichikawa, S. Ishikawa,
K. Itoh, M. Itoh, H. Iwasaki, S. Karataglidis, T. Kawabata, T.
Kawahara, H. Kuboki, Y. Maeda, R. Matsuo, T. Nakao, H.
Okamura, H. Sakai, Y. Sasamoto, M. Sasano, Y. Satou, K.
Sekiguchi, M. Shinohara, K. Suda, D. Suzuki, Y. Takahashi,
M. Tanifuji, A. Tamii, T. Wakui, K. Yako, Y. Yamamoto, and
M. Yamaguchi, Phys. Rev. C 82, 021602 (2010).

[114] D. Varshalovich, A. Moskalev, and V. Khersonskii, Quantum
Theory of Angular Momentum (World Scientific, Singapore,
1988).

034619-16

https://doi.org/10.1103/PhysRevC.61.044001
https://doi.org/10.1103/PhysRevC.61.044001
https://doi.org/10.1103/PhysRevC.61.044001
https://doi.org/10.1103/PhysRevC.61.044001
https://doi.org/10.1103/PhysRevC.5.1534
https://doi.org/10.1103/PhysRevC.5.1534
https://doi.org/10.1103/PhysRevC.5.1534
https://doi.org/10.1103/PhysRevC.5.1534
https://doi.org/10.1103/PhysRevC.21.1932
https://doi.org/10.1103/PhysRevC.21.1932
https://doi.org/10.1103/PhysRevC.21.1932
https://doi.org/10.1103/PhysRevC.21.1932
https://doi.org/10.1103/PhysRevC.39.56
https://doi.org/10.1103/PhysRevC.39.56
https://doi.org/10.1103/PhysRevC.39.56
https://doi.org/10.1103/PhysRevC.39.56
https://doi.org/10.1103/PhysRevC.12.251
https://doi.org/10.1103/PhysRevC.12.251
https://doi.org/10.1103/PhysRevC.12.251
https://doi.org/10.1103/PhysRevC.12.251
http://www.nndc.bnl.gov/exfor/exfor.htm
http://www.physics.umd.edu/enp/jjkelly/datatables.htm
https://doi.org/10.1016/j.cpc.2014.02.027
https://doi.org/10.1016/j.cpc.2014.02.027
https://doi.org/10.1016/j.cpc.2014.02.027
https://doi.org/10.1016/j.cpc.2014.02.027
https://doi.org/10.1103/PhysRevC.66.024306
https://doi.org/10.1103/PhysRevC.66.024306
https://doi.org/10.1103/PhysRevC.66.024306
https://doi.org/10.1103/PhysRevC.66.024306
https://doi.org/10.1103/PhysRevC.84.024604
https://doi.org/10.1103/PhysRevC.84.024604
https://doi.org/10.1103/PhysRevC.84.024604
https://doi.org/10.1103/PhysRevC.84.024604
https://doi.org/10.1016/S0375-9474(96)00492-7
https://doi.org/10.1016/S0375-9474(96)00492-7
https://doi.org/10.1016/S0375-9474(96)00492-7
https://doi.org/10.1016/S0375-9474(96)00492-7
https://doi.org/10.1103/PhysRevC.87.021601
https://doi.org/10.1103/PhysRevC.87.021601
https://doi.org/10.1103/PhysRevC.87.021601
https://doi.org/10.1103/PhysRevC.87.021601
https://doi.org/10.1016/0370-2693(93)90654-Z
https://doi.org/10.1016/0370-2693(93)90654-Z
https://doi.org/10.1016/0370-2693(93)90654-Z
https://doi.org/10.1016/0370-2693(93)90654-Z
https://doi.org/10.1103/PhysRevC.9.1730
https://doi.org/10.1103/PhysRevC.9.1730
https://doi.org/10.1103/PhysRevC.9.1730
https://doi.org/10.1103/PhysRevC.9.1730
https://doi.org/10.1103/PhysRevC.28.364
https://doi.org/10.1103/PhysRevC.28.364
https://doi.org/10.1103/PhysRevC.28.364
https://doi.org/10.1103/PhysRevC.28.364
https://doi.org/10.1016/0370-1573(93)90141-Y
https://doi.org/10.1016/0370-1573(93)90141-Y
https://doi.org/10.1016/0370-1573(93)90141-Y
https://doi.org/10.1016/0370-1573(93)90141-Y
https://doi.org/10.1103/PhysRevC.48.165
https://doi.org/10.1103/PhysRevC.48.165
https://doi.org/10.1103/PhysRevC.48.165
https://doi.org/10.1103/PhysRevC.48.165
https://doi.org/10.1103/PhysRevC.50.189
https://doi.org/10.1103/PhysRevC.50.189
https://doi.org/10.1103/PhysRevC.50.189
https://doi.org/10.1103/PhysRevC.50.189
https://doi.org/10.1103/PhysRevC.55.688
https://doi.org/10.1103/PhysRevC.55.688
https://doi.org/10.1103/PhysRevC.55.688
https://doi.org/10.1103/PhysRevC.55.688
https://doi.org/10.1103/PhysRevC.56.1720
https://doi.org/10.1103/PhysRevC.56.1720
https://doi.org/10.1103/PhysRevC.56.1720
https://doi.org/10.1103/PhysRevC.56.1720
https://doi.org/10.1016/S0375-9474(98)00002-5
https://doi.org/10.1016/S0375-9474(98)00002-5
https://doi.org/10.1016/S0375-9474(98)00002-5
https://doi.org/10.1016/S0375-9474(98)00002-5
https://doi.org/10.1103/PhysRevC.61.044601
https://doi.org/10.1103/PhysRevC.61.044601
https://doi.org/10.1103/PhysRevC.61.044601
https://doi.org/10.1103/PhysRevC.61.044601
https://doi.org/10.1103/PhysRevC.61.024319
https://doi.org/10.1103/PhysRevC.61.024319
https://doi.org/10.1103/PhysRevC.61.024319
https://doi.org/10.1103/PhysRevC.61.024319
https://doi.org/10.1007/s00601-003-0012-4
https://doi.org/10.1007/s00601-003-0012-4
https://doi.org/10.1007/s00601-003-0012-4
https://doi.org/10.1007/s00601-003-0012-4
https://doi.org/10.1103/RevModPhys.76.215
https://doi.org/10.1103/RevModPhys.76.215
https://doi.org/10.1103/RevModPhys.76.215
https://doi.org/10.1103/RevModPhys.76.215
https://doi.org/10.1103/PhysRevC.73.021302
https://doi.org/10.1103/PhysRevC.73.021302
https://doi.org/10.1103/PhysRevC.73.021302
https://doi.org/10.1103/PhysRevC.73.021302
https://doi.org/10.1016/j.nuclphysa.2007.06.006
https://doi.org/10.1016/j.nuclphysa.2007.06.006
https://doi.org/10.1016/j.nuclphysa.2007.06.006
https://doi.org/10.1016/j.nuclphysa.2007.06.006
https://doi.org/10.1016/j.nuclphysa.2006.02.015
https://doi.org/10.1016/j.nuclphysa.2006.02.015
https://doi.org/10.1016/j.nuclphysa.2006.02.015
https://doi.org/10.1016/j.nuclphysa.2006.02.015
https://doi.org/10.1103/PhysRevC.76.054607
https://doi.org/10.1103/PhysRevC.76.054607
https://doi.org/10.1103/PhysRevC.76.054607
https://doi.org/10.1103/PhysRevC.76.054607
https://doi.org/10.1103/PhysRevC.78.017306
https://doi.org/10.1103/PhysRevC.78.017306
https://doi.org/10.1103/PhysRevC.78.017306
https://doi.org/10.1103/PhysRevC.78.017306
https://doi.org/10.1140/epja/i2009-10815-5
https://doi.org/10.1140/epja/i2009-10815-5
https://doi.org/10.1140/epja/i2009-10815-5
https://doi.org/10.1140/epja/i2009-10815-5
https://doi.org/10.1103/PhysRevC.82.054002
https://doi.org/10.1103/PhysRevC.82.054002
https://doi.org/10.1103/PhysRevC.82.054002
https://doi.org/10.1103/PhysRevC.82.054002
https://doi.org/10.1134/S1063779611060037
https://doi.org/10.1134/S1063779611060037
https://doi.org/10.1134/S1063779611060037
https://doi.org/10.1134/S1063779611060037
https://doi.org/10.1103/PhysRevC.86.044601
https://doi.org/10.1103/PhysRevC.86.044601
https://doi.org/10.1103/PhysRevC.86.044601
https://doi.org/10.1103/PhysRevC.86.044601
https://doi.org/10.1103/PhysRevC.86.059904
https://doi.org/10.1103/PhysRevC.86.059904
https://doi.org/10.1103/PhysRevC.86.059904
https://doi.org/10.1103/PhysRevC.86.034321
https://doi.org/10.1103/PhysRevC.86.034321
https://doi.org/10.1103/PhysRevC.86.034321
https://doi.org/10.1103/PhysRevC.86.034321
https://doi.org/10.1103/PhysRevC.85.044617
https://doi.org/10.1103/PhysRevC.85.044617
https://doi.org/10.1103/PhysRevC.85.044617
https://doi.org/10.1103/PhysRevC.85.044617
https://doi.org/10.1007/s00601-013-0644-y
https://doi.org/10.1007/s00601-013-0644-y
https://doi.org/10.1007/s00601-013-0644-y
https://doi.org/10.1007/s00601-013-0644-y
https://doi.org/10.1103/PhysRevC.88.034610
https://doi.org/10.1103/PhysRevC.88.034610
https://doi.org/10.1103/PhysRevC.88.034610
https://doi.org/10.1103/PhysRevC.88.034610
https://doi.org/10.1103/PhysRevC.90.044004
https://doi.org/10.1103/PhysRevC.90.044004
https://doi.org/10.1103/PhysRevC.90.044004
https://doi.org/10.1103/PhysRevC.90.044004
https://doi.org/10.1103/PhysRevLett.113.032503
https://doi.org/10.1103/PhysRevLett.113.032503
https://doi.org/10.1103/PhysRevLett.113.032503
https://doi.org/10.1103/PhysRevLett.113.032503
https://doi.org/10.1103/PhysRevLett.117.222501
https://doi.org/10.1103/PhysRevLett.117.222501
https://doi.org/10.1103/PhysRevLett.117.222501
https://doi.org/10.1103/PhysRevLett.117.222501
http://arxiv.org/abs/arXiv:1710.07326
https://doi.org/10.1016/S0375-9474(00)00159-7
https://doi.org/10.1016/S0375-9474(00)00159-7
https://doi.org/10.1016/S0375-9474(00)00159-7
https://doi.org/10.1016/S0375-9474(00)00159-7
https://doi.org/10.1140/epjad/i2005-06-110-5
https://doi.org/10.1140/epjad/i2005-06-110-5
https://doi.org/10.1140/epjad/i2005-06-110-5
https://doi.org/10.1140/epjad/i2005-06-110-5
https://doi.org/10.1103/PhysRevC.82.021602
https://doi.org/10.1103/PhysRevC.82.021602
https://doi.org/10.1103/PhysRevC.82.021602
https://doi.org/10.1103/PhysRevC.82.021602



