
PHYSICAL REVIEW C 97, 034617 (2018)

Effect of in-medium nucleon-nucleon cross section on proton-proton momentum correlation
in intermediate-energy heavy-ion collisions
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The proton-proton momentum correlation function from different rapidity regions is systematically investigated
for the Au + Au collisions at different impact parameters and different energies from 400A MeV to 1500A MeV
in the framework of the isospin-dependent quantum molecular dynamics model complemented by the Lednický-
Lyuboshitz analytical method. In particular, the in-medium nucleon-nucleon cross-section dependence of
the correlation function is brought into focus, while the impact parameter and energy dependence of the momentum
correlation function are also explored. The sizes of the emission source are extracted by fitting the momentum
correlation functions using the Gaussian source method. We find that the in-medium nucleon-nucleon cross
section obviously influences the proton-proton momentum correlation function, which is from the whole-rapidity
or projectile or target rapidity region at smaller impact parameters, but there is no effect on the mid-rapidity
proton-proton momentum correlation function, which indicates that the emission mechanism differs between
projectile or target rapidity and mid-rapidity protons.
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I. INTRODUCTION

The Hanbury Brown–Twiss (HBT) effect was first discussed
in radio and stellar astronomy. The method was applied to
measure the angular diameter and the size of stars by Hanbury
Brown and Twiss [1]. Later on, the technique was introduced
to research particle physics in the 1960s by Goldhaber et al.
They studied the angular distribution of identical pion pairs in
proton-antiproton annihilations and observed an enhancement
of pairs at small relative momenta [2]. The past decade has
brought great strides in experiments and a larger number
of theoretical researches ranging from low-energy to high-
energy Heavy-ion collisions (HICs) [3,4]. It is well known
that two-particle correlation is sensitive to characteristics of the
particle emission source. Recently, two-particle correlation in
subatomic physics was taken as a probe for the space-time
geometry of the particle emission source. The correlation
between two protons was measured by several experiments
and explored by different models. Not only protons but also
the composite light fragments and particles, which are not
discussed in this paper, are also used to carry information on
the emission source [5,6]. Owing to the rapid development of
radioactive nuclear beams, the HBT method is also used to
study the exotic structure of nuclei. For instance, there have
been several measurements for revealing the exotic structure
of neutron-rich nuclei such as 6He, 11Li, and 14Be [7–9] and of
proton-rich nuclei such as 23Al [10] as well as 22Mg [11,12].
In addition, the dependence of the proton-neutron correlation
on the binding energy was also theoretically explored [13]. In
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addition to the applications of the HBT method to investigate
the exotic structure, it has become an important tool in heavy-
ion collisions at wide energy ranges [3,4,14–16]. For example,
in the relativistic energy region, the collaborations at the
Relativistic Heavy Ion Collider and the Large Hadron Collider
have carried out a lot of experimental measurements of the
correlation function of two pions as a function of energy and
system size [17,18]. What is more, the same method has been
applied to make the first measurement of a two-antiproton
interaction by analyzing the momentum correlation function
between antiprotons, namely, the quantitative extraction of
the scattering length and the effective range, which are two
key parameters to characterize the strong interaction for the
antiproton interactions by the STAR Collaboration [19–22].
Theoretically, the correlation functions between two identical
pions or kaons were also investigated in some simulation work
such as the hydrodynamic model and A Multiphase Transport
model (AMPT) [4,23–27]. In the intermediate-energy region,
the two-proton correlation functions were mostly applied to
extract space-time properties such as the source size and
emission time in the nuclear reaction [28]. In addition, there
are many investigations of the dependencies of the correlation
functions in the experiments and theories, such as on the impact
parameter [29,30], the total momentum of nucleon pairs [31],
the isospin of the emission source [32], the nuclear symmetry
energy [33], the nuclear equation of state (EOS) [30], and the
density distribution of valence neutrons in neutron-rich nuclei
[6].

The investigation of in-medium nucleon-nucleon scattering
is of interest in intermediate-energy heavy-ion reactions. In this
energy domain, nucleus-nucleus collisions provide a unique
opportunity to form compressed nuclear matter with a density
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up to two to three times normal nuclear matter density (ρ0).
The in-medium nucleon-nucleon cross section (NNCS) has a
close relation with the nuclear matter density. Therefore, it is an
important component in our model simulations. Recently, the
medium effects on nucleon-nucleon cross sections have been
widely investigated by replacing the NNCS in vacuum with
an in-medium one and the various effects have been discussed
[34–37].

The dependence of the two-proton correlation function on
the in-medium NNCS has been briefly studied via the Correla-
tion After Burner (CRAB) code in the framework of an isospin-
dependent quantum molecular dynamics (IQMD) model [30].
Since the two-particle correlation function, through final-state
interactions and quantum statistical effects, has been shown to
be a sensitive probe to the space-time distributions of emitted
particles in heavy-ion collisions [16], it is of great interest to
investigate the in-medium nucleon-nucleon (NN) cross-section
effects on the source evolution. In the present paper, we use
another theoretical approach which was proposed by Lednický
and Lyuboshitz [38] to explore the relationship between the
above factors and proton-proton correlation function in more
detail. The two-particle correlation at small relative velocities
is sensitive to the space-time characteristics of the production
process owing to the effects of quantum statistics and final-
state interaction [39,40]. In most proton-proton correlation
functions, the HBT strength at 20 MeV/c of the p-p relative
momentum is taken as a unique quantity to determine the
source size or emission time of two-proton emission [30]. The
proton phase spaces of Au+Au collisions at the freeze-out time
generated by the IQMD model are used as the input for the
Lednický-Lyuboshitz code and then the effective source size
of the source is extracted.

The rest of paper is organized as follows. In Sec. II we
briefly describe the models and formalism used in the present
study, i.e., the Lednický-Lyuboshitz analytical formalism and
an IQMD model. The detailed analysis and discussion of
a systematic proton-proton momentum correlation function
(Cpp) and extracted source size results for different rapidity
regions are given for different in-medium nucleon-nucleon
cross sections, different impact parameters, and different beam
energies for Au + Au collisions in Sec. III. In addition, we
fit the proton pT spectra with the distribution function from
the blast-wave model and discuss the relationship between
proton-proton correlation strength and radial flow velocity.
Finally, in Sec. IV we summarize the results.

II. FORMALISM AND MODELS

A. Lednický-Lyuboshitz analytical formalism

First, we would like to present a brief review of the theoret-
ical approach that was proposed by Lednický and Lyuboshitz
[38] for the HBT analysis. The method is based on the principle
that the correlation functions of identical particles when they
are emitted at small relative momenta are determined by the
effects of quantum-statistical symmetry (QS) of particles and
the final-state interaction (FSI) [41]. In this technique, we
assume that the particles emitted by an independent one-
particle point source and the spin are independent in the

FIG. 1. Production of interacting particles 1 and 2 [42].

production progress as well as the two-particle interaction.
Then we can investigate particle pairs (1,2) emitted at small
relative momenta. Owing to the conditions in Refs. [42], we
neglect the effect of FSI in all pairs (1,i) and (2,i) except for
(1,2). We can see the progress in Fig. 1.

So the correlation function for identical particles takes the
expression

B(p,q) = B0(p,q) + B1(p,q), (1)

where

p = p1 + p2, q = 1
2 |p2 − p1|, (2)

are the total momentum and relative momentum of the particle
pair, respectively. In Eq. (1), B0(p,q) is the contribution of the
quantum statistics effect, described by the formula

B0(p,q) = g0 cos (qx). (3)

Here g0 is the spin factor.
Then, the function B1(p,q) can be expressed through the

symmetrized Bethe-Salpeter amplitude ψ(S), which can be
approximated by the outer region solution of the scattering
problem [19]:

B1(p,q) =
∑

S

ρS,p(x1,x2,x
,
1,x

,
2) × ψS

p,q(x1,x2)

×ψS
p,q(x,

1,x
,
2)d4x1d

4x2d
4x

,
1d

4x
,
2, (4)

where ρS,p is the two-particle density matrix.
Next, we can introduce the detailed analytical calculation of

the proton-proton correlation function [19]. The proton-proton
correlation function, Cpp(k∗,r0), can be described by the
Lednický-Lyuboshitz analytical method [19,38]. In this model,
the space distribution of the Gaussian source was simulated
according to the following function:

S(r∗) ≈ exp
(−r∗2

/
(
4r2

0

))
. (5)

Here, r0 is the source size parameter. Therefore, we can
obtain the correlation function through assuming 1/4 of the
singlet and 3/4 of triplet states. The theoretical correlation
function at a given k∗ can be calculated as the average FSI
weight 〈w(k∗,r∗)〉 obtained from the separation r∗, simulated
according to the Gaussian law, and the angle between the
vectors k∗ and r∗, simulated according to a uniform cosine
distribution. The average FSI weight can be described by the
formula

w(k∗,r∗) = ∣∣ψS(+)
−k∗ (r∗) + (−1)SψS(+)

k∗ (r∗)
∣∣2/

2, (6)
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where S is the total pair spin, r∗ is the relative distance,
ψ

S(+)
−k∗ (r∗) is the equal-time (t∗ = 0) reduced Bethe-Salpeter

amplitude which can be approximated by the outer solution of
the scattering problem [38]. This is

ψ
S(+)
−k∗ (r∗) = eiδc

√
Ac(λ)

×
[
e−ik∗r∗

F (−iλ,1,iξ ) + fc(k∗)
G̃(ρ,λ)

r∗

]
, (7)

where δc = arg �(1 + i/k∗ac) is the Coulomb phase cor-
responding to zero orbital angular momentum, Ac(λ) =
2πλ[exp (2πλ) − 1]−1 determines the contribution of the
Coulomb interaction, i.e., the positive value correspond-
ing to the repulsion, λ = (k∗ac)−1, ac = 57.5 fm is the
Bohr radius for two protons, ρ = k∗r∗, ξ = k∗r∗ + ρ,
F is the confluent hypergeometric function, G̃(ρ,λ) =√

Ac(λ)[G0(ρ,λ) + iF0(ρ,λ)] is a combination of the regular
(F0) and singular (G0) s-wave Coulomb function,

fc(k∗) =
[

1

f0
+ 1

2
d0k

∗2 − 2

ac

h(λ) − ik∗Ac(λ)

]−1

(8)

is the s-wave scattering amplitude renormalized by the
Coulomb interaction, d0 is the effective range of the interaction,
and h(λ) = λ2 ∑∞

n=1 [n(n2 + λ2)]−1 − C − ln [λ] (here C =
0.5772 is the Euler constant). The dependence of the scattering
parameters on the total pair spin S is omitted since only the
singlet (S = 0) s-wave FSI contributes in the case of identical
nucleons.

B. The IQMD model

To apply the above theoretical simulation, the single-
particle phase-space distribution at the freeze-out is required.
In this work, the correlation function can be established from
the emission phase space given by the IQMD transport model
[43].

The quantum molecular dynamics (QMD) model is a
many-body transport theory; it has been extensively applied to
describe heavy-ion reactions from intermediate energy to 2A
GeV [44]. From the QMD studies, various valuable informa-
tion about both the collision dynamics and the fragmentation
process has been learned [45–54]. Excellent extensibility can
be also expected due to its microscopic treatment of the
collision process. The model mainly consists of several parts:
initialization of the projectile and the target nucleons, nucleon
transport under the effective potentials, NN binary collisions
in a nuclear medium, Pauli blocking, and the numerical test.
The IQMD model is based on the QMD model and considers
the isospin factors [55] in mean-field, two-body NN collisions,
and Pauli blocking. In the IQMD model, the wave function of
each nucleon is represented by the form of the Gaussian wave
packet, with the parameter L which relates to the size of the
reaction system. For the Au + Au system, the width L is fixed
to 2.16 fm2. The Gaussian wave packet is written as

φi(r) = 1

2πL3/4
exp

(−(r − ri(t))2

4L

)
exp

(
ir · pi(t)

h̄

)
.

(9)

Here, ri(t) and pi(t) are the time-dependent variables which
describe the center of the packet in coordinate and momentum
space, respectively. Then, all nucleons interact via the effective
mean-field and two-body NN collisions.

The nuclear mean field can be expressed as

U = USky + UCoul + UYuk + Usym + UMDI + UPauli, (10)

where USky, UCoul, UYuk, Usym, UMDI, and UPauli are the
density-dependent Skyrme potential, the Coulomb potential,
the surface Yukawa potential, the isospin asymmetry potential,
the momentum-dependent interaction (MDI), and the Pauli
potential, respectively. A general review of the above potentials
can be found in Ref. [44]. In the present work, the in-medium
NN cross section is represented by the formula

σ med
NN =

(
1 − η

ρ

ρ0

)
σ free

NN , (11)

where ρ0 is the normal nuclear matter density, ρ is the local
density, η is the in-medium factor, and σ free

NN is the available
experimental NN cross section [56]. In this above expression,
increasing values of the parameter η correspond to decreasing
values of the in-medium nucleon-nucleon cross section.

In this model, the fragments are identified using a modified
minimum spanning tree description. In the minimum spanning
tree approach, two nucleons are assumed to share the same
cluster if their centers are closer than a distance of 3.5 fm and
their relative momentum smaller than 0.3 GeV/c. If a nucleon
is not bounded by any clusters, it is treated by an emitted (free)
nucleon.

C. The blast-wave fit

In heavy-ion collisions, particles collide with each other
randomly, which can be described in terms of thermal motion
[57]. We adopt the blast-wave model, which has been put
forward by Siemens and Rasmussen [58] to describe the
midrapidity pT spectra with two free parameters: collective
transverse flow velocity β and kinetic freeze-out temperature
Tf . The collective transverse flow velocity β is parametrized
by the surface velocity βs in the region of 0 � R � Rmax [59]:

βr (r) = βs

(
r

Rmax

)α

, (12)

where Rmax is the maximum radius of the expanding source
at thermal freeze-out time, βs is the particle radial velocity
at the maximum surface, e.g., r = Rmax, and the exponent α
describes the evolution of the flow velocity with the radius. The
pT spectra are a superposition of individual thermal sources
with different r , which is boosted with the boost angle ρ =
tanh−1 βr (r) [60,61].

dn

pT dpT

∝
∫ Rmax

0
r drmT I0

(
pT sinh ρ

Tf

)
K1

(
mT cosh ρ

Tf

)
,

(13)

where K1 and I0 are the modified Bessel functions. The shapes
of the spectra are essentially determined by Tf , βS , α, and the
mass of the particle, m0. The average flow velocity is estimated
by taking an average over the transverse geometry.
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III. ANALYSIS AND DISCUSSION

In this work, we use the soft EOS with momentum-
dependent interaction for all Au + Au collisions at beam
energies from 0.4 to 1.5A GeV. The correlation functions
are calculated by using the phase-space information from the
freeze-out stage.

First, we investigate the influence of the in-medium NN
cross section on the momentum correlation function for Au +
Au collisions at 1.0A GeV. Figure 2 shows the proton-proton
momentum correlation function for Au + Au collisions at 1A
GeV with different in-medium reduction factors η, impact pa-
rameters, and proton rapidity region. In each panel, in-medium
reduction factors of 0.0, 0.2, 0.5, 0.7, and 0.9 are compared.
From top to bottom, each panel corresponds to different impact
parameters, from b = 3, 6, 9, and up to 12 fm, respectively.
From left to right, it represents the correlation function for the
proton pairs within whole rapidity, mid-rapidity, and projectile
or target rapidities, respectively. Here the mid-rapidity cut
means that both protons are emitted in the rapidity window of
−0.5 � y/yproj � 0.5, and the projectile or target rapidity re-
gion indicates that both protons come from the rapidity region
of either y/yproj � 0.5 or y/yproj � −0.5, where y represents
the proton rapidity and yproj means the initial projectile rapidity.
Overall, the proton-proton momentum correlation function
exhibits a peak at relative momentum q = 20 MeV/c, which is

due to the strong final-state s-wave attraction together with the
suppression at lower relative momentum as a result of Coulomb
repulsion and the antisymmetrization wave function between
two protons.

For protons which are emitted in whole rapidity or projectile
or target rapidity, the general trend is very similar. With the
increasing of the in-medium NN cross section (i.e., the less
in-medium reduction factor η), the collision rate between
nucleons increases. Therefore, more nucleons are emitted
early, which makes the strength of the momentum correlation
function larger. The difference can be further revealed in
central and semi-peripheral collisions; however, the difference
in momentum correlation function among different η factors
almost disappears in peripheral collisions. This indicates that
the NN cross section in peripheral collisions has no significant
change even though the η value changes much. Generally
speaking, with less nucleon-nucleon cross section (i.e., larger η
factor), the correlation peak decreases, indicating that proton-
proton correlation has a positive correlation with nucleon-
nucleon cross section. The sensitivity of correlation strength
to the η values becomes less important when the reaction goes
to peripheral collisions. For mid-rapidity protons, correlation
functions are much stronger than the cases of whole rapidity or
projectile or target rapidity, and show almost no dependence on
the in-medium nucleon-nucleon cross section, which indicates

FIG. 2. Momentum correlation function of proton pairs for Au + Au collisions at 1A GeV with different in-medium reduction factors. From
top to bottom, each panel corresponds to impact parameters, namely, b = 3, 6, 9 and 12 fm, respectively. From left to right, each panel represents
the correlation function constructed for the proton pairs within whole rapidity, mid-rapidity and projectile or target rapidities, respectively.
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FIG. 3. (a) Cpp strength at 20 MeV/c as a function of the incident
energy, which is calculated at an impact parameter of b = 3 fm and in-
medium reduction factor of η = 0.2; (b) Cpp strength at 20 MeV/c as
a function of the impact parameter, which is calculated at 1A GeV and
the in-medium reduction factor η = 0.2; (c) Cpp strength at 20 MeV/c

as a function of the in-medium reduction factor, which is calculated
at b = 3 fm and 1A GeV. Note that the red circles correspond to the
mid-rapidity cut and the blue squares to the whole-rapidity cut.

a very different space-time structure of mid-rapidity protons.
Essentially, the mid-rapidity protons are emitted very early
and at non-equilibrium, and are therefore insensitive to the
in-medium NN cross section; additionally they have radial flow,
which is mentioned later. In addition, another difference is that
the strength of the correlation peak as a function of impact
parameter is the reverse of the behavior of the correlation peak
for whole rapidity or projectile or target rapidity protons, which
displays a stronger correlation peak in peripheral collisions
than central collisions, indicating a slightly more compact
mid-rapidity source in peripheral collisions.

How the three variables of incident energy, impact
parameter, and in-medium nucleon-nucleon cross section
affect the strength of Cpp is presented in Fig. 3 for the

proton-proton correlation function where the whole-rapidity
window (blue squares) or mid-rapidity (solid circles) is applied
for emitted protons in Au + Au collisions. For the incident
energy dependence, the increase of momentum correlation
peak from low energy to high energy is cleanly seen in
Fig. 3(a), and the mid-rapidity cut displays a stronger peak. It
can be generally understood that at higher energy, a more rapid
collision process, and a smaller emission source space and
short time interval among emitting nucleons in whole rapidity
region, so does in the mid-rapidity nucleons [30]. In Fig. 3(b),
we see that the correlation strength increases with the impact
parameter for the mid-rapidity cut but the opposite occurs
for the whole-rapidity cut, which shows that geometrical
cuts for two rapidities are complemented; e.g., a stronger
correlation for mid-rapidity protons at peripheral collision
indicates smaller source size, but a weaker correlation for
whole-rapidity protons indicates larger source size. In Fig. 3(c),
with the increase of the in-medium cross-section modification
factor, i.e., decreasing the in-medium NN cross section, the
peak strength becomes smaller. In other words, proton-proton
correlation positively depends on the nucleon-nucleon
collisions. However, in contrast with the whole-rapidity
protons, mid-rapidity protons show weaker sensitivity to the
NNCS. Because we already know that the strength of the
correlation function depends mainly on the source size, the
above behavior of the HBT strength essentially reflects the
changing size of the emission source versus the beam energy,
impact parameter, and nucleon-nucleon cross section.

Figure 4 presents the radius of the Gaussian source for
emitted protons as a function of beam energy (left column), im-
pact parameter (middle column), and in-medium cross-section
reduction factor (right column) for different rapidity windows,
namely, the whole rapidity (upper row), mid-rapidity (middle
row), and projectile or target rapidity (bottom row). Overall,
for mid-rapidity proton-proton correlations, the sensitivity to
the in-medium cross-section reduction factor is almost not
visible. The source radius shows a slight drop with increase
of beam energy or impact parameter. For the whole rapidity
or projectile or target rapidity windows, their beam energy
dependencies are very similar if the same η is applied, and
the source radius increases with the increase of η, i.e., the
decrease of nucleon-nucleon cross section. When the nucleon-
nucleon cross section is larger (e.g., η � 0.5), the source radius
drops with the incident energy, indicating fast emission and/or
compact proton emission size in higher energies. However, the
situation is different when the nucleon-nucleon cross section is
small (e.g., η > 0.7), where the radius shows a slight increasing
or a plateau behavior. But overall, even though a slight beam
energy dependence of the radius is visible, the trend is rather
weak as seen in ultra-relativistic energy heavy-ion collisions
[62].

The middle and right-hand columns demonstrate the radius
of the Gaussian source as a function of impact parameter at
different fixed η values or η at different impact parameters,
respectively. As expected, for correlation between protons
from the whole rapidity region or the projectile or target
region, the source size increases with the increasing of impact
parameter, and the larger the nucleon-nucleon cross section,
the stronger the dependence of the source size on impact
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FIG. 4. Gaussian source radius as a function of the incident energy for different η factors at fixed impact parameter b = 3 fm (left column),
as a function of impact parameter with different η factors (middle column), and as a function of in-medium nucleon-nucleon cross-section
reduction factor at different impact parameter (right column). From top to bottom are the Gaussian radius of free protons emitted from the
whole-rapidity window, the mid-rapidity window, and the target or projectile rapidity window, respectively.

parameter. With increasing impact parameters, the effective
source size gets bigger because apparently the (target or pro-
jectile) spectator region gets bigger and bigger with increasing
impact parameter, and this effect is more pronounced if the
in-medium decrease of the cross section is smaller. This
indicates some geometrical effect and protons coming from
spectator fragmentation mechanism. At the same time, the
source size increases with the decreasing of the in-medium
NN cross section (i.e., larger η factor). The smaller the impact
parameter, the stronger the dependence of the source size on
the in-medium NN cross section, which can be understood
as a more frequent collision effect that is expected to affect
the dynamical evolution. However, for correlation between
protons from the mid-rapidity region, the tendency of the
source size becomes decreasing with the increasing of impact
parameter, regardless of the in-medium nucleon-nucleon cross
section. This reverse dependence of source radius between
mid-rapidity protons and projectile or target rapidity protons
as a function of impact parameter indicates some geometrical
evolution of participant and spectator regions, which can be
also well seen from Fig. 3(b).

We should mention that to extract the above source size,
theoretical calculations for Cpp were performed by using

the Lednický-Lyuboshitz analytical method. The best fitting
source size is judged by finding the minimum of the reduced
χ -square. Figure 5 presents examples of the χ2-variance
between the IQMD calculations with the Lednický-Lyuboshitz
analytical formalism and the Gaussian source correlation as
a function of the radius of the Gaussian source in different
impact parameters with the changingη factors [Figs. 5(a)–5(d)]
or in different η factors with the changing impact parameters
[Figs. 5(e)–5(h)]. Generally, the minimum can be well defined,
but the errors on its location are apparently rather asymmetric.

Mid-rapidity protons are possibly experienced by the col-
lective radial flow expansion in comparison with the projectile
or target rapidity protons. To demonstrate how large the radial
flow is for the mid-rapidity protons, we use the blast-wave
(BW) fits to pT spectra of protons in the mid-rapidity region.
Here, we get the α value equal to 1/3 on the pT spectra of
central collisions and fix this value when we do the fitting
on the other impact parameters [60]. Figure 6 shows the pT

spectra of mid-rapidity protons in different incident energy for
b = 3 fm and η = 0.2 [Fig. 6(a)], in different impact parameter
for E = 1A GeV and η = 0.2 [Fig. 6(b)], and with different
in-medium cross section for b = 3 fm and 1A GeV [Fig. 6(c)],
where the solid symbols represent the calculated results from
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FIG. 5. The χ -square obtained from the fits of the proton-proton
momentum correlation function by the Lednický et al. analytical
formalism calculation as a function of the radius of the Gaussian
source. (a)–(d) Each panel represents different fixed impact param-
eters with different η factor; (e)–(h) each panel represents different
fixed η factors at different impact parameters.

the IQMD model and the solid lines are the BW fits. Overall
all lines can well reproduce the spectra, from which the radial
flow parameters can be systematically extracted. Figure 6 also
displays the extracted radial flow parameters (β) as a function
of incident energy at b = 3 fm and η = 0.2 [Fig. 6(d)], as
a function of impact parameter at E = 1A GeV and η = 0.2
[Fig. 6(e)], and as a function of in-medium cross-section factor
at E = 1A GeV and b = 3 fm [Fig. 6(f)]. Obviously, the radial
flow becomes stronger in higher incident energy as well as
in more central collisions. Meanwhile, the larger in-medium
nucleon-nucleon cross section (i.e., smaller η values) leads to
larger radial flow due to the frequent nucleon-nucleon collision
in the overlap zone. It is noticed that radial flow was already
extensively discussed in intermediate- and high-energy HIC
(e.g., by Helgesson et al. [63]).

For mid-rapidity p-p correlation, let us have a close look
at correlation strength versus the radial flow. Since we have
the relationship between the correlation strength at 20 MeV/c
(Cpp(q = 20 MeV/c)) versus beam energy as well as the radial
flow (β) versus beam energy, we can obtain the relationship
between Cpp(q = 20 MeV/c) and β which is displayed in
Fig. 7(a) in the condition of b = 3 fm and η = 0.2. It tells
us that the larger the radial flow velocity, the stronger the
proton-proton correlation. In the same way, we got Cpp(q =

FIG. 6. (a)–(c) Blast-wave fitting to pT spectra of protons in the
mid-rapidity region: (a) incident energy dependence for b = 3 fm
and η = 0.2, (b) impact parameter dependence at E = 1A GeV and
η = 0.2, and (c) in-medium cross-section dependence at b = 3 fm
and 1A GeV. (d)–(f) The fitted radial flow parameter (β) as a function
of (d) beam energy, (e) impact parameter at 1A GeV and η = 0.2, and
(f) in-medium cross-section reduction factor at 1A GeV and b = 3 fm.

20 MeV/c) versus β in Fig. 7(b) in the condition of E = 1A
GeV and η = 0.2 where the impact parameter is a variable.
In this case, anti-correlation is observed. Similarly, Cpp(q =
20 MeV/c) versus β is shown in Fig. 7(c) in the condition of
E = 1A GeV and b = 3 fm where the in-medium nucleon-
nucleon cross-section reduction factor is a variable. Here,
a slight increasing behavior is demonstrated. Seen from the
above three variables, we found no unique dependence of p-p
correlation function as a function of radial flow parameter.

IV. SUMMARY

In the present work, we use the IQMD transport approach
to calculate the phase-space points at the freeze-out stage
for Au + Au collisions from 0.4 to 1.5A GeV. Afterwards
the phase-space points were processed within the Lednický-
Lyuboshitz analytical formalism to reconstruct the proton-
proton correlation function. In this way, we systematically
study how the in-medium NN cross section affects the strength
of the momentum correlation function of proton-proton pairs
for Au + Au from 0.4 to 1.5A GeV in different rapidity
windows and different impact parameters. Results show that
the larger in-medium NN cross section results in a stronger
momentum correlation function than a smaller in-medium
NN cross section, especially at small impact parameters,
for the whole rapidity or projectile or target rapidity proton
pairs. This behavior is interpreted as a stronger correlation
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FIG. 7. Correlation strength at q = 20 MeV/c as a function of the
radial flow parameter (β) in different conditions. (a) Beam energy is a
variable as shown in figure, at fixed b = 3 fm and η = 0.2; (b) impact
parameter is a variable as shown in figure, at fixed E = 1A GeV
and η = 0.2; and (c) the in-medium nucleon-nucleon cross-section
reduction factor is a variable as shown in figure, at fixed E = 1A

GeV and b = 3 fm.

for equilibrium-like protons induced by the higher nucleon-
nucleon collision rate. However, for the mid-rapidity proton
emission, the in-medium nucleon-nucleon cross section has
less effect on the momentum correlation function due to a
very different emission mechanism. In addition, the impact
parameter effect on the HBT strength was also addressed in the
work. We showed that the HBT strength has a very different
dependence between the whole rapidity or projectile or target
rapidity proton pairs and the mid-rapidity proton pairs. For
proton pairs from the projectile or target rapidity, it decreases
with the increasing of impact parameter, but for proton pairs
from mid-rapidity, it increases with the increasing of impact
parameter. By fitting the momentum correlation function with
the Gaussian source, the effective proton emission source sizes
are extracted. Results show that the source radius generally
increases with the increasing of the impact parameter for
emitted protons within the whole rapidity or projectile (target)
rapidity; however, it decreases versus the impact parameter
for the mid-rapidity protons and it shows insensitivity to the
in-medium nucleon-nucleon cross section. The above phe-
nomenon reflects the evolution of source size with the collision
geometry; i.e., the mid-rapidity source becomes smaller but the
projectile or target source becomes larger with the increasing
of impact parameter. Moreover, the beam energy dependence
of the HBT strength is also presented. Generally, the HBT
strength shows a slight change with beam energy especially
for the whole-rapidity or projectile (target) rapidity proton
pairs. By using the blast-wave fits to the transverse momentum
spectra of mid-rapidity protons, the radial flow parameters are
systemically extracted as a function of beam energy, impact
parameter, and in-medium nucleon-nucleon reduction factor,
and therefore relationships of HBT strength versus radial flow
parameter are constructed in different conditions. However, no
unique dependence is found, which indicates the radial flow is
not a decisive variable for the p-p correlation.
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