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Folding model analyses of 12C-12C and 16O-16O elastic scattering using the density-dependent
LOCV-averaged effective interaction
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The averaged effective two-body interaction (AEI), which can be generated through the lowest order constrained
variational (LOCV) method for symmetric nuclear matter (SNM) with the input [Reid68, Ann. Phys. 50, 411
(1968)] nucleon-nucleon potential, is used as the effective nucleon-nucleon potential in the folding model to
describe the heavy-ion (HI) elastic scattering cross sections. The elastic scattering cross sections of 12C-12C
and 16O-16O systems are calculated in the above framework. The results are compared with the corresponding
calculations coming from the fitting procedures with the input finite range DDM3Y1-Reid potential and the
available experimental data at different incident energies. It is shown that a reasonable description of the elastic
12C-12C and 16O-16O scattering data at the low and medium energies can be obtained by using the above LOCV
AEI, without any need to define a parametrized density-dependent function in the effective nucleon-nucleon
potential, which is formally considered in the typical DDM3Y1-Reid interactions.
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I. INTRODUCTION

In recent years, there has been a growing interest in the
heavy-ion (HI) scattering. These collision processes were in-
vestigated widely both experimentally and theoretically. One
of the goals of studying the HI reactions is to determine the
form of the most suitable effective nucleon-nucleon potential,
to explain the experimental elastic scattering cross section data
[1,2]. For many years, the use of empirical parametrization of
nuclear potential was very common in the HI studies, but it
is desirable to relate the nucleus-nucleus (NN ) interactions
to the nucleon-nucleon (NN ) nuclear potential [3]. Many
attempts in this direction have been made, and recently, the
double-folding (DF) model was extensively used by many
groups in describing the HI scattering, since it gives a simple
possibility of numerical handling in two nucleus scattering
calculations [4].

In the folding model, the potential is usually generated
by folding an effective NN interaction over the ground-state
density distribution of the two nuclei [1,2]. In general, we need
a well-defined effective NN interaction which reproduces the
basic nuclear matter properties (like the saturation energy and
density), and, on the other hand, it can be used as a basic input
in the description of HI scattering qualitatively with respect
to the experimental data [5]. The M3Y interaction [6] and
its density-dependent versions [7–13], are usually used in the
folding model. Recently the G-matrix and extended Hartree-
Fock approaches [14–19], with and without the inclusion of the
three body force (TBF) and the rearrangement term (RT), were
applied for calculating the nucleon-nucleus and the nucleus-
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nucleus scattering cross section calculations (but mainly at
70 MeV), as well as obtaining the nuclear matter saturation
properties [equations of state (EOS)] [14]. The RT comes out
in the case of calculating the single particle energy and the
corresponding potential. But in the present work, we intend
to apply the lowest order constrained variational averaged
effective interaction LOCV AEI, which was generated by
using the input Reid68 potential in our previous work [20],
as the effective NN interaction, in the folding model to test
the validity of our interaction in describing the HI elastic
scattering. In this paper, we limit ourselves to the elastic
scattering of spherical projectile and spherical target nuclei,
so we consider the 12C-12C and 16O-16O elastic scattering.

A brief discussion about the LOCV method is given in
the Appendix. Contrary to the G-matrix approach, in the
LOCV formalism (which is based on the cluster expansion
[21]), the wave functions, e.g., the correlation functions, are
calculated through the Euler-Lagrange differential equations,
whereas the application of G operator on the plane wave
generates the interacting wave functions. Another advantage
of the cluster expansion is its expansion in the powers of
correlation functions (in the G-matrix language the wound
parameter) and the first power of the NN potential. So it
converges faster than the G-matrix approach which is an
expansion in the powers of the potential. On the other hand
since we directly calculate the LOCV AEI, there is no need to
calculate the RT in our approach. In Table I, the results of the
LOCV saturation properties of the symmetrical nuclear matter
(SNM) calculation for the Reid68 and �-Reid68 potentials (in
comparison to the empirical one) are presented. The LOCV
method is self-consistently predicted for the EOS of SNM
(for details see the Appendix and Table V). The one-body
(E1, simply the Fermi energy), two-body (E2), and three-body
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TABLE I. The nuclear matter saturation parameters (for Reid and �-Reid potentials) extracted from Ref. [22] (E3 denotes the inclusion of
the three-body cluster energy; see the Appendix).

With Reid With �-Reid Empirical

E1 + E2 E1 + E2 + E3 E1 + E2 E1 + E2 + E3

Saturation Fermi 1.61 1.46 1.55 1.44 1.38
momentum (fm−1)
Saturation binding 22.54 21.85 16.28 15.52 15.86
energy (MeV)
Compressibility (MeV) 340 298 300 277 (200–300)

Convergence parameter 0.127 0.085 0.093 0.062

cluster (E3) terms as well as the convergence parameters are
discussed in the Appendix.

In some of our LOCV calculations, we have taken into
account the effects of TBF such as the � box diagram (see
the Appendix). But in the present work, since we intend
to compare our results with those coming from the M3Y
interaction [6], which is based on the Reid68 potential, our
results will be limited to this interaction. However we hope in
our future works that the other interactions as well as the effects
of the TBF on the nucleus-nucleus differential cross sections
will be evaluated. In Table V it is clearly demonstrated that the
LOCV method predicts the SNM saturation properties close to
other methods, even with or without TBF [22]. We should point
out here that there are no extra parameters and conditions on
the LOCV method to predict the saturation properties of SNM.

In our recent paper [20], we derived the averaged effective
two-body interactions (AEI) through the lowest order con-
strained variational (LOCV) calculations for the SNM with the
Reid68 [23], the �-Reid68 [24] [which takes into the account
the effect of three-body force (TBF)], and the Aυ18 [25]
interactions as the input phenomenological nucleon-nucleon
potentials, and reformulated them in the radial and density-
dependent parts as well as its direct and exchange components.
Note that the radial parts are fixed and density-dependent
functions only depend on density which becomes a constant
at fixed density, i.e., similar to the M3Y calculations. Here as
we stated above, we only use the LOCV AEI with the input
Reid68 potential in the folding model and compare our results
with those coming from the DDM3Y1-Reid which uses a
finite range potential as the direct and exchange components,
i.e., M3Y interactions [4]. The LOCV effective two-body
interactions were tested by calculating the properties of the
light and heavy closed shell nuclei [26–28], and recently it was
used to calculate the in-medium nn cross section, the transport
properties of neutron matter [29,30], and the normal liquid
helium-3 [31]. In these works, it was shown that the LOCV AEI
gave reasonable results in comparison to the corresponding
available data.

This article is organized as follows: In Sec. II, we briefly
review the theoretical formalism of the double folding model.
The density distributions and the different kinds of effective
interactions used in the folding model as well as the computa-
tional procedure are also discussed in this section. The results
of the calculations and discussions are given in Sec. III, and
Sec. IV is devoted to the summary and conclusions.

II. THEORETICAL FORMALISM

A. Double folding model

Satchler and Love [32] presented the basic idea of the
folding model in detail and in Ref. [4] an improved version of
the folding model was introduced to calculate the exchange part
of the HI potential. We give here only a brief description of this
model and refer the reader to Refs. [1,2,32–35] for details. In
the first order of Feshbach’s theory for the optical potential, the
microscopic nucleus-nucleus potential can be evaluated as an
antisymmetrized Hartree-Fock type potential for the dinuclear
system [1,2,4]:

U = UD + UEX =
∑

i∈A1,j∈A2

[〈ij |υD|ij 〉 − 〈ij |υEX|ji〉], (1)

where |i〉 and |j 〉 refer to the single-particle wave functions of
nucleons in the two colliding nuclei A1 and A2, respectively;
υD and υEX are the direct and exchange parts of the effective
NN interaction. After doing some algebra, one can explicitly
write the energy-dependent direct and exchange potentials as

UD(E,R) =
∫

drpdrt ρp(rp)ρt (rt )υD(ρ,E,s),

s = rp − rt + R, (2)

UEX(E,R) =
∫

drpdrt ρp(rp; rp + s)ρt (rt ; rt − s)

× υEX(ρ,E,s)e(ikrel·s/Ared ). (3)

Note that, in general, the one-body density is written as ρ(r,r′).
In the case of direct term, it becomes ρ(rp) or ρ(rt ), i.e., the
diagonal terms, where rp and rt are the positions of the two
nucleons in the nuclei p (projectile) and t (target), respectively,
s = rp − rt + R corresponds to the distance between the two
specified interacting points of the projectile and the target, and
R is a vector from the center of the t nucleus to that of the p
nucleus. But in the case of the exchange terms, we have ρ(r,r′)
for each nucleus, i.e., nondiagonal terms, with (r = rp,r′ =
rp + s) or (r = rt ,r′ = rt − s). So for the exchange term the
densities are the functions of two different coordinates [4]. In
the above equations, the wave number krel is associated with
the relative motion of colliding nuclei, which is given by

k2
rel(R) = 2mnAred [Ec.m. − U (E,R) − VC(R)]/h̄2, (4)
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where Ared = ApAt/(Ap + At ), mn, Ec.m. and E are the
reduced mass number, the bare nucleon mass, the center-of-
mass (c.m.) energy, and the incident laboratory energy per nu-
cleon, respectively. Here U (E,R) = UD(E,R) + UEX(E,R)
and VC(R) are the total nuclear and the Coulomb potentials,
respectively. It can be seen from Eq. (3) that the energy-
dependent HI potential is nonlocal through its exchange term.
For simplicity of the numeric calculations, a realistic local
expression for the density matrix is usually used [36]:

ρ(R,R + s) � ρ
(

R + s
2

)
ĵ1

[
kF

(
R + s

2

)
s
]
, (5)

where ĵ1(x) = 3(sin x − x cos x)/x3. The explicit form of
kF (R) is given in Ref. [4]. In order to specify the overlap density
during the HI collision, we have applied the procedure used in
Ref. [4] that is called frozen density approximation (FDA). In
this approach, the overlap density ρ is taken to be the sum of
the densities of the target and the projectile densities at the
midpoint of the internucleon separation, i.e.,

ρ = ρp

(
rp + s

2

)
+ ρt

(
rt − s

2

)
. (6)

This procedure simply corresponds to the local density ap-
proximation assumed in the different nuclear matter studies
[4,26–28].

After performing some transformations one can obtain the
exchange potential in the following local form:

UEX(E,R)

= 4π

∫ ∞

0
υEX(s,E)s2dsĵ0[k(R)s/M]

∫
f1(r,s)

× f2(r − R,s)F [ρp(r) + ρt (r − R)]dr, (7)

where [F (ρ) will be defined later on; i.e., see Eqs. (19)–(25)
in Sec. II B]

f1(2)(r,s) = ρp(t)(r)ĵ1[kF1(2)(r)s], ĵ0(x) = sin x

x
. (8)

Applying the folding formulas in the momentum space [36],
one can write the exchange potential as

UEX(E,R) = 4π

∫ ∞

0
G(R,s)ĵ0[k(R)s/M]υEX(s,E)s2ds.

(9)

The explicit form of the G(R,s) function can be found in
Ref. [4].

As it can be seen from Eq. (4), the wave number of
relative motion krel(R) depends on the total HI potential, so
we encounter a self-consistency problem in obtaining the
exchange part of the HI potential at each radial point. In
general, this problem can be overcome by applying an iterative
procedure, as performed for the first time by Chaudhuri et al.
[37]. However, in Refs. [34,35] a closed expression was used
to obtain the exchange potential by using the multiplication
theorem of the Bessel function ĵ0[k(R)s/M]. In this paper, we
use the iterative method to ensure the self-consistency at all
the radial points, in which we chose UD(E,R) as the starting
potential to enter in the ĵ0[k(R)s/M] term in the exchange
integral, Eq. (9).

Since the effective NN interactions applied in the folding
model are real, the calculated HI potentials are also real,
so the imaginary part of the HI potential is usually treated
phenomenologically and its parameters are adjusted to op-
timize the fit to the observed scattering. In most cases, the
Woods-Saxon (WS) shape (with volume or the surface type) is
used for the imaginary potential. Finally the HI potential can
be written in the general form as

U (E,R) = NR[UD(E,R) + UEX(E,R)]

− iWV

[
1 + exp

(
R − RV

aV

)]−1

+ 4iWDaD

d

dR

[
1 + exp

(
R − RD

aD

)]−1

, (10)

where the renormalization coefficient NR together with the
parameters of the imaginary potential are adjusted to give the
best fit to the scattering data. The renormalization coefficient
NR is needed to account roughly for the many-nucleon ex-
change effects and the dynamical polarization potential (�U )
[32]. The volume or surface WS terms (the second and the
third terms at above formula) are usually used as the imaginary
potential in the elastic scattering analysis. However, we only
use the volume term in our present calculations.

In the calculation of the exchange potential, we need also the
Coulomb potential VC(R). According to Ref. [38], the different
models for the Coulomb potential do not have a serious effect
on the theoretical predictions. So, in our optical model (OM)
calculations, we chose the Coulomb potential to be a simple
interaction between a point charge and a uniform one with the
radius RC [3],

VC(R) = ZpZte
2

{ 1
R

R > RC

1
2RC

[
3 − (

R
RC

)2]
R < RC

(11)

with e2 = 1.44 MeV fm and RC = Rp + Rt , Ri = 1.76Z
1/3
i −

0.96 fm, with i = p,t .

B. Choice of the effective interaction and
the density distribution

As it can be seen from Eqs. (2) and (3), the basic inputs
in the folding model are the nuclear densities of the colliding
nuclei in their ground state and the effective NN interaction.
The density distributions should be normalized as∫

ρi(ri)dri = Ai, (12)

where Ai is the mass number of the projectile or the target
nucleus. In this paper, the nuclear densities of two colliding
nuclei are approximated by the two-parameter Fermi distribu-
tion: ρ(r) = ρ0{1 + exp[(r − c)/a]}−1 with parameters taken
from Table 1 of Ref. [39].

Given correct nuclear densities as inputs for the folding
calculations, it is still necessary to have an appropriate NN
interaction for a reasonable prediction of the nucleus-nucleus
potential. The bare nucleon-nucleon interaction, obtained from
analysis of NN scattering measurements, is too strong to
be used directly in the folding model, so it is common to

034611-3



M. RAHMAT AND M. MODARRES PHYSICAL REVIEW C 97, 034611 (2018)

use an effective in-medium interaction [1,2]. To evaluate an
in-medium NN interaction starting from a realistic free NN
interaction still remains a challenge for the nuclear many-body
theory. Therefore, most of the microscopic nuclear reaction
calculations so far still use different kinds of effective in-
medium NN interaction [4]. One of the most popular choices
for the NN interactions was based on the M3Y interactions
and its density-dependent versions [7–13]. These interactions
are designed to reproduce the G-matrix elements of the Reid
[6] and Paris [40] NN interactions in an oscillator basis
[1,26–28]. We refer to these as the M3Y -Reid and the M3Y -
Paris interactions, respectively. The explicit forms for the direct
part of interactions are [1,2]

M3Y -Reid: υD(r) =
[

7999
e−4r

4r
− 2134

e−2.5r

2.5r

]
MeV,

(13)

M3Y -Paris: υD(r) =
[

11 062
e−4r

4r
− 2538

e−2.5r

2.5r

]
MeV,

(14)

whereas the exchange parts of interactions in the finite-range
exchange (FRE) form (M3Y /FRE) are written as [1–4]

M3Y -Reid: υEX(r) =
[

4631
e−4r

4r
− 1787

e−2.5r

2.5r

− 7.847
e−0.7072r

0.7072r

]
MeV, (15)

M3Y -Paris: υEX(r) =
[
−1524

e−4r

4r
− 518.8

e−2.5r

2.5r

− 7.847
e−0.7072r

0.7072r

]
MeV. (16)

However, in many other calculations, the zero-range pseudopo-
tential (M3Y/PP ) is used to represent the knock-on exchange
[1,2]. But in this work we focus on the finite range interactions,
i.e., Eqs. (13) and (15).

The older potentials based upon the density-independent
M3Y interactions could reasonably reproduce the data of
HI scattering at the forward angle, or low energies [1,2].
Also, the ground-state energy of nuclear matter (in a

standard Hartree-Fock calculation) using the M3Y interactions
is calculated in Ref. [7]. One can realize that the density-
independent M3Y interactions do not fulfill the saturation
condition for cold nuclear matter, i.e., leading to collapse.
To ensure the predication of the nuclear matter saturation,
an appropriate density-dependent factor is introduced into the
original M3Y interaction. It is usually taken as an independent
factor that multiplied to the original radial M3Y interaction,
i.e., υD(EX)(r,ρ) = F (ρ)υD(EX)(r). As it is stated in Refs. [1,2],
there is no theoretical justification for this factorization, but it
leads to improving the description of nuclear matter properties
and the HI scattering data. Various forms for F (ρ) were
proposed. In the DDM3Y1 and CDM3Yn (n = 1–6), the
following is assumed for the density-dependent form of the
potential:

F (ρ) = C[1 + α exp(−βρ) − γρ]. (17)

In BDM3Yn (n = 0–3) interactions, a power law dependent
on ρ is supposed:

F (ρ) = C(1 − αρβ). (18)

The parameters C, α, β, and γ are adjusted to reproduce the
saturation of cold symmetric nuclear matter at ρ0 = 0.17 fm−3

and a binding energy per nucleon of about 16 MeV. The values
of these parameters for CDM3Yn, DDM3Y1, and BDM3Yn
interactions are given in Refs. [1,2,7,38,41]. As we pointed out
before for comparison we focus on the finite range DDM3Y1
interaction [4].

In the course of these application to theNN scattering data,
it is necessary to introduce an additional energy dependent
factor over which is provided by localization of the exchange
potential

υM3Y
D(EX)(r,ρ,E) = υM3Y

D(EX)(r)F (ρ)g(E), (19)

where g(E) = [1 − k(E/A)] with k = 0.002 MeV−1 or k =
0.003 MeV−1 for the Reid interaction or the Paris interaction
[3], respectively. However none of the above potentials come
from a Hamiltonian based many-body microscopic calculation.

In the present work, the LOCV density-dependent averaged
effective two-body interaction (AEI) is generated though the
LOCV method with the bare nucleon-nucleon phenomenolog-
ical Reid68 potential, and inserted as an input to the folding
model calculations. In our previous work [20], we obtained
the direct and the exchange parts of the density-dependent
nucleon-nucleon AEI as follows (see the Appendix for the
definition of a and V):

V̄D
eff (r,ρ) =

∑
α,i,j,k(2T + 1)(2J + 1) 1

2V
j,k
α (r,ρ)a(i)2

α (r,ρ)∑
α,i(2T + 1)(2J + 1) 1

2a
(i)2

α (r,ρ)
, (20)

V̄EX
eff (r,ρ) =

∑
α,i,j,k(2T + 1)(2J + 1) 1

2 [(−1)L+S+T ]Vj,k
α (r,ρ)a(i)2

α (r,ρ)∑
α,i(2T + 1)(2J + 1) 1

2 [(−1)L+S+T ]a(i)2

α (r,ρ)
, (21)

where α = JLST ; J is the total orbital angular momentum of two nucleons, i.e., L plus S, and T is the total isospin of two
nucleons. Then we have reformulated these interactions as the product of a pure radial and a pure density-dependent part:

V̄D(EX)
eff (r,ρ) = V̄D(EX)(r)FD(EX)(ρ). (22)
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TABLE II. The parameters of the density-dependent part of the
direct and the exchange components [F D(EX)(ρ)] of the LOCV AEI
using the Reid68 interaction as the input potentials.

C α β

Direct component 0.38 5.03 3.22
Exchange component 13.57 −0.9 0.12

Here, we chose V̄D(EX)(r) and FD(EX)(ρ) to give the best
fit to the LOCV V̄D(EX)

eff (r,ρ) and the corresponding equation
of state (LOCV-EOS) of nuclear matter. The reader should
note that, by this statement, we mean that the fitted potentials
should again reproduce the SNM saturation properties given in
Table I.

There are many different functions which can fit FD(EX)(ρ)
well enough. A detailed role of description of density-
dependent factor (F ) can be found in our previous work
[20], where we stated that the LOCV AEI includes a radial
part and a density-dependent part and we show that the
radial part form of the LOCV AEI is fixed in any density
(exactly like the M3Y type interactions) and the EOS of SNM
without taking into account the density-dependent factor did
not fulfill the saturation condition and the system was collapsed
(see Fig. 7 of Ref. [20]). But one should notice that our
density-dependent factor is not an external factor and it comes
from the LOCV calculations. So, we just parametrized it in
a suitable form [i.e., see below, Eq. (23)] (the exponential
dependent form for density). In Ref. [21], we compared the
direct and exchange parts of the LOCV AEI with the corre-
sponding results of the M3Y interactions (see Figs. 1 and 4 of
Ref. [20]).

So as we stated above, similar to our previous work
[20], in order to reproduce the LOCV-EOS of nuclear matter
properly, we use the power-law dependent on ρ: FD(EX)(ρ) =
CD(EX)(1 − αD(EX)ρβD(EX)

). In this paper, we use the ex-
ponential dependent form for ρ (similar to the DDM3Y1
interaction):

FD(EX)(ρ) = CD(EX)[1 + αD(EX) exp(−βD(EX)ρ)]. (23)

This choice allows us to easily calculate the integration of the
double-folding equations in the momentum space [1,2]. The
parameters of Eq. (23) are given in Table II.

Similar to the M3Y interactions, in order to apply the LOCV
AEI to the NN scattering data, we need to add an explicit
energy-dependent factor to our LOCV AEI to obtain the best
description of HI scattering by taking into account the variation
in the incident energy. We found that this factor can be assumed
as the linear dependent to the incident energy per nucleon,
which is similar to the M3Y interactions, i.e., g(E) = [1 −
k(E/A)]. So, we can rewrite the LOCV AEI as

V̄D(EX)
eff (r,ρ,E) = V̄D(EX)(r)FD(EX)(ρ)g(E). (24)

Here, as in other HI works, the k is chosen to give the best fit
to the NN scattering data. It is shown that in the case of our
LOCV AEI by choosing k = 0.003 MeV−1, the optimized fit

will be acquired. However, the calculation is not very sensitive
to this parameter if it is chosen in its order.

C. Computational procedure

At first, we calculate the real part of the folded potential for
12C-12C and 16O-16O elastic scattering by the double folding
formula, i.e., Eqs. (2) and (3). Then we use the LOCV AEI
as the effective NN interactions and the two-parameter Fermi
distribution for the nuclear densities of the projectile and the
target nuclei. Now, in order to compute the scattering differ-
ential cross section, we also use the FRESCO code developed
by Thompson [42] which is developed for the calculation
of different types of nucleon-nucleus and nucleus-nucleus
scattering cross sections. This code is capable of using our
folded potential directly, to calculate the elastic scattering cross
section.

We will discuss our resulting potentials and the elastic
scattering cross section for 12C-12C and 16O-16O systems in
the next section. Generally, the goodness of our resulting cross
section is quantified via the χ2 expression [1,2],

χ2 = 1

Nσ

Nσ∑
i=1

(σth − σex)2

(�σex)2
, (25)

where σth and σex are the theoretical and the experimental
cross sections and �σex is defined as the uncertainties in
the experimental cross sections, respectively. Nσ is the total
number of angles at which measurements are made.

III. RESULTS AND DISCUSSIONS

As it was pointed out in the previous section, in order to
calculate the direct and exchange components of the real part
of the HI optical potential, we use the direct and exchange
parts of the LOCV AEI as the effective NN potential in the
double folding formula [Eqs. (2) and (3)]. Since the wave
number of relative motion krel(R), Eq. (4), depends on the total
HI potential, we are faced with a self-consistency problem in
obtaining the exchange part of the HI potential at each radial
point. So, we apply the iterative method at each point and use
UD(E,R) as the starting potential to enter ĵ0(k(R)s/M) in the
exchange integral, Eq. (9), i.e., as it is performed when one
considers the M3Y interactions in the folding formula [4].

Unfortunately at small internuclear distances (R � 1 fm),
the iterative method for calculating the exchange potential
based on the LOCV AEI does not converge reasonably. Of
course, with increasing the incident energy, this problem will
be solved. Due to this low convergence speed of iterative
method in the case of the insertion of the LOCV AEI in
the folding formula, we need a much higher number of
iterations with respect to the M3Y interactions in obtaining
the exact self-consistent results for UEX(E,R), especially at
small internuclear distances. According to Ref. [4], in the case
of the M3Y interactions, the number of iterations required is
around 20 at the smallest radii and ranges from 3 to 5 at the
surface region, while, in the case of the LOCV AEI, it is around
150–200 at the smallest radii and around 2 or 3 at the surface
region. For this reason, too much CPU computer time is needed
to calculate the exchange part of the HI potential in the case of
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FIG. 1. The calculated direct and the exchange components and
the total folded potential, by using LOCV AEI for the 12C-12C
system at the several incident energies, i.e., Elab = 112 (full curve),
126.7 (short-dash curve), 240 (long-dash curve), 300 (long-short-dash
curve), 360 (long-double-short-dash curve) MeV.

the LOCV AEI. For example for the 12C-12C elastic scattering
at Elab = 300 MeV, it took about 50 h computer CPU time by
using the high performance computing (HPC) machine of the
university of Tehran. Because of the different radial shapes of
the LOCV AEI with respect to the M3Y interactions at the
small distances, this problem is expected. Conversely to the
M3Y potentials, due to short range correlations coming from
the channel-dependent correlation functions, at very small
distances, the direct and exchange components of the LOCV
AEI go to zero (see Figs. 1–4 of Ref. [20]) and this behavior
makes the iterative method not converge at these distances
as quickly as for the M3Y interactions. While, the M3Y
interactions are constructed from the selected channels of, for
example, the Reid68 potential, i.e., the singlet and the triplet
even and odd components, one is not faced with this problem.

In Figs. 1 and 2, we plot the calculated direct, exchange,
and also the total components of the folded potential by using
the LOCV AEI for 12C-12C and 16O-16O systems at several
incident energies, i.e., 112, 126.7, 240, 300, and 360 MeV for
12C-12C and 124, 145, 250, 350, and 480 MeV in the case

FIG. 2. As in Fig. 1 but for the 16O-16O system and Elab = 124
(full curve), 145 (short-dash curve), 250 (long-dash curve), 350 (long-
short-dash curve), 480 (long-double-short-dash curve) MeV.

of 16O-16O [note that we extrapolate the folded potential at
the small distances (R < 1 fm) for some points that in the
iterative method do not converge rapidly for the calculation
of the exchange potential based on LOCV AEI]. Comparing
the exchange parts with the direct parts at each incident energy,
one can observe that most of the energy dependence of the HI
potential arisies from the exchange part, as one should expect.
We also notice that at small internuclear distances, which
correspond to large overlap densities (ρ > ρ0), the exchange
potential is deeper than the direct potential, especially at
lower energies, and this shows that the density-dependent
contribution of the HI potential predominately comes from the
exchange term. On the other hand, in the surface region, which
corresponds to the small overlap densities, all the calculated
direct and exchange potentials are close in strength and slope.
Figures 1 and 2 also show that with increasing the incident
energy of the projectile, the depth of the HI potential at the
origin is decreased systematically. Similar results were already
reported in calculating the folded potential using the M3Y
interactions; see, for example, Refs. [4,5].

We compare our calculated folded potential using the
LOCV AEI with the corresponding results of DDM3Y1 [4]
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FIG. 3. The comparison of the calculated folded potentials using
the LOCV AEI (the full curve) and the DDM3Y1 [4] (short-dash
curve) potential for the 12C-12C scattering at Elab = 300 MeV.

for the cases of 12C-12C at Elab = 300 MeV and 12O-12O
at Elab = 350 MeV in Figs. 3 and 4, respectively. It can be
observed that the folded potentials by using the LOCV AEI
are deeper than the DDM3Y1 ones. For the other energies,
the similar results are obtained.

The results of our folding analysis for 12C-12C elastic
scattering at incident energies ranging from 112 to 360 MeV
with the FRESCO code are presented in Fig. 5 while Table III
shows the WS parameters of the imaginary part of the HI
potential for the same system and at the same energies as well
as σR and χ2 (with respect to the experimental data, see the
next paragraph). In this paper we take the imaginary part of
the HI potential as the conventional WS form and adjust its
parameters to obtain the best description of the experimental
scattering data in the whole angular range at each incident
energy. The parameters in Table III are close to those found in

TABLE III. The WS parameters of the imaginary part of HI
potential used in our folding analysis of the 12C-12C elastic scattering
at Elab = 112,126.7,240,300,360 MeV.

Elab

(MeV) NR WV (MeV) RV (fm) aV (fm) σR (mb) χ 2

112 0.9383 17.4 5.403 0.70 1526.79 36.52
126.7 0.9230 19.10 5.128 0.79 1563.51 41.86
240 1.0207 28.90 5.266 0.69 1551.95 39.34
300 0.9731 33.82 4.991 0.72 1497.85 18.33
360 0.9684 34.5 4.808 0.70 1374.73 9.81

16O-16O, Elab=350 MeV
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FIG. 4. As in Fig. 3 but for the 16O-16O scattering at Elab =
350 MeV.

an earlier analysis for DDM3Y1-Reid (see Table 2 of Ref. [4]).
Table III also shows that the best fit to the scattering data can
be found by using the values of NR which are slightly deviated
from unity. This result indicates that the high-order effects are
negligible in our calculations.

Figures 5(a)–5(e) show the calculated cross section of
12C-12C elastic scattering at several incident energies, i.e.,
112, 126.7, 240, 300, and 360 MeV, by using the LOCV
AEI folded potential in the FRESCO code. The scattering
experimental data [43–51] and the resulting cross sections of
the DDM3Y1 [4] are also presented. It is observed that a quite
good description of data scattering can be obtained by using the
LOCV AEI and adjusting the imaginary potential parameters
and renormalization coefficient. However, in comparison to
the DDM3Y1 (Reid) results [4], our results may not be too
satisfactory, especially at forward angles, but one should notice
that the DDM3Y1 potential was constructed from the selected
channels of the Reid68 potential and its density-dependent
factor was added to it later, to provide a reasonable description
of HI scattering data and the equation of state (EOS) of
nuclear matter, while the LOCV AEI are constructed based
on the many-body calculations without any free parameters in
the LOCV calculations and its density-dependent part comes
directly from the LOCV formalism (obviously the LOCV
formalism has its own EOS, i.e., LOCV EOS). It is worthwhile
to say that, by increasing the incident energy, a better fit to the
scattering data is achieved using the LOCV AEI at forward
angles.

The calculated cross sections using the LOCV AEI for
16O-16O elastic scattering at incident energies ranging from
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FIG. 5. The calculated cross sections of the 12C-12C elastic scattering at Elab = 112,126.7,240,300,360 MeV by using the LOCV AEI (the
full curve) using the FRESCO code. The experimental scattering data (the full dotted points) and the resulting cross section of the finite range
interaction DDM3Y1 [4] (the dash curve) are also presented. The experimental data are taken from Refs. [43–46].

124 to 480 MeV are plotted in Figs. 6(a)–6(e). The scattering
experimental data [43–51] show a clear refractive pattern
at large angles and a diffractive pattern produced by an
interference between near-side and far-side components of the
scattering amplitude at the small angles. The refractive pattern
can be clearly distinguished from the diffractive structure, i.e.,
itshifts substantially towards the small angles with increasing
incident energy [5].

One can realize that our calculated cross sections can predict
reasonably the behavior of scattering data on large ranges of
scattering angles [43–51]. Similar to the results obtained above
for the 12C-12C system, there exist considerable differences
between our results with respect to the experimental data and
those coming from DDM3Y1. Again, a similar discussion can
be made for these results as the one we made above for 12C.
In this case, it can also be observed that the agreement of our
calculations with the scattering data are getting better as the
energies of projectile are increased. To improve the agreement
of the calculated cross sections using the DDM3Y1-Reid

and DDM3Y1-Paris with data in the large-angle region, in
Refs. [4,5] a surface (WSD) term was included in the imaginary
part of the potential. We hope, in our future works, we could
investigate the inclusion of the WSD term to improve our
results.

Table IV shows the parameters of our WS imaginary po-
tential and renormalization coefficient for the 16O-16O system

TABLE IV. The same as Table III but for the 16O-16O elastic
scattering at Elab = 124,145,250,350,480 MeV.

Elab (MeV) NR WV (MeV) RV (fm) aV (fm) σR (mb) χ 2

124 0.9455 15.3 6.30 0.93 2201.99 34.34
145 1.007 16.4 6.199 0.95 2226.17 37.07
250 1.011 31.6 5.695 0.86 2091.89 39.71
350 0.9890 36.76 5.544 0.77 1876.58 21.19
480 0.9703 42.65 5.241 0.79 1778.03 42.37
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FIG. 6. As in Fig. 5 but for the 16O-16O scattering at Elab = 124,145,250,350,480 MeV. The experimental scattering data are taken from
Refs. [47–51].

at different incident energies, as above. Again, we can see
that the values of NR are close to unity and our WS param-
eters are in agreement to the WS parameters of DDM3Y1
analysis [4].

IV. SUMMARY

In conclusion, we analyzed the experimental data of 12C-12C
and 16O-16O elastic scattering at different incident energies,
within the standard optical model (OM), using the density-
dependent LOCV AEI. The direct and exchange parts of
LOCV AEI were generated based on the LOCV method for
the symmetric nuclear matter, using the Reid68 interaction
as the input phenomenological potential. In order to use our
interaction in the folding model, we separated the radial and
the density-dependent parts of the LOCV AEI. Our calculated
cross sections for the 12C and 16O systems indicate that a quite
reasonable description of data scattering can be obtained by
using the LOCV AEI and adjusting the imaginary potential pa-
rameters and the renormalization coefficient. Our calculations
favor a rather weak imaginary potential and a small deviation

of the renormalization factor from unity. Comparing our
calculations with corresponding results of the DDM3Y1, we
show some considerable differences. But one should notice that
the M3Y interactions are semiphenomenological potentials
and they are constructed from the selected channels of the Reid
potential, i.e., the singlet and triplet even and odd components
and the parameters of its density-dependent part are adjusted
to gain a reasonable description of HI scattering data and the
EOS of nuclear matter. So, it is natural to fit the scattering
data better than ours. While the LOCV AEI are based on
the many-body calculation with the phenomenological NN
potential without any free parameters, i.e., there are no free
parameters in the LOCV formalism besides the NN potential
and its density-dependent part comes directly from the self-
consistent LOCV calculations. So it is meaningful to apply the
LOCV AEI interaction to the heavy-ion scattering as the first
attempt, but we hope improvement of the present model could
be achieved in the near future.

The spite of the slow convergence speed of iterative pro-
cedure in using the LOCV AEI in calculating the exchange
potential, especially at small internuclear distances which
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increases the computing time, since the LOCV AEI are based
on the many-body calculations, they are more trustable for
the NN collision calculations. So, with respect to the above
arguments, because the LOCV AEI provides a reasonable
description of the normal nuclear matter [20] as well as the HI
elastic scattering data simultaneously, we can claim the LOCV
AEI is a good candidate to approximate the NN interaction for
the nuclear matter and finite nuclei.

Finally we should note that the insertion of other phe-
nomenological nucleon-nucleon potential, such as the Av18

potential, should not make any dramatic change to our present
results, but it is worthwhile to investigate.
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APPENDIX A: A BRIEF INTRODUCTION TO THE LOCV
FORMALISM WITH THE REID68 INTERACTION

In the LOCV method, we use an ideal Fermi gas type
wave function for the single particle states and the variational
techniques to find the wave function of the interacting system
[22,52–56], i.e.,

ψ = F�, (A1)

where (S is a symmetrizing operator)

F = S
∏
i>j

F (ij ). (A2)

The correlation functions F (ij ) are operators and they are
written as

F (ij) =
∑
α,k

f (k)
α (ij)O(k)

α (ij). (A3)

In the above equation α = {S,L,J,T }, k = 1,3 and

Ok=1,4
α = 1,

(
2
3 + 1

6S12
)I

,
(

1
3 − 1

6S12
)I

. (A4)

In the case of the Reid68 potential, the spin-singlet channels
with the orbital angular momentum L 	= 0 and the spin-triplet
channels with L 	= J ± 1,k is superfluous and set only to unity,
while for L = J ± 1 it takes the values of 2 and 3. All of the
channel correlation functions f (1)

α , f (2)
α , and f (3)

α heal to the
modified Pauli function fP (r),

fP (r) = [1 − l(kF r)2]−1/2 (A5)

with

l(x) = 3

2x
J1(x), (A6)

where JJ (x) are the familiar spherical Bessel functions and
the Fermi momenta kF is fixed by the nuclear matter density,
i.e., kF = ( 3π2

2 ρ)1/3.

The nuclear matter energy per nucleon is [22,53–56],

Ein = TF + EMB[F ]. (A7)

TF is simply the Fermi gas kinetic energy and it is written as

TF = 3

5

h̄2k2
F

2m
. (A8)

The many-body energy term EMB[F ] is calculated by con-
structing a cluster expansion for the expectation value of our
Hamiltonian,

H =
∑

i

pi
2

2m
+

∑
i>j

Vij , (A9)

where Vij is the bare N -N interaction. Then, we keep only the
first two terms in a cluster expansion of the energy functional:

E[F ] = 1

A

〈|H |〉
〈|〉

= TF + EMB = TF + E2 + E3 + · · · . (A10)

The two-body energy term is defined as

E2 = (2A)−1
∑
ij

〈ij |V(12)|ij 〉a, (A11)

where

V(12) = − h̄2

2m
[F (12),[∇2

12,F (12)]] + F (12)V (12)F (12)

(A12)

and the two-body antisymmetrized matrix element 〈ij |V|ij 〉a
are taken with respect to the single-particle functions compos-
ing �, i.e., the plane waves. In the LOCV formalism EMB

is approximated by E2 and one hopes that the normalization
constraint makes the cluster expansion converge very rapidly
and bring the many-body effect into the E2 term.

By inserting a complete set of two-particle states twice in
Eq. (A11) and performing some algebra, we can rewrite the
two-body term as follows:

E2 = ENN
c + ENN

T , (A13)

where (c and T stand for the central and tensor parts, respec-
tively)

E
j
i = 2

π4ρ

∑
α

(2T + 1)(2J + 1)
1

2
{1 − (−1)L+S+T }

×
∫ ∞

0
r2drV i,j

α (r,ρ)a(1)2

α (r) (A14)
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and (i = c and T )

Vc,NN
α (r,ρ) = h̄2

m

{
f (1)′2

α + m

h̄2 V c
α f (1)2

α

}
, (A15)

VT ,NN
α (r,ρ) =

{
h̄2

m

{
f (2)′2

α + m

h̄2

(
V c

α + 2V T
α − V LS

α

)
f (2)2

α

}
aα(r)(2)2 + h̄2

m

{
f (3)′2

α + m

h̄2

(
V c

α − 4V T
α − 2V LS

α

)
f (3)2

α

}
a(3)2

α (r)

+
{
r−2

(
f (2)2

α − f (3)2

α + m

h̄2 V LS
α f (2)

α f (3)
α

)}
b2

α

}
a(1)−2

α (r), (A16)

a(1)2

α (r,ρ) = IJ (r,ρ), (A17)

a(2)2

α (r,ρ) = (2J + 1)−1[(J + 1)IJ−1(r,ρ) + JIJ+1(r,ρ)], (A18)

a(3)2

α (r,ρ) = (2J + 1)−1[JIJ−1(r,ρ) + (J + 1)IJ+1(r,ρ)], (A19)

b2
α(r,ρ) = 2J (J + 1)(2J + 1)−1[IJ−1(r,ρ) − IJ+1(r,ρ)], (A20)

IJ (r,ρ) = (2π6ρ2)−1
∫

|k1|,|k2|�kF

dk1dk2J 2
J (|k1 − k2|r). (A21)

The potential functions V c
α ,V T

α ,..., etc., are given in
Refs. [26,27]. The calculation of E3 is discussed in Ref. [57]
and references therein.

The normalization constraint as well as the coupled and
uncoupled differential equations for the NN channels, com-
ing from the Euler-Lagrange equations, are similar to those
described in Refs. [22,53–56].

The following are important points consider in the LOCV
formalism: (i) Besides the interparticle potentials, no free
parameter is used in the LOCV method, i.e., it is fully self-
consistent. (ii) To keep the higher cluster terms as small as
possible, it considers the constraint in the form of a normal-
ization condition [22,53–56]. This was tested by calculating
the three-body cluster terms with both the state-averaged and
the state-dependent correlation functions [57]. (iii) In order
to perform an exact functional minimization of the two-body
cluster energy with respect to the short-range behavior of
correlation functions, it assumes a particular form for the
long-range part of the correlation functions. (iv) Rather than
simply parametrizing the short-range behavior of the correla-
tion functions, it performs an exact functional minimization
[58]. So, in this respect it also saves an enormous amount
of computational time. For example, a nuclear matter LOCV
calculation with the Nijmegen group potentials at the given
density takes a few minutes of CPU time on a 1.8-GHz personal
computer.

Recently [59], it was shown that the neutron (nuclear) matter
LOCV calculations with the various two-body interactions,
e.g., the Bethe homework potential and the Argonne Av′

8
interaction [58], reasonably agree with those of FHNC and
auxiliary field diffusion Monte Carlo (AFDMC) [60–65] meth-
ods. Moreover, it was realized that the different many-body
methods such as the LOCV and the fermion hypernetted
chain FHNC approaches give results close to each other when

the normalization constraint is imposed in its correct form.
Therefore, the normalization constraint plays an important role
in minimizing the many-body terms.

So in the LOCV framework by using, e.g., the Reid68
interaction, we solve the set of Euler-Lagrange differential
equations to find the correlation functions. Then we can
find the SNM-EOS by calculating the expectation value of
the Hamiltonian. The minimization of the LOCV EOS gives
some values for the binding and saturation density of the
SNM, demonstrated in Tables I and V. Obviously, as is well
known, one should not expect to get the exact SNM empirical
values. But in the M3Y type interactions, the situation is
different; in order to ensure the empirical saturation density
and the binding energy as well as incompressibility of the
symmetric nuclear matter, an external density-dependent factor
is multiplied to the original radial M3Y interactions and the
constants of this density-dependent function are obtained such
that one could reproduce these empirical saturation properties
for the SNM. So the case of the LOCV method is different
from the M3Y type interactions. The separation of radial and
density-dependent parts of the LOCV AEI is done only to
make it possible to use the LOCV AEI in the double folding
procedure.

In Table V we compare the LOCV results on the satura-
tion properties of SNM by using different interactions with
other many-body techniques (the BB, BHF, CBF, and BHF-
ESC stand for the Brueckner-Bethe, Brueckner-Hartree-Fock,
correlated-basis function, and BHF using extended-soft-core
interactions; see Refs. [22] and [14], and references therein, for
details, respectively). So the EOS of SNM is directly calculated
by the LOCV formalism and there is no other constraint for
obtaining the saturation properties of SNM.

Finally we should mention that the effect of TBFs have been
fully discussed especially in Refs. [22,53,55].
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TABLE V. Saturation energy and the density of nuclear matter as well as its incompressibility for different potentials and many-body
methods. See Ref. [22] for details.

Potential Method Author ρ0 (fm−3) E(ρ0) (MeV) K (MeV)

AV18 LOCV BM [22] 0.310 −18.46 302
AV14 LOCV BM [22] 0.290 −15.99 248

FHNC WFF [22] 0.319 −15.60 205
BB DW [22] 0.280 −17.80 247

BHF BBB [22] 0.256 −18.26
UV14 LOCV BM [22] 0.366 −21.20 311

FHNC CP [22] 0.349 −20.00
FHNC WFF [22] 0.326 −17.10 243

UV14 + TBF LOCV BM [22] 0.170 −17.33 276
FHNC WFF [22] 0.157 −16.60 261
CBF FFP [22] 0.163 −18.30 269

�-Reid LOCV MI [22] 0.258 −16.28 300
Reid LOCV OBI [22] 0.294 −22.83 340

LOCV MO [22] 0.230 −14.58 238
ESC BHF FSY [14] ∼0.14 ∼−12.00 ∼84
ESC-TBA BHF FSY [14] ∼0.16 ∼−14.00 ∼173
ESC-TBA-strong BHF FSY [14] ∼0.19 ∼−16.00 ∼260
Empirical 0.170 −15.86 (200–300)
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