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Applying the evolutionary model-independent S-matrix approach, we show that a simultaneous correct
description of the 4He-40Ca elastic scattering patterns observed in going from anomalous large-angle scattering to
near-Coulomb-barrier scattering (NCBS) can be achieved in a unified way using S-matrix moduli and real parts
of nuclear phase, which are smooth and monotonic functions of an angular momentum, while quantum deflection
functions retain a form characteristic of the nuclear rainbow case. Mechanism of NCBS pattern formation and
transformation of the pattern into a pure Coulomb scattering pattern with decreasing energy in the presence of
strong nuclear refraction is revealed.
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I. INTRODUCTION

To date, the 4He-40Ca elastic scattering differential cross
sections at E ≈ 5–25 MeV/nucleon that show patterns of
nuclear rainbow, prerainbow, and anomalous large-angle scat-
tering (ALAS) have been thoroughly investigated both ex-
perimentally and theoretically (see, e.g., Refs. [1–7]). These
scattering patterns were jointly analyzed using various rep-
resentations for the optical potential (see, e.g., Refs. [2,7–
11]) that generate S-matrix moduli and real parts of nuclear
phase having nonmonotonic behavior in the angular momen-
tum space in the cases of prerainbow and ALAS (see, e.g.,
Refs. [1,5,12,13]). The same quantities obtained within the
S-matrix approach of Ref. [12] for the case of ALAS also
turned out to be nonmonotonic.

Neither the optical potential, nor the scattering matrix used
in theoretical analyses can be experimentally measured and
are usually determined using various “physically reasonable”
assumptions that depend more or less on the model, since the
functions used to model the characteristics under consideration
are more or less properly parameterized analytical functions.
Thus, the spaces for finding all possible shapes for optical
potential and S matrix are substantially reduced, and conse-
quently data analyses performed within such spaces might lead
to an incorrect physical interpretation of the data.

That is why it would be highly desirable to use a procedure
that could extract the scattering matrix and/or optical potential
directly from the experimental data without introducing any
bias toward some a priori “physically reasonable” model
assumptions. The question that this procedure should answer
is whether nonmonotonic (e.g., polelike) structures and any
other distortions that appear in S-matrix moduli and real
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nuclear phases obtained in the most successful approaches are
necessary to reproduce the experimental data under study.

The quality of fitting the calculated differential cross section
to the experimentally measured one is usually estimated by
means of the standard χ2 magnitude, which is a functional,
so its minimization is a variational problem. In Ref. [14]
we present a universal evolutionary algorithm that evolves a
population of numerical solutions of a variational problem. Our
algorithm guarantees a gradual and smooth transformation of
the initial population of poorly fitted solutions into a finite
population of well fitted ones. The evolved solutions are
model-independent, smooth, can have a predefined shape (if
necessary), and satisfy the boundary conditions or any other
additional physical conditions (if they are imposed).

Applying the evolutionary model-independent S-matrix
approach [15] that implements the mentioned algorithm,
we have achieved the consistent unified description of all
the observed 4He-40Ca elastic scattering pictures at E ≈
7–21 MeV/nucleon using conventional smooth monotonic
dependencies of S-matrix modulus and the real part of the
nuclear phase on the angular momentum in the presence of
strong nuclear refraction [16].

With further decrease in the energy of incident particles
(E � 5 MeV/nucleon), ALAS picture (with unusual enhance-
ment of regular oscillations at large angles) gradually trans-
forms into a near-Coulomb-barrier scattering (NCBS) picture
(without oscillations inherent in ALAS, and with a pronounced
influence of the Coulomb interaction of colliding nuclei).
Thus far, to our knowledge, neither the smoothly varying
global optical potential, nor the single potential family has
been found to describe all the variety of scattering pictures
(including NCBS picture) observed in the 4He-40Ca elastic
scattering at E < 25 MeV/nucleon. It is therefore important to
extend the unified S-matrix description of the 4He-40Ca elastic
scattering achieved in Ref. [16] for E ≈ 7–21 MeV/nucleon
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FIG. 1. (a) Scattering matrix moduli η(l), (b) nuclear phases δr (l), and (c) deflection functions �(l) for the 4He-40Ca elastic scattering at
E = 4.5–27.0 MeV.

to NCBS region in a systematic way using the scattering
matrix modulus and the real part of the nuclear phase,
which are smooth and monotonic functions of the angular
momentum.

II. CALCULATION PROCEDURE

In our approach, the scattering matrix describing
the 4He-40Ca elastic scattering has the form S(l) =
SN (l) exp [2iσC(l)], where SN (l) = η(l) exp [2iδr (l)] is the
nuclear part, σC(l) is the Coulomb scattering phase taken to
be the quasiclassical phase of point-charge scattering by a
uniformly charged sphere with the radius RC = 1.3 × 401/3

(see, e.g., Ref. [17]) at above-Coulomb-barrier energies and
the ordinary Coulomb phase for scattering of two point charges
at lower energies, η(l) = exp [−2δa(l)] is the scattering matrix
modulus, δr (l) is the nuclear refraction phase (real part of the
nuclear phase), and δa(l) is the nuclear absorption phase (imag-
inary part of the nuclear phase). Calculations are performed
using the expansion of the scattering amplitude into a series

of Legendre polynomials. The elastic scattering differential
cross section equals the squared modulus of this amplitude.
The quality of fitting the calculated differential cross section
to the experimentally measured one is estimated using the
standard χ2 magnitude per datum. The experimental errors
are assumed to be equally weighted (10% error bars) (e.g.,
Refs. [4,12,16,18]).

Our evolutionary model-independent S-matrix approach
[14–16] operates on a population of N individuals. Each
individual is an S matrix presented as a pair of real-valued lmax-
dimensional vectors [δa(l),δr (l)], l = 0,1,...,lmax − 1. Fitness
of each individual reflects the quality of data fitting provided
by the individual’s S matrix. Using the mutation operation,
the algorithm evolves the initial population of poorly fitted
individuals to the final population of the well-fitted ones.

Every iteration, the so-called generation, of our procedure
contains the following steps.

(1) Generating the initial population of N individuals. For
each individual, vectors δa,r (l) are set using a physically
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TABLE I. Energy evolution of the values of the nuclear trans-
parency η(0), the intensity of nuclear refraction 2δr (0), the nuclear
rainbow angle θR , the total reaction cross section σ t

R , and the χ 2/Np

magnitude for the calculated cross sections.

E (MeV) η(0) 2δr (0) (rad) θR (deg) σ t
R (mb) χ 2/Np

27.0 1.962×10−2 39.216 332 1269 3.6
24.7 3.025×10−2 41.311 367 1194 3.7
22.0 6.303×10−2 42.145 420 1163 3.8
18.0 8.191×10−3 45.717 494 1008 3.7
16.0 7.922×10−3 48.040 559 968 3.7
14.4 5.838×10−3 49.414 625 963 3.8
12.5 1.017×10−3 52.383 727 954 3.6
10.5 2.031×10−3 55.524 868 813 1.6
8.5 1.421×10−2 62.586 1068 596 0.4
6.5 8.974×10−2 71.694 1393 172 0.3
4.5 8.694×10−1 94.050 1930 45 0.005

justified function:

2δi(l) = gi f (l,li ,di),

f (l,li ,di) =
[

1 + exp

(
l − li

di

)]−1

, (1)

i = a,r.

Parameters gi , li , and di are positive and are chosen for
each individual at random within certain intervals wide
enough to obtain substantially different shapes of the
phases.

(2) Evaluating fitness of each individual in the population.
The fitness function in our approach consists of two
parts. The first one is associated with the quality of
shapes of δa,r (l), and the second one accounts for the
quality of fitting of the experimental data.

Shapes of δa,r (l) must meet the following require-
ments:

(i) Functions δa,r (l) must be descending.
(ii) The first derivatives of δa,r (l) must have only one

minimum and no maxima.
(iii) The second derivatives of δa,r (l) are allowed to

have one deepest minimum, one highest maxi-
mum, and an arbitrary number of local minima
and maxima that do not substantially influence the
shapes of phases.

(iv) The third derivative of δr (l) is allowed to have
two deepest minima, one highest maximum, and
an arbitrary number of local minima and maxima
that do not substantially influence the shape of the
real nuclear phase.

(v) Logarithmic derivatives of δa,r (l) should be de-
scending in the phase tail region.
The individual for which at least one of these
requirements is violated is excluded from the
population.
If we remove all the mentioned constraints, we
get a better fit, but let the nonmonotonic structures
appear in η(l) and δr (l). However, the nonmono-
tonic structures arising in η(l) and δr (l) in this case

are quite different from run to run of the fitting
procedure and from structures obtained within the
optical model calculations (e.g., Refs. [1,13,19])
and other S-matrix approaches (e.g., Ref. [12]).
Obviously, if and only if the same nonmonotonic
structures appear repeatedly in the scattering ma-
trix modulus and/or the real nuclear phase along
with the substantial improvement in the quality of
fit, one should admit that the existence of these
structures is physically motivated and the search
for their physical interpretation is justified.

(3) Letting each individual in the population produce M �
1 offspring. Replication is performed according to the
transformation:

log[δ′
i(l)] = log[δi(l)] + AiNi(0,1)D(l,lm,i ,dm,i),

i = a,r, (2)

where δi(l) and δ′
i(l) are the parent’s and the off-

spring’s S-matrix phases, respectively, Ai > 0 is the
mutation amplitude, Ai ∈ [Amin,Amax], Ni(0,1) de-
notes a normally distributed one-dimensional random
number with mean zero and one standard devia-
tion, D(l,lm,i ,dm,i) is the mutation diffusing function,
lm,i stands for the mutation point chosen randomly,
lm,i ∈ [0,lmax − 1], and dm,i > 0 is the value charac-
terizing the diffuseness of the mutation point, dm,i ∈
[dmin,dmax]. The mutation diffusing function has the
form

D(l, lm,i , dm,i) = exp

[
− (l − lm,i)2

d2
m,i

]
. (3)

During the replication of the parent, the values of
mutation amplitude and diffuseness are tuned within
the specified intervals as follows:

A′
i = Ai exp [LNi(0,1)], (4)

d ′
m,i = dm,i exp [LNi(0,1)], (5)

where Ai and dm,i are the values of mutation amplitude
and diffuseness of the parent, while A′

i and d ′
m,i are the

same values of the offspring, respectively,L is the learn-
ing parameter that controls the speed of tuning. The
lengths of the intervals [Amin,Amax] and [dmin,dmax],
having large values at the beginning of the procedure,
smoothly decrease during the run and acquire small
values at the end. This tactic provides for both removal
of the features of primary parametrization (1) from the
individual’s S(l) and fine tuning of details of S(l).

(4) Evaluating fitness values of all offspring. Sort the
offspring in descending order according to their fitness.
Select N best offspring to form the new population.

(5) Going to step 3 or stop if the best fitness in the
population is sufficiently high (the χ2 value is small
enough).

Evolutionary algorithms make up, generally, the global
optimization technique that, however, cannot guarantee that
the optimum found is the global one. Therefore, it is necessary
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FIG. 2. (a)–(k) Elastic scattering differential cross sections (ratio to Rutherford) for the system 4He + 40Ca at E = 4.5–27.0 MeV (solid
curves), their farside (dashed curves) and nearside (dotted curves) components, and farside cross-section components calculated without
absorption in the scattering matrix [dash-dotted curves in Figs. 2(a) and 2(b)]. A2 and A3 denote the Airy minima of second and third orders.
The data are from Refs. [3,6,24–29] .

to run the procedure several times. Besides, there is no way to
know in advance what the minimum value of the χ2 magnitude
will be. Thus, it is instructive to follow the dynamics of the
best, worst, and mean fitness values and the root-mean-square
deviation from the mean fitness in the population during those
several runs of the procedure in order to localize the region of
the lowest χ2 values.

Near the Coulomb barrier, the role of couplings between
different reaction channels and their contribution to the elastic
scattering may increase (see, e.g., Refs. [20,21]), but we
suppose that such processes, if present, are reflected in the
behavior of the scattering matrix extracted from the data.

More detailed analysis of complicated structures inherent
in the elastic scattering cross sections under discussion can be

performed with the use of the nearside-farside decomposition
[22]. To detect the Airy structures, we use both the farside
component and the farside component calculated without
absorption in the scattering matrix [η(l) = 1 for all l].

III. RESULTS OF CALCULATIONS AND THEIR
DISCUSSION

Searching for the S-matrix representations for the 4He-40Ca
elastic scattering at E = 4.5–27.0 MeV, we have taken into
account the energy systematics built in Ref. [16] for angular
positions of the Airy minima and the Fraunhofer crossover
point, the nuclear rainbow angle θR that corresponds to the
minimum of deflection function �(l) = 2d[δr (l) + σC(l)]/dl,
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FIG. 3. (a) Evolution with center-of-mass energy of the intensities of nuclear refraction 2δr (0) and nuclear absorption 2δa(0) for the system
4He + 40Ca (open circles). Solid curves are only to guide the eye. (b) Evolution with reciprocal center-of-mass energy of the nuclear rainbow
angle θR (open circles). Straight line shows results of fitting to the data indicated as circles. The results of calculations performed in Ref. [16]
are shown as solid circles.

the nuclear transparency η(0), the intensity of nuclear refrac-
tion 2δr (0), the strong absorption angular momentum, and the
total reaction cross section σ t

R .
Figures 1(a), 1(b) and the Supplemental Material [23] show

scattering matrices for the 4He-40Ca elastic scattering, found
using our approach. Figure 1(c) presents quantum deflection
functions. In each of the cases studied, from ALAS to NCBS,
data in the whole angular range under consideration are
correctly described by the differential cross section (Fig. 2)
calculated with the obtained smooth monotonic representa-
tions for the scattering matrix modulus and the nuclear phase
(Fig. 1). The energy evolution of the values of η(0), 2δr (0), θR ,
σ t

R , and χ2/Np (Np is the number of experimental points) for
the calculated cross sections is presented in Table I.

At E = 1–21 MeV/nucleon, evolution with center-of-mass
energy of the values of intensity of the nuclear refraction 2δr (0)
and nuclear absorption 2δa(0) is presented in Fig. 3(a), and
dependence of the nuclear rainbow angle θR on the reciprocal
center-of-mass energy is shown in Fig. 3(b). Note a systematic
decrease of 2δr (0) and a smooth behavior of 2δa(0) with
increasing energy: the quantity 2δa(0) increases in NCBS
region, decreases in the region where NCBS picture transforms
into ALAS one, increases in ALAS region, and decreases in
the region of nuclear rainbow scattering.

The quantum deflection function �(l) in the region E =
1–7 MeV/nucleon is typical of the nuclear rainbow case. With
decreasing energy, its form becomes narrower in the region of
negative values but remains mostly symmetric in the vicinity
of a minimum [Fig. 1(c)]. The nuclear rainbow angle θR obeys
the law of the reciprocal center-of-mass energy dependence
[Fig. 3(b)].

The Fraunhofer crossover point for E = 16.0, 14.4, and
12.5 MeV is situated at θ ≈ 92◦, 98◦, and 118◦, respectively,
and consequently the calculated differential cross sections
seem “too oscillatory” with respect to the data around 80◦ at
E = 16.0 and 14.4 MeV, and in a wide angular range (up to
140◦) at E = 12.5 MeV. This does not noticeably affect the

values of the χ2 magnitude because, for the given experimental
errors, the data for θ > 80◦ at E = 16.0 and 14.4 MeV and the
limited data available at E = 12.5 MeV are well described by
the calculated cross sections.

The measured differential cross sections for the 4He-40Ca
elastic scattering at E = 27.0 MeV [Fig. 2(a)] and E = 24.7
MeV [Fig. 2(b)] have well pronounced minima at θ ≈ 90◦ and
θ ≈ 100◦, respectively. These minima are mainly reproduced
by the farside components [dashed curves in Figs. 2(a) and
2(b)]. If we take into account the systematics for the positions
of the second order Airy minima A2 build in Ref. [16],
they could be the third order Airy minima A3 that exist
in the farside components calculated without absorption in
the scattering matrix [dash-dotted curves in Figs. 2(a) and
2(b)]. Unfortunately, the Airy minima A3 do not appear in
the calculated cross sections because they are obscured by
the farside-nearside interference, so that the existing minima
have the interference nature. Thus, we have not identified the
Airy minima in the 4He-40Ca elastic scattering cross sections
at E � 7 MeV/nucleon.

IV. ANALYSIS OF FORMATION OF NCBS PATTERN

NCBS picture is characterized by strong damping of oscil-
lations of the measured differential cross section and gradual
transformation of the latter into a pure Coulomb scattering
cross section with decreasing energy [Figs. 2(h)–2(k)].

In our analysis, damping of oscillations of the calculated
differential cross sections is associated with the absence of
the Fraunhofer crossover point and the predominance of the
nearside scattering [Figs. 2(h)–2(k)]. We note that a drastic
transformation of the calculated differential cross section
occurs between E = 12.5 MeV and E = 10.5 MeV. Let
us indicate the particular partial waves responsible for this
transformation. With this aim in view, in our calculations for
E = 12.5 MeV we manually replace the original experimental
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FIG. 4. Analysis of the formation of NCBS pattern for the system 4He + 40Ca at E = 12.5 MeV. (a) [(e)] Differences �δr (l)[�η(l)] between
the nuclear phase (the scattering matrix modulus) extracted from the data at E = 12.5 MeV (same as in Fig. 1) and the result of its evolution
caused by the data at E = 10.5 MeV. The angular momentum regions where our evolutionary approach has changed the scattering matrix
are �l = 4–7 (curves 1–6) and �l = 4–8 (curve 7). (b)–(d) and (f)–(h) Elastic scattering differential cross sections (ratio to Rutherford).
Solid curves are the same as in Fig. 2(g). The curves marked with numbers are calculated using the scattering matrices shown (in the form
of differences) in Figs. 4(a) and 4(e) (numbers of curves correspond). Dashed and dotted curves in Figs. 4(b)–4(d), 4(f), and 4(g) present the
farside and nearside components of the cross sections marked as 1–5. Dashed and dotted curves in Fig. 4(h) show the farside and nearside
components of the cross section marked as 7. Vertical arrows in Figs. 4(b) and 4(c) mark the positions of the Fraunhofer crossover point.

data by the data taken at E = 10.5 MeV. Then we continue our
evolutionary calculations using these data, but starting with the
scattering matrix extracted from the original data at E = 12.5
MeV, and allowing the mutation operation to change the
scattering matrix in some angular momentum region �l. We
are looking for the narrowest possible �l for which the evolved
scattering matrix generates differential cross section that has
NCBS features. In order to analyze in detail the mechanism
of NCBS pattern formation, evolving the scattering matrix
for the given �l, we store all the intermediate information,
generation after generation, about the fittest scattering matrix
and the differential cross section calculated with this scattering
matrix, as well as the farside and nearside cross-section
components.

Figure 4 presents some of our results obtained in this
way. Figure 4(a) [ 4(e)] shows the differences �δr (l) [�η(l)]
between the nuclear phase (the scattering matrix modulus)
extracted from the data at E = 12.5 MeV (same as in Fig. 1)
and the result of its evolution caused by the data at E = 10.5
MeV. The angular momentum regions where our evolutionary
approach has changed the scattering matrix are �l = 4–7
(curves 1–6) and �l = 4–8 (curve 7). Figures 4(b)–4(d) and
4(f)– 4(h) show the elastic scattering differential cross sections
calculated using the evolved scattering matrices. Solid curves
are the same as in Fig. 2(g). The curves marked with numbers
are calculated using the scattering matrices shown (in the
form of differences) in Figs. 4(a) and 4(e) (numbers of curves
correspond). Dashed and dotted curves in Figs. 4(b)–4(d), 4(f)
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and 4(g) present the farside and nearside components of the
cross sections marked as 1–5. Dashed and dotted curves in
Fig. 4(h) show the farside and nearside components of the
cross section marked as 7. Vertical arrows in Figs. 4(b) and
4(c) mark the positions of the Fraunhofer crossover point.

We see that gradual decrease in nuclear refraction and
nuclear transparency at �l = 4–7 leads to the fact that the
Fraunhofer crossover point moves toward θ = 180◦ [Figs. 4(b)
and 4(c)] and disappears [Fig. 4(d)], and then the farside and
nearside components move away from each other [Fig. 4(f)].
In all these cases, the calculated differential cross sections
oscillate in phase with the differential cross section obtained
for E = 12.5 MeV. A further decrease in nuclear refraction
and a gradual increase in nuclear transparency at �l = 4–7
lead to the fact that the farside and nearside components are
transformed in such a way that the calculated differential cross
sections begin to oscillate in phase with the differential cross
section for E = 10.5 MeV [Figs. 4(g) and 4(h), curves 5 and 6].
If at this point we extend the region of angular momenta where
our evolutionary approach changes the scattering matrix up to
�l = 4–8 the nuclear refraction remains almost the same but
the nuclear transparency substantially increases, which leads to
the increase in the dominant nearside component at midangles
[Fig. 4(h), curve 7]. This study reveals the special role of several
surface partial waves in the formation of NCBS pattern.

In our analysis, gradual transformation of the calculated
differential cross section into a pure Coulomb scattering cross
section with decreasing energy is associated with gradual
transformation of the real ReSN (l) and imaginary ImSN (l)
parts of the nuclear scattering matrix SN (l) into unity and
zero, respectively (Fig. 5). Solid, dashed, and dash-dotted
curves represent the results for E = 4.5, 6.5, and 8.5 MeV,
respectively (same as in Fig. 1). Dotted curves show the result
of the evolution of the nuclear scattering matrix extracted from
the data at E = 4.5 MeV (solid curves) caused by the artificial
data that is a pure Coulomb scattering cross section at the same
energy. In this case, the evolved values of the scattering matrix
modulusη(l) and the nuclear phase 2δr (l) are very close to unity

and multiples of 2π (for all l), respectively. Thus, the transition
to a pure Coulomb scattering picture in the presence of strong
nuclear refraction becomes possible due to strong suppression
of the nuclear absorption and the closeness of the values of the
nuclear refraction phase 2δr (l) to multiples of 2π for all l.

V. CONCLUSION

Applying the evolutionary model-independent S-matrix ap-
proach, we have shown that a simultaneous correct description
of the whole variety of the scattering pictures observed in the
system 4He+40Ca at E = 1–21 MeV/nucleon (including pic-
tures of the nuclear rainbow, prerainbow, ALAS, and NCBS)
can be achieved in a unified way using S -matrix moduli and
real nuclear phases, which are smooth and monotonic functions
of the angular momentum. The quantum deflection functions
have a form characteristic of the nuclear rainbow case and are
mostly symmetric in the vicinity of a minimum. The scattering
matrix and the quantum deflection function for the system
4He + 40Ca at E = 4.5–82.0 MeV show smooth physically
motivated variations with the projectile energy. The nuclear
rainbow angle obeys the law of the reciprocal center-of-mass
energy dependence. Systematic description of the 4He-40Ca
elastic scattering at E = 1–21 MeV/nucleon is achieved in
the presence of strong nuclear refraction and is in line with the
rainbow interpretation of the data.

No Airy minima higher than the second order have been
identified in the 4He-40Ca elastic scattering cross sections.

We have revealed that the formation of NCBS picture is
associated with a substantial suppression of nuclear refraction
and nuclear absorption for several surface partial waves. The
transition to a pure Coulomb scattering picture in the presence
of strong nuclear refraction becomes possible due to strong
suppression of the nuclear absorption and the closeness of the
values of the nuclear refraction phase 2δr (l) to multiples of 2π
in the whole region of angular momenta.

A unified study of the pictures of the nuclear rainbow and
prerainbow scattering, ALAS and NCBS in the system 4He +
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40Ca, performed within the evolutionary model-independent
S-matrix approach, has helped us to understand the interaction
between the colliding nuclei systematically.
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