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Three-cluster dynamics within the ab initio no-core shell model with continuum:
How many-body correlations and α clustering shape 6He
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We realize the treatment of bound and continuum nuclear systems in the proximity of a three-body breakup
threshold within the ab initio framework of the no-core shell model with continuum. Many-body eigenstates
obtained from the diagonalization of the Hamiltonian within the harmonic-oscillator expansion of the no-core shell
model are coupled with continuous microscopic three-cluster states to correctly describe the nuclear wave function
both in the interior and asymptotic regions. We discuss the formalism in detail and give algebraic expressions for
the case of core + n + n systems. Using similarity-renormalization-group evolved nucleon-nucleon interactions,
we analyze the role of 4He + n + n clustering and many-body correlations in the ground and low-lying continuum
states of the Borromean 6He nucleus, and study the dependence of the energy spectrum on the resolution scale
of the interaction. We show that 6He small binding energy and extended radii compatible with experiment can
be obtained simultaneously, without resorting to extrapolations. We also find that a significant portion of the
ground-state energy and the narrow width of the first 2+ resonance stem from many-body correlations that can
be interpreted as core-excitation effects.

DOI: 10.1103/PhysRevC.97.034332

I. INTRODUCTION

Since their first applications to the elastic scattering of
nucleons on 4He and 10Be [1,2] roughly ten years ago, large-
scale computations combined with new and sophisticated
theoretical approaches [3–5] have enabled significant progress
in the description of dynamical processes involving light- and
medium-mass nuclei within the framework of ab initio theory,
i.e., by solving the many-body quantum-mechanical problem
of protons and neutrons interacting through high-quality nu-
clear force models. This resulted in high-fidelity predictions for
nucleon-nucleus [5–9] and deuterium-nucleus [10] clustering
phenomena and scattering properties, as well as predictive
calculations of binary reactions, including the 3He(α,γ )7Be
[11,12] and 7Be(p,γ )8B [13] radiative capture rates (important
for solar astrophysics), and the 3H(d,n)4He and 3He(d,p)4He
fusion processes [14]. A more recent breakthrough has enabled
ab initio calculations of α-α scattering [4], paving the way for
the description of α scattering and capture reactions during the
helium burning and later evolutionary phases of massive stars.

One of the main drivers of this progress has been the
development of the no-core shell model with continuum, or
NCSMC [15,16]. This is an ab initio framework for the
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description of the phenomena of clustering and low-energy
nuclear reactions in light nuclei, which realizes an efficient
description of both the interior and asymptotic configurations
of many-body wave functions. The approach starts from the
wave functions of each of the colliding nuclei and of the
aggregate system, obtained within the ab initio no-core shell
model (NCSM) [17] by working in a many-body harmonic-
oscillator (HO) basis. It then uses the NCSM static solutions
for the aggregate system and continuous “microscopic-cluster”
states, made of pairs of nuclei in relative motion with respect
to each other, as an overcomplete basis to describe the full
dynamical solution of the system. In this paper, we present the
details of the general NCSMC formalism for the description
of three-cluster dynamics, as well as extended results for its
recent application to study how many-body correlations and
α + n + n clustering shape the bound and continuum states of
the Borromean 6He nucleus in Ref. [18].

The 6He nucleus is a prominent example of Borromean
quantum “halo”, i.e., a weakly-bound state of three particles
(α + n + n) otherwise unbound in pairs, characterized by
“large probability of configurations within classically forbid-
den regions of space” [19]. In the past few years, its binding
energy [20] and charge radius [21] have been experimentally
determined with high precision, providing stringent tests for
ab initio theories, including the NCSMC approach for three-
cluster dynamics presented in this paper. Further, the β-decay
properties of the ground state (g.s.) of 6He are of great interest
for tests of fundamental interactions and symmetries. Precision
measurements of the half-life have recently taken place [22]
and efforts are under way to determine the angular correlation
between the emitted electron and neutrino [23].
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Less clear is the experimental picture for the low-lying
continuum of 6He. Aside from a narrow resonance charac-
terized by spin-parity Jπ = 2+, located at 1.8 MeV above the
g.s., the positions, spins, and parities of the excited states of
this nucleus are still under discussion. Resonant-like structures
around 4 [24] and 5.6 [25] MeV of widths � ∼ 4 and 10.9 MeV,
respectively, as well as a broad asymmetric bump at ∼5 MeV
[26], were observed in the production of excited 6He through
charge-exchange reactions between two fast colliding nuclei.
However, there was disagreement on the nature of the un-
derlying 6He excited state(s). On one hand, in Refs. [24]
and [26] these structures were attributed to dipole excitations
compatible with oscillations of the positively charged 4He core
against the halo neutrons. On the other hand, the resonant
structure of Ref. [25] was identified as a second 2+ state. More
recently, a much narrower 2+ (� = 1.6 MeV) state at 2.6 MeV
and a J = 1 resonance (� ∼ 2 MeV) of unassigned parity at
5.3 MeV were populated with the two-neutron transfer reaction
8He(p,3H)6He∗ [27] at the Séparateur et Postaccélérateur
d’Ions Radioactifs Accéléres en Ligne (SPIRAL) facility in
Grand Accélérateur National d’Ions Lourds (GANIL). More
generally, the low-lying α + n + n continuum plays a central
role in the 4He(2n,γ )6He radiative capture (one of the mecha-
nisms by which stars can overcome the instability of the five-
and eight-nucleon systems and create heavier nuclei [28]) and
of the 3H(3H,2n)4He reaction, which contributes to the neutron
yield in fusion experiments [29,30]. It is also an important input
in the evaluation of nuclear data, e.g., the 9Be(n,2n) cross
section used in simulations of nuclear heating and material
damages for reactor technologies.

On the theory side, 6He has been the subject of many
investigations (see, e.g., the overviews of Refs. [31–33] and
references therein). Limiting ourselves to ab initio theory, for
the most part the g.s. properties and low-lying excited spectrum
of 6He have been studied within bound-state methods, based on
expansions on six-nucleon basis states [34–41]. These include
Monte Carlo [34,35] and NCSM [36] calculations of the g.s.
energy, point-proton radius, β-decay transition, and excitation
energies based on NN + 3N interactions; a large-scale NCSM
study of the matter and point-proton radii with NN interactions
[37]; a hyperspherical harmonics study of the correlation
between two-neutron separation energy and the matter and
charge radii using low-momentum NN potentials [38]; an
investigation of the α + n + n channel form factors of NCSM
g.s. solutions obtained with softNN interactions and (in a more
limited space) 3N forces [39]; and no-core configuration inter-
action calculations within Coulomb Sturmian [40] and natural
orbital [41] bases, starting from the JISP16 NN interaction. In
general, these ab initio calculations describe successfully the
interior of the 6He wave function but are unable to fully account
for its three-cluster asymptotic behavior. As a consequence,
the simultaneous reproduction of the small binding energy
and extended radii of 6He has been a challenge. Further, the
low-lying resonances of 6He have been treated as bound states,
an approximation that is well justified only for the narrow 2+
first excited state and that does not provide information about
their widths. An initial description of α + n + n dynamics
within an ab initio framework was achieved using a soft NN
potential in our earlier studies of Refs. [31,32], carried out in

a model space spanned only by continuous microscopic three-
cluster states. This approach naturally explained the asymp-
totic configurations of the 6He g.s. and enabled the description
of α + n + n continuum but was unable to fully account for
short-range many-body correlations, as clearly indicated by
the underestimation of the g.s. energy. This shortcoming was
later addressed in Ref. [18], where we achieved a simultaneous
description of six-body correlations and α + n + n dynamics
working within the framework of the three-cluster NCSMC,
presented in this paper.

The paper is organized as follows. In Sec. II, we introduce
the NCSMC ansatz for systems characterized by a three-cluster
asymptotic behavior, discuss the dynamical equations, and
give the algebraic expressions of the overlap and Hamiltonian
couplings between the discrete and continuous NCSMC basis
states for the particular case of core + n + n systems. We
further discuss the procedure used for the solution of the
three-cluster dynamical equations for bound and scattering
states, and explain how we compute the probability density and
matter and point-proton root-mean-square (rms) radii starting
from the obtained NCSMC solutions for core + n + n systems.
In Sec. III, we discuss the results of Ref. [18] more extensively
and present additional results for the 6He system. Conclusions
are drawn in Sec. IV, and detailed expressions for some of the
most complex derivations are presented in the appendixes.

II. NCSMC WITH THREE-CLUSTER CHANNELS

A. Ansatz

The intrinsic motion in a partial-wave of total angular
momentum J , parity π , and isospin T of a system of A
nucleons characterized by a three-cluster asymptotic behavior

|�Jπ T 〉 =
∑

λ

cJπ T
λ |AλJπT 〉

+
∑

ν

∫∫
dx dy x2 y2 GJπ T

ν (x,y)Aν

∣∣
Jπ T
νxy

〉
, (1)

where cJπ T
λ and GJπ T

ν (x,y) are discrete and continuous varia-
tional amplitudes, respectively, |AλJπT 〉 is the λth (antisym-
metric) A-nucleon eigenstate of the composite system in the
JπT channel obtained working within the square-integrable
many-body HO basis of the ab initio NCSM [17], and∣∣
Jπ T

νxy

〉
= [(∣∣A − a23 α1I

π1
1 T1

〉(∣∣a2 α2I
π2
2 T2

〉∣∣a3 α3I
π3
3 T3

〉)(s23T23))(ST )

× (Y�x
(η̂23)Y�y

(η̂1,23))(L)
](Jπ T ) δ(x − η23)

xη23

δ(y − η1,23)

yη1,23
(2)

are continuous channel states (first introduced in Ref. [31])
describing the organization of the nucleons into three clusters
of mass numbers A − a23, a2, and a3 (a23 = a2 + a3 < A),
respectively. Finally, the operator Aν is an appropriate in-
tercluster antisymmetrizer introduced to guarantee the exact
preservation of the Pauli exclusion principle.

In Eq. (2), |A − a23 α1I
π1
1 T1〉, |a2 α2I

π2
2 T2〉, and

|a3 α3I
π3
3 T3〉 represent the microscopic (antisymmetric)

wave functions of the three nuclear fragments, which are
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FIG. 1. We show the Jacobi coordinates �η1,23 (proportional to the
vector between the c.m. of the first cluster and that of the residual two
fragments) and �η23 (proportional to the vector between the c.m. of
clusters 2 and 3). In the figure, a case with three clusters of four, two,
and one nucleons are shown; however, the formalism is completely
general and can be used to describe any three cluster configuration.

also obtained within the NCSM. They are labeled by the
angular momentum, parity, isospin, and energy quantum
numbers I

πi

i , Ti , and αi , respectively, with i = 1,2,3.
Additional quantum numbers characterizing the basis
states (2) are the spins �s23 = �I2 + �I3 and �S = �I1 + �s23,
the orbital angular momenta �x , �y and �L = ��x + ��y , and
the isospin �T23 = �T2 + �T3. In our notation, all these quantum
numbers are grouped under the cumulative index ν =
{A − a23 α1I

π1
1 T1; a2 α2I

π2
2 T2; a3 α3I

π3
3 T3; s23 T23 S �x �y L}.

Further, the intercluster relative motion is described with the
help of the Jacobi coordinates �η1,23 and �η23 where

�η1,23 = η1,23η̂1,23

=
√

a23

A(A − a23)

A−a23∑
i=1

�ri −
√

A − a23

Aa23

A∑
j=A−a23+1

�rj (3)

is the relative vector proportional to the separation between the
center of mass (c.m.) of the first cluster and that of the residual
two fragments, and

�η23 = η23η̂23

=
√

a3

a23 a2

A−a3∑
i=A−a23+1

�ri −
√

a2

a23 a3

A∑
j=A−a3+1

�rj (4)

is the relative coordinate proportional to the distance between
the centers of mass of cluster 2 and 3 (see Fig. 1), where �ri

denotes the position vector of the ith nucleon.
The NCSM eigenstates appearing in Eqs. (1) and (2)

are obtained by diagonalizing the A-, (A − a23)-, a2-, and
a3-nucleon intrinsic Hamiltonians within complete sets of
many-body HO basis states, the size of which is defined by
the maximum number Nmax of HO quanta above the lowest
configuration shared by the nucleons. The same HO frequency
h̄� is used for the composite nucleus and all three clusters,
and the model-space size Nmax is identical (differs by one) for
states of the same (opposite) parity.

The NCSMC ansatz of Eq. (1) can be seen as an example
of generalized cluster expansion containing single- and three-

body cluster terms. In general, such expansion could also
contain binary-cluster and/or even higher-body cluster terms,
chosen according to the particle-decay channels characterizing
the system under consideration. It allows us to capture, within a
unified consistent framework, both the single-particle dynam-
ics and microscopic-cluster picture of nuclei. For systems in
the proximity of a three-body particle-decay channel, but away
from two- or higher-body thresholds, Eq. (1) represents a good
ansatz, which converges to the exact solution as Nmax → ∞. In
particular, the square-integrable NCSM eigenstates |AλJπT 〉
of the composite nucleus provide an efficient description of the
short- to medium-range A-body structure of the wave function,
while the microscopic three-cluster channels |
Jπ T

νxy 〉 make the
theory able to handle the long-range and scattering physics of
the system.

B. Dynamical equations

Adopting the ansatz (1) for the many-body wave function
and working in the model space spanned by the set of
discrete |AλJπT 〉 and continuous Aν |
Jπ T

νxy 〉 basis states, the
Schrödinger equation in each partial wave channel can be
mapped onto a generalized eigenvalue problem, schematically
given by

(H − E N)C = 0, (5)

where E is the total energy of the system in the c.m. reference
frame. To simplify the formalism, the specification of the
partial wave under consideration (JπT ) is now (and in the
remainder of the paper) implied. In Eq. (5),

Hλλ′
νxy,ν ′x ′y ′ =

(
Eλδλλ′ h̄λν ′(x ′,y ′)

h̄λ′ν(x,y) Hνν ′(x,y,x ′,y ′)

)
(6)

and

Nλλ′
νxy,ν ′x ′y ′ =

(
δλλ′ ḡλν ′(x ′,y ′)

ḡλ′ν(x,y) �νν ′(x,y,x ′,y ′)

)
(7)

are two-by-two block matrices representing, respectively, the
NCSMC Hamiltonian and norm (or overlap) kernels, i.e., the
matrix elements of the Hamiltonian and identity operators
over the set of discrete and continuous basis states spanning
the model space. Specifically, the upper diagonal blocks are
NCSM eigenstates of the A-nucleon Hamiltonian and are
trivially given by the diagonal matrix of the corresponding
eigenenergies Eλ and the identity matrix, respectively. Analo-
gously the lower diagonal blocks

Hνν ′(x,y,x ′,y ′) = [N− 1
2 HN− 1

2 ]νν ′(x,y,x ′,y ′), (8)

�νν ′(x,y,x ′,y ′) = δνν ′
δ(x − x ′)

xx ′
δ(y − y ′)

yy ′ , (9)

are orthonormalized integration kernels obtained from the
Hamiltonian and overlap matrix elements evaluated on the
continuous basis states Aν |
Jπ T

νxy 〉, i.e., Hνν ′(x,y,x ′,y ′) and
Nνν ′ (x,y,x ′,y ′). Detailed expressions for these kernels can
be found in Ref. [31], where we introduced the formalism
for the description of three-cluster dynamics based solely on
expansions over three-cluster channels states of the type of
Eq. (2).
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The off-diagonal blocks of Eqs. (6) and (7) are given by the
couplings between the discrete and continuous sectors of the
basis, with the cluster form factor, ḡλν(x,y) = [gN− 1

2 ]λν(x,y),
and coupling form factor, h̄λν(x,y) = [hN− 1

2 ]λν(x,y), defined
in terms of the matrix elements

gλν(x,y) = 〈
AλJπT

∣∣Aν

∣∣
Jπ T
νxy

〉
, (10)

hλν(x,y) = 〈
AλJπT

∣∣HAν

∣∣
Jπ T
νxy

〉
, (11)

where H is the microscopic A-nucleon Hamiltonian. The
general derivation of these three-cluster form factors is outlined
in Sec. II C, together with their algebraic expressions for the
specialized case in which the two lighter fragments are single
nucleons.

Finally,

Cλ
νxy =

(
cλ

χν(x,y)

)
(12)

is the vector of the expansion “coefficients,” where the relative
wave functions χν(x,y) are related to the initial unknown
continuous amplitudes through

Gν(x,y) = [N− 1
2 χ ]ν(x,y). (13)

These are obtained by solving the NCSMC dynamical equa-
tions as discussed in Sec. II D.

C. Form factors

In this section, we discuss in more detail the derivation of
the form factors in configuration space introduced in Sec. II B,
starting with the coupling form factor hλν(x,y) of Eq. (11). This
can be expressed in terms of the cluster form factor gλν(x,y)
and three potential form factors

v
Q
λν(x,y) = 〈

AλJπT
∣∣AνVQ

∣∣
Jπ T
νxy

〉
, (14)

with Q a generic notation for either 1,23 or 23 or 3N , as

hλν(x,y) = (Trel + V̄C + Eα1 + Eα2 + Eα3 )gλν(x,y)

+ v
1,23
λν (x,y) + v23

λν(x,y) + v3N
λν (x,y) . (15)

The above expression was obtained by separating the micro-
scopic A-nucleon Hamiltonian into its relative motion, average
Coulomb, and clusters’ components according to

H = Trel + V̄C + Vrel + H(A−a23) + H(a2) + H(a3) (16)

and taking advantage of the fact that the antisymmetrization
operator commutes with H . Trel is the relative kinetic energy
operator for the three-body system, V̄C = V̄ 12

C + V̄ 13
C + V̄ 23

C is
the sum of the pairwise average Coulomb interactions among
the three clusters, and Eαi

is the eigenenergy of the ith cluster,
obtained by diagonalizing their respective intrinsic Hamilto-
nians, H(A−a23), H(a2), and H(a3). Further, Vrel = V1,23 + V23 +
V3N denotes the relative potential, with

V1,23 =
A−a23∑
i=1

A∑
j=A−a23+1

(
V NN

ij − V̄ 12
C + V̄ 13

C

(A − a23)a23

)
, (17)

V23 =
A−a3∑

k=A−a23+1

A∑
l=A−a3+1

(
V NN

kl − V̄ 23
C

a2a3

)
, (18)

and V3N being the intercluster interaction due to the three-
nucleon force, which in general is part of a realistic Hamil-
tonian. In Eqs. (17) and (18), the notation V NN stands for
the nuclear plus point-Coulomb two-body potential. We note
that Vrel is a short-range operator. Indeed, because of the
subtraction of V̄C, the overall Coulomb contribution decreases
as the inverse square of the distances between pairs of clusters.

In the present paper, we will consider only the nucleon-
nucleon (NN ) component of the intercluster interaction and
disregard, for the time being, the term V3N . The inclusion of
the three-nucleon force into the formalism, although computa-
tionally much more involved, is straightforward and will be the
matter of future investigations. In the remainder of the paper,
we will also omit the average Coulomb potential V̄C , which is
null for neutral systems such as the 4He + n + n investigated
here. The treatment of charged system is nevertheless possible
(at least in an approximate way) and can be implemented along
the same lines of Ref. [42].

The use of Jacobi coordinates and translational invariant
NCSM eigenstates of the A-nucleon system and microscopic-
cluster states represents the “natural” choice for the computa-
tion of the configuration-space form factors of Eqs. (10) and
(14). However, such a relative-coordinate formalism is only
practical for few-nucleon systems. To access p-shell nuclei,
it is more efficient to work with single-particle coordinates
and Slater-determinant (SD) basis states. As we outline in the
following, the unique properties of the HO basis allows us
to work with SD functions and still preserve the translational
invariance of the form factors.

In a first step, we compute matrix elements analogous to
Eqs. (10) and (14) but evaluated in an HO SD basis, i.e.,

SD

〈
AλJπT

∣∣Ot.i.

∣∣
Jπ T
γnxny

〉
SD

, (19)

where Ot.i. = Aν,AνV1,23,AνV23 is a translational invariant
operator. The SD NCSM eigenstates of the A-nucleon sys-
tem factorize into the product of their translational-invariant
counterparts with the 0h̄� HO motion of their c.m. coordinate
�R(A)

c.m.,

|AλJπT 〉SD = |AλJπT 〉R00
(
R(A)

c.m.

)
Y00
(
R̂(A)

c.m.

)
. (20)

At the same time, the kets in Eq. (19) are a set of HO three-
cluster channel states, defined as∣∣
Jπ T

γnxny

〉
SD

= [(∣∣A − a23α1I
π1
1 T1

〉
SD

(
Y�x

(η̂23)
(∣∣a2α2I

π2
2 T2

〉
× ∣∣a3α3I

π3
3 T3

〉)(s23T23))(J23T23))(ZT )
Y�y

(
R̂a23

c.m.

)](Jπ T )

×Rnx�x
(η23)Rny�y

(
Ra23

c.m.

)
, (21)

describing the motion of the heaviest of the two clusters and
of the system formed by the second and third clusters in the
laboratory reference frame. Here

�R(A−a23)
c.m. = R(A−a23)

c.m. R̂(A−a23)
c.m. = 1√

A − a23

A−a23∑
i=1

�ri , (22)

�R(a23)
c.m. = R(a23)

c.m. R̂
(a23)
c.m. = 1√

a23

A∑
j=A−a23+1

�rj , (23)
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are respectively the coordinates of the c.m. of the first and
last two clusters, |A − a23α1I

π1
1 T1〉SD are the SD NCSM

eigenstates of the (A − a23)-nucleon system, i.e.,

|A − a23 α1I
π1
1 T1〉SD

= |A − a23 α1I
π1
1 T1〉R00

(
R(A−a23)

c.m.

)
Y00
(
R̂(A−a23)

c.m.

)
, (24)

and Rnx�x
(η23) and Rny�y

(Ra23
c.m.) are HO radial wave functions.

The HO channel states of Eq. (21) differ from the original
basis of Eq. (2) also in the angular momentum coupling
scheme, as reflected in the new channel index γ = {A − a23

α1I
π1
1 T1; a2 α2I

π2
2 T2; a3 α3I

π3
3 T3; �x s23J23 T23 Z �y}. Here J23

denotes the total (orbital plus spin) angular momentum quan-
tum number of the system formed by the second and third
clusters and �Z = �I1 + �J23 is a channel spin. The use of different
coupling schemes is purely dictated by convenience, as will
become apparent from Secs. II C 1 and II D where we discuss,
respectively, the derivation of the matrix elements (19) in
the special instance of a core nucleus plus two single nucle-
ons (a2,a3 = 1), and the solution of the NCSMC dynamical
equations.

Both the states of Eqs. (20) and (21) contain the spurious
motion of the center of mass. However, by exploiting the
orthogonal transformation between the pairs of coordinates
{ �R(A−a23)

c.m. , �R(a23)
c.m. } and { �R(A)

c.m.,�η1,23} and performing the transfor-
mation to the angular momentum coupling scheme of Eq. (2),
we recover the purely translationally invariant matrix elements
over the original channel states (2), i.e.,

〈AλJπT |Ot.i.

∣∣
Jπ T
νxy

〉
=
∑
nxny

Rnx�x
(x)Rny�y

(y)
∑
ZJ23

ẐĴ23ŜL̂

× (−1)I1+J23+J+S+Z+�x+�y

×
{

I1 s23 S

�x Z J23

}{
S �x Z

�y J L

}

× SD
〈AλJπT |Ot.i.

∣∣
Jπ T
γnxny

〉
SD

〈ny �y 0 0 �y | 0 0 ny �y �y〉 a23
A−a23

. (25)

Here, Ẑ = √
2Z + 1, . . . , etc., the generalized HO bracket due

to the c.m. motion is simply given by

〈ny �y 0 0 �y | 0 0 ny �y �y〉 a23
A−a23

= (−1)�y

(
a23

A − a23

) 2ny+�y
2

,

(26)

and we made use of the closure properties of the HO radial wave
functions to represent the Dirac’s δ function of Eq. (2). Indeed,
due to the finite range of the square-integrable A-nucleon basis
states |AλJπT 〉, the configuration-space matrix elements of
the translational invariant operators Aν and HAν of Eqs. (10)
and (11) are localized and can be evaluated within an HO model
space.

1. Matrix elements for core + n + n systems

In this section, we give an example of how SD form-factor
matrix elements of the type of Eq. (19) can be derived working

within the second quantization formalism. We do this for
the special case in which, both in the initial and in the final
state, two out of the three clusters are single neutrons (such
as the 4He + n + n system investigated in this paper), and in
particular we choose a2,a3 = 1.

As pointed out in Sec. II.E.1 of Ref. [31], in such a case
it is convenient to incorporate the trivial antisymmetrization
for the exchange of nucleons A − 1 and A in the definition
of the channel basis of Eq. (2). This is simply accomplished
by selecting only the states for which (−1)�x+s23+T23 = −1.
The intercluster antisymmetrizer then reduces to the anstisym-
metrization operator for a binary (A − 2,2) mass partition,
A(A−2,2) (see, e.g., Eq. (4) of Ref. [43]).

Further, it is useful to introduce a channel basis defined
entirely in single-particle coordinates, i.e.∣∣
Jπ T

κab

〉
SD =[|A − 2 α1I1T1〉SD

× (∣∣na�aja
1
2

〉∣∣nb�bjb
1
2

〉)(IT23)](Jπ T )
. (27)

Here, |na�aja
1
2 〉 and |nb�bjb

1
2 〉 are single-particle HO states

of nucleon A and A − 1, respectively, and κab = {A − 2
α1I

π1
1 T1; na�aja

1
2 ; nb�bjb

1
2 ; IT23}. Within this basis, the ma-

trix elements of the translational-invariant operators Ot.i. =
A(A−2,2), andA(A−2,2)V1,23 can be easily obtained in the second
quantization formalism, and the corresponding SD matrix
elements of Eq. (19) can then be recovered by means of a
linear transformation as described in detail in Sec. II.E.1 of
Ref. [31].

Taking into account that the application of A(A−2,2) on the
fully antisymmetric A-nucleon bra simply yields the square
root of the binomial coefficient (A2), we then obtain

SD

〈
AλJπT

∣∣A2
(A−2,2)

∣∣
Jπ T
κab

〉
SD

= 1√
2

∑
MI1 MI

mja mjb

CJM
I1MI1 IMI

×C
IMI

jamja jbmjb
C

T MT

T1MT1 T23MT23
C

T23MT23
1
2 mta

1
2 mtb

× SD〈AλJπT |a†
ia
a
†
ib
|A−2α1I

π1
1 T1〉SD (28)

and

SD

〈
AλJπT

∣∣A(A−2,2)V1,23
∣∣
Jπ T

κab

〉
SD

= − 1√
2

∑
iā ib̄ ic̄ ic̄′
MI1 MI

mja mjb

〈iāic̄|V NN |ic̄′ ia〉CJM
I1MI1 IMI

×C
IMI

jamja jbmjb
C

T MT

T1MT1 T23MT23
C

T23MT23
1
2 mta

1
2 mtb

× SD

〈
AλJπT

∣∣a†
iā
a
†
ic̄
a
†
ib
aic̄′
∣∣A−2α1I

π1
1 T1

〉
SD , (29)

where CJM
j1mj1 j2mj2

are Clebsch-Gordan coefficients, a† and a

are creation and annihilation operators, respectively, and iq =
{nq�qjqmjq

1
2mtq } are single-particle quantum numbers. Note

that in Eq. (29), there are summations over the indexes iq̄ and
the bar is only meant to differentiate them better from the ones
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that correspond to the matrix element being calculated, i.e.,
from ia and ib.

The above matrix elements had already being derived and
utilized in the computation of the cluster and coupling form
factors required for the unified description of 6Li structure and
d + 4He dynamics with chiral two- and three-nucleon forces
[10], as well as in the description of d + 7Li scattering based
on a high-precision NN potential [44]. Here we present for the
first time their algebraic expressions.

Finally, unlike the NCSMC formalism for the description of
deuterium-nucleus collisions, where the dynamics of the last
two nucleons is already taken into account in the calculation of
the (bound) deuterium eigenstates, to obtain the three-cluster
coupling form factor of Eq. (15) one has also to compute the
potential form factor v23

λν(x,y) due to the V23 interaction of
Eq. (18). In the present (neutral) example, this is simply given
by the action of the operator VA−1,A = V (x) on the cluster form
factor, i.e.,

v23
λν(x,y) = V (x) gλν(x,y) . (30)

D. Solution of the dynamical equations

Rather than solving directly Eq. (5), we prefer to work with
the set of Schrödinger equations

(H − E)C = 0 , (31)

where H is the orthogonalized NCSMC Hamiltonian,

H
λλ′

νxy,ν ′x ′y ′ = [N− 1
2 H N− 1

2 ]λλ′
νxy,ν ′x ′y ′

=
⎛
⎝ H

(11)
λλ′ H

(12)
λν ′ (x ′,y ′)

H
(21)
λ′ν (x,y) H

(22)
νν ′ (x,y,x ′,y ′)

⎞
⎠, (32)

N− 1
2 is the inverse square root of the norm kernel of Eq. (7),

and the orthonormal wave functions are given by

C
λ′

ν ′x ′y ′ = [N
1
2 C]λ

′
ν ′x ′y ′ =

(
cλ′

χν ′(x ′,y ′)

)
. (33)

Detailed expressions of N− 1
2 and of the elements of the

orthogonalized Hamiltonian kernel and wave function of of
Eqs. (32) and (33), respectively, can be found in Appendix A.

Further, we introduce the set of hyperspherical coordinates

ρ =
√

x2 + y2 and α = arctan
x

y
, (34)

and reformulate Eq. (31) by taking advantage of the closure
and orthogonality properties of the complete set of functions
(see also Appendix B and Sec. II.C of Ref. [31]),

φ
�x,�y

K (α) = N
�x�y

K (sin α)�x (cos α)�y P
�x+ 1

2 ,�y+ 1
2

n (cos 2α). (35)

Together with the bipolar spherical harmonics
(Y�x

(x̂)Y�y
(ŷ))(L)

ML
, these form the hyperspherical harmonics

functions

YK�x�y

LML
(α,x̂,ŷ) = φ

�x,�y

K (α)(Y�x
(x̂) Y�y

(ŷ))(L)
ML

, (36)

i.e., the eigenfunctions with eigenvalue K(K + 4) of the grand-
angular part of the relative kinetic energy operator for a three-
body system. In the definition of Eq. (35), P

α,β
n (ξ ) are Jacobi

polynomials, N
�x�y

K are normalization constants, and K =
2n + �x + �y , with n a positive integer, is the hypermomentum
quantum number. Specifically, by (i) using the expansion

χν ′ (ρ ′,α′) = 1

ρ ′5/2

∑
K ′

uν ′K ′ (ρ ′)φ
�′
x ,�

′
y

K ′ (α′) (37)

for the orthogonalized continuous amplitudes, (ii) multiplying
the lower block of Eq. (31) by φ

�x,�y

K (α), and (iii) performing
all integrations over the hyperangular variables α and α′, we
arrive at the set of coupled Bloch-Schrödinger equations

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
λ′

H
(11)
λλ′ cλ′ +

∑
ν ′K ′

∫
dρ ′ρ ′5/2 H

(12)
λν ′K ′(ρ ′) uν ′K ′ (ρ ′) − E cλ = 0

∑
λ′

H
(21)
λ′νK (ρ) cλ′ +

∑
ν ′K ′

∫
dρ ′ρ ′5/2 H

(22)
νK,ν ′K ′(ρ,ρ ′) uν ′K ′(ρ ′) + (LνK (ρ) − E) ρ−5/2 uνK (ρ) = LνK (ρ) ρ−5/2 uext

νK (ρ) . (38)

Here, the elements of the orthogonalized Hamiltonian kernel
in the in the hyper-radial variables are given by

H
(12)
λνK (ρ) = H

†(21)
λνK (ρ)

=
∫

dα(sin α)2(cos α)2φ
∗�x ,�y

K (α)H
(12)
λν (ρ,α) (39)

and

H
(22)
νK,ν ′K ′ (ρ,ρ ′) =

∫∫
dα dα′(sin α)2(cos α)2(sin α′)2(cos α′)2

× φ
∗�x ,�y

K (α)H
(22)
νν ′ (ρ,α,ρ ′,α′)φ

′�′
x ,�

′
y

K (α′) .

(40)

To arrive at Eq. (38), we have also divided the configuration
space into two regions by assuming that the Coulomb inter-
action (if present) is the only interaction experienced by the
clusters beyond the hyper-radius ρ = a (i.e., in the external
region), and reframed the three-cluster problem within the
microscopic R-matrix formalism [45]. This is accomplished
by adding to and subtracting from the Hamiltonian matrix the
operator L defined by the two-by-two block matrix

Lλ
νKρ =

(
0 0

0 LνK (ρ)

)
, (41)
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where the lower-diagonal block is given by the Bloch surface
operator (LνK being arbitrary constants),

LνK (ρ) = h̄2

2m
δ(ρ − a)

1

ρ5/2

(
∂

∂ρ
− LνK

ρ

)
ρ5/2 . (42)

The operator of Eq. (42) allows one to conveniently implement
the matching between internal and external solutions at the
hyper-radius ρ = a, and has the further functions of restoring
the Hermiticity of the Hamiltonian matrix in the internal
region and enforcing the continuity of the the derivative of
the hyper-radial wave function at the matching hyper-radius.
Provided that the matching hyper-radius a lies outside of the
short-to-mid range where the discrete |AλJπT 〉 basis states
contribute, only the continuous component of the NCSMC
wave function is present in the external region. Therefore, to
find the solutions of the three-cluster NCSMC equations it
is sufficient to match the hyper-radial wave function uνK (ρ)
entering Eq. (37) with the known exact solutions of the
three-body Schrödinger equation in the external region. For
bound states of three-body neutral systems (such as the one
investigated in this paper), these are entirely described by the
hyper-radial wave functions

uext
νK (ρ) = BνK

√
kρ KK+2(kρ) , (43)

where KK+2(kρ) are modified Bessel functions of the second
kind, k2 = −2mE/h̄2 is the wave number, and BKν are
constants. The study of continuum states requires the use of a

different set of external wave functions

uJπ T
Kν (ρ) ∝ [H−

K (kρ)δνν ′δKK ′ − SνK,ν ′K ′H+
K (kρ)] (44)

with H± being the incoming and outgoing functions for neutral
systems [42] and S being the three-body scattering matrix of
the process.

Finally, the discrete coefficients cλ and hyper-radial wave
functions uνK (ρ) can be conveniently obtained by applying to
Eq. (38) the Lagrange-mesh method [46–50], in an analogous
way to that presented in Sec. II.D and Appendix C of Ref. [31].

E. Probability density

For a three-body system, it is useful to define the probability
density in terms of the Jacobi coordinates of Eqs. (3) and (4).
This provides a convenient visual description of the distribution
of the clusters with respect to one another. In particular, it
highlights which configuration or configurations are preferred
by the system.

In general, this probability density is given by

P (x,y) = x2y2|〈�Jπ T |δ(x − η23)δ(y − η1,23)|�Jπ T 〉|2.
(45)

However, given that the NCSMC wave function contains
not only a cluster part but also a many-body contribution, in
our formalism the probability density of Eq. (45) is computed
in an approximate way. We project the whole wave function
into the cluster basis, i.e.,

∣∣�Jπ T
3B

〉 = ∑
ν

∫∫
dx dy x2 y2

[∑
ν ′

∫∫
dx ′dy ′x ′2y ′2N−1/2(x,y,x ′,y ′)χ̃ν ′(ρ ′,α′)

]
Aν

∣∣
Jπ T
νxy

〉
, (46)

where |�Jπ T
3B 〉 is the projected wave function and the expression

enclosed by the square brackets represents the coefficients of
the expansion which are analogous to the amplitudes GJπ T

ν of
Eq. (1). The coefficients χ̃ν (analogous to χν within the cluster
part of the basis) can be calculated through the projection

χ̃ν(ρ,α) = 〈
�Jπ T

∣∣Aν

∣∣
Jπ T
ν ′x ′y ′

〉
, (47)

where |�Jπ T 〉 is the full NCSMC wave function. Then, the
probability density can be obtained by using |�Jπ T

3B 〉 in Eq. (45)
and reduces to

P (x,y) ∼ x2y2
∑

ν

χ̃2
ν (x,y), (48)

which can be expressed in terms of the NCSMC wave func-
tion coefficients cλ and χν(x,y) [related to Gν(x,y) through
Eq. (13)] by substituting Eq. (1) in Eq.(47) when calculating
χ̃2

ν (x,y), i.e.,

P (x,y) ∼ x2y2
∑

ν

[
χν(x,y)2

+
∑
λλ′

cλcλ′ ḡλν(x,y)ḡλ′ν(x,y)

+ 2
∑

λ

cλḡλν(x,y)χν(x,y)

]
. (49)

In order to have a more physical idea of the relative positions
of the clusters, the probability distribution is typically plotted
in terms of relative distances instead of Jacobi coordinates.

The level of approximation within Eq. (49) can be estimated
by calculating the integral of the probability density. Given that
the wave function is normalized, the deviation of such integral
from unity represents the part of the wave function that is not
taken into account within this approximation.

F. Radii

Root-mean-square matter and point-proton radii are essen-
tial observables in studying the spatial extension of nuclear
systems and the inhomogeneity of their distribution of protons
and neutrons. In general, the matter radius operator is defined
as

r2
m ≡ 1

A

A∑
i=1

(�ri − �Rcm)2, (50)

where Rcm is the c.m. of the system, and the rms matter radius is
given by the the square root of its expectation value. However,
for a three-cluster system, such as 6He, it can be decomposed
into a relative part, which depends on the relative distance
among the clusters and an internal part that acts on their inner
coordinates. In particular, when two of the clusters are single
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nucleons, the operator can be written as

r2
m = 1

A
ρ2 + A − 2

A
r2(c)
m , (51)

where r2(c)
m is the rms matter radius operator of the

(A − 2)-nucleon core.
When calculating the rms matter radius within the NCSMC,

it is convenient to use both forms of the operator. Indeed,
while for the discrete part of the basis using the general
expression (50) is more appropriate, it is natural to use the
cluster decomposition of (51) when the three-cluster part of
the basis is involved.

In the case of the point-proton radius, we can attempt a
similar cluster decomposition. While in this case it is not
possible to obtain a simple general expression analogous to
(51), for the particular case in which the core is the only
cluster with electric charge and it is an isospin zero state, the
point-proton radius can be reduced to

r2
pp ≡ 1

Z

A∑
i=1

(�ri − �Rcm)2

(
1 + τ

(z)
i

)
2

= r2(c)
pp + R2(c), (52)

where Z is the total number of protons, r (c)
pp is the rms point-

proton radius operator of the core, and R(c) =
√

2
A(A−2)ηc,nn

is the distance between the c.m. of the core and that of the
whole system. Similar to the matter radius, to calculate the
expectation value on the NCSMC wave function, the general
definition of the operator [given by the central part of Eq. (52)]
is used when dealing with the composite part of the basis while
the reduced form on the right of (52) is used when the cluster
basis is involved.

The specific expressions for the expectation values of these
operators when using NCSMC wave functions can be found in
Appendix B.

III. APPLICATION TO 6He

In the following, we discuss the application of the NCSMC
approach for three-cluster dynamics to the description of the
ground and continuum states of the Borromean 6He nucleus,
first published in Ref. [18], more extensively as well as
additional results.

The adopted NCSMC model space includes the first nine
positive-parity and first six negative-parity square-integrable
eigenstates of 6He with J � 2, obtained by diagonalizing the
Hamiltonian within the six-body HO basis of the NCSM, as
well as 4He (g.s.) + n + n three-cluster channels for which
the 4He core is also described within the NCSM. Calcula-
tions are performed using the chiral N3LO NN potential or
Ref. [51] softened via the similarity renormalization group
(SRG) method [52–54] and disregard for the time being 3N ini-
tial and SRG-induced components of the nuclear Hamiltonian.
This defines a new NN interaction, denoted SRG-N3LO NN ,
unitarily equivalent to the initial potential in the two-nucleon
sector only. Specifically, we adopt the resolution-scale param-
eters λSRG = 1.5 and λSRG = 2.0 fm−1, and the same h̄� = 14
and 20 MeV HO frequencies used in Refs. [31,32] and [10],
respectively. The results obtained with the λSRG = 1.5 fm−1

resolution scale provide a benchmark for the method given

4 6 8 10 12−30

−28

−26

−24

E 
[M

eV
]

4681012

(a)

λSRG = 1.5 fm−1

Nmax

6He
4Heexp

6He

4He
4He

Jπ= 0+ ground state

(b)

λSRG = 2.0 fm−1

6Heexp

FIG. 2. Dependence of the NCSM 6He and 4He J π = 0+ ground
state energies E(g.s.) on the HO model space size Nmax for the SRG-
N3LO NN potential with (a) λSRG = 1.5 fm−1 and h̄� = 14 MeV
and (b) λSRG = 2.0 fm−1 and h̄� = 20 MeV.

that, with such a soft potential, reliable values for the g.s. and
21

+ energies can be extracted, by extrapolation to the “infinite”
space, from a NCSM calculation. Furthermore, the results
obtained with this potential can be directly compared with
those of Refs. [31,32], using expansions based exclusively on
4He (g.s.) +n + n microscopic cluster states. Such comparison
allows us to better understand the importance of the short range
correlations that were missing in that calculation. Conversely,
calculations carried out with the λSRG = 2.0 fm−1 resolution
scale allow for a more realistic study of the g.s. properties of
6He. Indeed, at this momentum scale the net effects of the
disregarded initial and SRG-induced 3N interaction is mostly
suppressed in nuclei up to mass number A = 6, leading to
binding energies close to experiment [55]. Furthermore, for
this resolution scale two- and higher-body SRG corrections to
the 3H and 4He matter radii computed with bare operators (as
done in the present work) have been shown to be negligible
(less than 1%) [56].

A. 4He and 6He square integrable eigenstates

In this section, we discuss our results for the NCSM
eigenstates used as input for the present NCSMC investigation
of the Jπ = 0+ g.s. of 6He and low-lying α + n + n continuum
for partial waves up to Jπ = 2±.

The computed energy of the 6He g.s. within the NCSM
is presented in Fig. 2 as a function of the HO basis size
Nmax. Results obtained with λSRG = 1.5 fm−1 and h̄� =
14 MeV, shown in Fig. 2(a), are compared with those in
Fig. 2(b) for λSRG = 2.0 fm−1 and h̄� = 20 MeV. For the
softer (λSRG = 1.5 fm−1) potential, the variational NCSM
calculations converge rapidly and can be easily extrapolated
to Nmax → ∞ using an exponential function of the type

E(Nmax) = E∞ + ae−bNmax . (53)

This yields E(g.s.)= −29.84(4) [31], which is about 0.6 MeV
overbound with respect to experiment. The convergence rate
is clearly slower for the λSRG = 2.0 fm−1 interaction. Never-
theless, also in this case, the infinite-space g.s. energy can be
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FIG. 3. Dependence of the NCSM 6He J π = 0+ excitation energies (Ex) on the HO model space size Nmax for the SRG-N3LO NN potential
with (a) λSRG = 1.5 fm−1 and h̄� = 14 MeV and (b) λSRG = 2.0 fm−1 and h̄� = 20 MeV.

accurately obtained using the extrapolation techniques recently
developed for the NCSM [57–61]. This was recently demon-
strated by Sääf and Forssén, who obtained the extrapolated
value of E (g.s.) = −29.20(11) MeV [39], in close agreement
with experiment (−29.268 MeV). Also shown in Fig. 2 are the
corresponding results for the energy of the 4He g.s., which is
used to build the microscopic cluster states of Eq. (2). For both
λSRG values, convergence is achieved within the largest HO
model space, yielding binding energies close to experiment, as
was already shown in Ref. [55].

Figure 3 shows the convergence pattern with respect to
the HO basis size of the excitation energies for the first 10
positive-parity NCSM eigenstates of 6He. These include four
0+, two 1+, three 2+, and one 3+ states. This latter state is
not used in the present NCSMC calculations. As before, the
results obtained with the λSRG = 1.5 and 2.0 fm−1 interactions
are shown in Figs. 3(a) and 3(b), respectively. Except for the

TABLE I. Absolute energies of the first nine positive-parity states
with J � 2 for 6He calculated within the NCSM for a model space
of Nmax = 12.

J π λSRG = 1.5 fm−1 λSRG = 2.0 fm−1

0+ −29.75 −28.72
−22.73 −20.10
−20.46 −15.25
−19.04 −13.39

1+ −24.25 −22.28
−18.77 −13.57

2+ −27.40 −26.24
−24.78 −22.99
−19.22 −13.84

2+
1 state, which presents a very mild Nmax dependence, the

convergence rate is steady but slow and tends to deteriorate
as the excitation energy increases. The convergence rate is
once again much faster for the softer potential, which also
generates a more compressed excitation spectrum compared
to the λSRG = 2.0 fm−1 interaction. The overall picture is
similar for the negative-parity states. A summary of the NCSM
eigenenergies used as input in the largest model space adopted
is given in Tables I and II for positive and negative parities,
respectively.

B. 6He ground state within the NCSMC

The convergence of the 6He g.s. energy computed within the
NCSMC in terms of the size of the model space is compared
with the corresponding NCSM results in Fig. 4. More detailed
comparisons (including with the results obtained working in
a cluster basis alone [31]) are presented in Tables III and
IV for the λSRG = 1.5 and λSRG = 2.0 fm−1 interactions,
respectively. The third column of Table III shows the energy of
the ground state of 4He within the NCSM, which defines the

TABLE II. Absolute energies of the first 6 negative-parity states
with J � 2 for 6He calculated within the NCSM for a model space
of Nmax = 13.

J π λSRG = 1.5 fm−1 λSRG = 2.0 fm−1

0− −21.40 −17.84
1− −23.84 −20.97

−21.63 −17.98
−19.90 −16.12

2− −23.33 −20.45
−19.67 −15.96
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λSRG = 1.5 fm−1

Nmax

6He 4Heexp

6He
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4He
Jπ= 0+ ground state

(b)

λSRG = 2.0 fm−1

6Heexp

6He(NCSMC)

∞

6He(NCSMC)

FIG. 4. Same as Fig. 2 including also the dependence of the
NCSMC 6He J π = 0+ ground-state energy (E) on the HO model
space size Nmax for the SRG-evolved N3LO NN potential with (a)
λSRG = 1.5 fm−1 and h̄� = 14 MeV, and (b) λSRG = 2.0 fm−1 and
h̄� = 20 MeV. The extrapolated Nmax → ∞ NCSM 6He is shown as
a band of which the width represents the extrapolation uncertainty.

three-body breakup energy threshold Eth(α + n + n) for all
present 6He calculations. This is clearly already converged at
the largest adopted model space size. The chosen values of the
SRG resolution scale λSRG yield an almost identical g.s. energy
for 4He, close to the experimental value of −28.296 MeV
[62]. In general, however, the SRG-N3LO NN interaction is
not unitarily equivalent to the original N3LO NN potential in
the A > 2 nucleon sector. The interested readers can find the
dependence of the 4He g.s. energy on the λSRG momentum
scale in Ref. [63]. The next three columns show the energy
of the g.s. of 6He calculated within the 4He (g.s.) + n + n
cluster basis of Ref. [31], the NCSM and NCSMC. We can
see that the fastest convergence is reached within the NCSMC.
Furthermore, while the results from Ref. [31] also present a

TABLE III. Computed 6He g.s. energies (in MeV) within the
cluster basis [4He (g.s.) + n + n] [31] (fourth column), NCSM (fifth
column), and NCSMC including Nλ = 1 eigenstate of the composite
system (sixth column) as a function of the HO model space size Nmax

for the SRG-evolved N3LO NN potential with λSRG = 1.5 fm−1.
Also shown for the biggest model space are the results for the
NCSMC including Nλ = 4 6He eigenstates, and the NCSM 6He
energy obtained through the exponential fit from Eq. (53). Results
for 4He and experimental values for 6He are presented in the third
and last columns, respectively.

Nmax (Nλ) 4He 6He 6He 6He 6He
NCSM [31] NCSM NCSMC Expt.

6 (1) −27.98 −28.91 −28.95 −30.02
8 (1) −28.17 −28.62 −29.45 −29.69
10 (1) −28.21 −28.72 −29.66 −29.86
12 (1) −28.22 −28.70 −29.75 −29.86 −29.268 [20]
12 (4) −29.88
14 −28.22
∞ −29.84(4)

TABLE IV. Same as Table III, now using the potential obtained
with a SRG evolution parameter of λ = 2.0 fm−1. The NCSM
extrapolation shown is the one from Ref. [39]. Note that for this
potential the cluster basis alone does not yield a bound 6He ground
state.

Nmax (Nλ) 4He NCSM 6He NCSM 6He NCSMC

6 (1) −27.44 −26.44 −28.31
8 (1) −27.95 −27.70 −28.81
10 (1) −28.18 −28.37 −28.97
12 (1) −28.23 −28.72 −29.17
12 (4) −29.17
14 −28.24
∞ −29.20(11)[39]
6He Expt. −29.268 [20]

weak dependence on the HO model space size, they do not
converge to the correct energy, which can be estimated by
extrapolating to the infinity model space the NCSM results.
This proves that the many-body correlations disregarded when
using the cluster basis alone are indeed necessary for the correct
description of the system and are correctly taken into account
within the NCSMC. While the convergence of the NCSMC
6He g.s. energy with respect to the model space size is shown
here for the case in which only one eigenstate of the composite
system is included in the calculations, we also present the result
obtained by including four eigenstates of 6He for the largest
model space size. This shows that the inclusion of additional
eigenstates of the composite system has only a small effect on
the g.s. energy.

It is worth noting that the NCSMC is a variational approach
as long as the adopted model space captures in full the
wave function of the clusters (here, the 4He core) and of the
aggregate system (here, 6He) or, equivalently, if it includes
all possible prediagonalized eigenvectors of the clusters and
of the aggregate system within the chosen Nmax HO basis
size. That is, the NCSMC is a variational approach as long
as the generalized cluster expansion is not truncated. Such a
model space is computationally unachievable and, for p-shell
nuclei, we truncate the generalized cluster expansion to include
only a few eigenstates of the cluster and aggregate nuclei. In
particular, in the present application we only include the g.s. of
the 4He core. The effect of this truncation manifest itself in the
smallest HO base sizes and can give rise to the non-variational
behavior shown in Table III (the same argument applies to the
cluster basis calculation of Ref. [31]). However, as the adopted
HO basis size increases, thanks to the overcomplete nature of
the NCSMC basis the wave functions of clusters and aggregate
system are better represented within the truncated cluster
expansion and the convergence behavior becomes variational,
with the typical approach to the g.s. energy from above.

In Ref. [18], the equivalent results were presented in terms
of the absolute HO model space size Ntot = N0 + Nmax, where
N0 is the number of quanta shared by the nucleons in their
lowest configuration. However, given that the input for the
NCSMC includes the elements of the composite and cluster
bases at the same Nmax, we came to the conclusion that a
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TABLE V. Percentage of the norm of the 6He g.s. wave function
that comes directly from the NCSM part of the basis (

∑
λ c2

λ).

Nmax λSRG = 1.5 fm−1 λSRG = 2.0 fm−1

8 78%
10 88% 71%
12 91% 76%

comparison in terms of Nmax provides a better picture of the
relevance of each component in the full calculation. We also
note that the last three columns of Table I in Ref. [18] present
a mismatch with respect to the model space size reported in
the first column, showing results obtained with an Nmax value
larger by 2 units. Therefore, we call the reader to consider the
present tables to be the accurate representation of the results.

As seen in Table IV, convergence is not as obviously reached
when using the harder potentials with λSRG = 2.0 fm−1. Within
the NCSMC, there still is a 200-keV difference between the
Nmax = 10 and 12 results. However, the fact that the value
obtained for Nmax = 12 (−29.17 MeV) is in agreement with
the NCSM extrapolation from Ref. [39] [−29.20(11)] is a good
indicator that our results are at least very close to convergence
at this model space size.

We can estimate how much of the wave function can be
described through the NCSM by calculating the percentage
of the norm that comes directly from the discrete part of the
basis, i.e.

∑
λ c2

λ. These percentages are shown in Table V for
the two different potentials used, as well as for different sizes
of the model space. We find that, as one would expect, the
NCSM component of the basis is able to describe a much larger
percentage of the wave function when using the softer potential
corresponding to the λSRG = 1.5 fm−1 resolution scale, and
also a larger percentage as the HO model space size increases.

1. Spatial distribution

In Fig. 5, we show the probability density, as defined in
Sec. II E, for the ground state of 6He in terms of the the distance
between the two halo neutrons (rnn = √

2 ηnn) and the distance
between the 4He core and the center of mass of the external
neutrons (rα,nn = √

3/4 ηα,nn). This density plot presents two
peaks, which correspond to the two preferred spatial config-
urations of the system. The dineutron configuration, which
corresponds to the two neutrons being close together, clearly
presents a higher probability respect to the cigar configuration
in which the two neutrons are far apart and at the opposite sides
of the core. This distribution is in agreement with previous
studies [31,39,50,67–70]. In order to estimate the reliability of
the approximation of Eq. (49), which uses the projection of the
NCSMC wave function into the cluster basis, we integrated the
probability density given by Eq. (49). This integral is equivalent
to the square of the norm of the projected wave function. We
obtained 0.971 for the potential with λSRG = 1.5 fm−1 and
0.967 for the potential with λSRG = 2.0 fm−1. Given that we
work with normalized wave functions, the proximity of these
integrals to the unity indicates that only a small part of the
wave functions was lost when performing the projection.

When the 6He ground-state wave function is calculated
within the NCSM basis, the probability density can be obtained

FIG. 5. Probability distribution the J π = 0+ ground state of the
6He. Here rnn = √

2 ηnn and rα,nn = √
3/4 ηα,nn are, respectively, the

distance between the two neutrons and the distance between the c.m.
of 4He and that of the two neutrons.

by projecting into a cluster basis in the same way as it is done
for the NCSMC in Eq. (46). The obtained projected wave
function presents the same distribution observed in the case
of the NCSMC, with the difference that it is less extended.
This picture is consistent with the results previously reported
in Ref. [39] and is to be expected given that within this basis
the three-body asymptotic behavior is not well described. This
is easily appreciated in Fig. 6, where the contour diagram
of the probability distribution is shown for the NCSMC in
Fig. 6(b) and for the NCSM component in Fig. 6(c). In the
contour plots, it is also easier to determine the position on
the probability maxima: Within the dineutron configuration
the highest probability density appears when the neutrons are
about 2 fm apart and the 4He core about 3 fm from them. Within
the cigar configuration, the neutrons are about 4 fm apart and
the core is around 1 fm from their center of mass.

In Fig. 6(a), the most relevant hyper-radial components
ũνK (ρ) of the α + n + n relative motion are shown. The
hyper-radial components ũνK (ρ) are analogous to uνK (ρ) from
Eq. (37) but defined for the projected wave function from
Eq. (46). The solid blue lines are the components from the full
NCSMC wave function while the dashed red lines represent the
contribution to the full NCSMC wave function coming from
the discrete NCSM eigenstates. This figures also provides a
good visualization of how the short range of the NCSM wave
function is complemented with the cluster basis to reproduce
the extended wave function typical of halo nuclei by means of
the NCSMC.

2. Radii

The spatial extension of a particular state can be estimated
by its matter radius as described in Sec. II F. In Table VI,
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FIG. 6. (a) Most relevant hyper-radial components ũνK (ρ) [see text] of the α + n + n relative motion within the 6He g.s. after projection
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the full NCSMC wave function of panel (a) and its NCSM component, respectively, as a function of the relative coordinates rnn = √

2 ηnn and
rα,nn = √

3/4 ηα,nn.

we show the calculated NCSMC rms matter radius for the
ground state of 6He as a function of the HO model space
size Nmax. Results are shown for both λSRG = 1.5 and λSRG =
2.0 fm−1. The results obtained within the NCSM alone are
also shown for comparison. The introduction of 4He (g.s.) +
n + n microscopic cluster basis states provides a matter radius
closer to experiment within smaller model spaces. Contrary
to the NCSM, the convergence of the radius with respect to
the size of the model space is achieved within the NCSMC
at computationally accessible model spaces. The importance
of the inclusion of the cluster states is even more pronounced
for the potential with λSRG = 2.0 fm−1, for which the NCSM
results are further away from convergence. Similar to the
g.s. energy discussed earlier, here too the convergence of the
NCSMC is studied for the case in which only one eigenstate
of the composite system is included in the calculation. In the
largest HO model space, the inclusion of three additional (four
total) square-integrable eigenstates of the 6He system yields
a 2% increase of the matter radius. Besides the contributions
coming from the rms matter radii of the additional discrete
basis states, which are largely suppressed by the fact that the
corresponding expansion coefficients (cλ) are small, such an
increase comes from the matrix elements of the matter radius
operator between the first and third 0+ square integrable basis

states. Our most complete results of 2.46(2) fm lies just above
the range of experimental matter radii spanned by the values
and associated error bars of Refs. [64–66] of 2.33(10).

Table VII presents analogous results for the point-proton ra-
dius. Convergence behavior and comparisons with the NCSM
are also analogous. Even though the protons belong to the core
and not to the halo, the extension of the halo plays an important
role for the point-proton radius. It displaces the center of mass
of the core from the center of mass of the whole system,
increasing the point-proton radius, as is easily seen in Eq. (52).
Our most complete results of 1.90(2) fm is on the lower side
but compatible with the bounds for the point-proton radius
[1.938(23) fm] as evaluated in Ref. [38].

It is important to point out that while the use of the
λSRG = 1.5 fm−1 SRG parameter produces a softer NN
potential and hence faster convergence, it is known that at this
resolution scale there are significant SRG-induced 3N forces
as well as SRG-induced two- and three-body contributions to
the radii. Within the present calculations, we are disregarding
such induced terms. Therefore, the results obtained with this
resolution scale are expected to be far from realistic and they
should be understood as an instrument to study the NCSMC
approach rather than as realistic predictions for the 6He
nucleus.

TABLE VI. Computed 4He and 6He matter radii (in fm) for λSRG = 1.5 and λSRG = 2.0 fm−1 as a function of the HO model space size
Nmax within the NCSM, and the NCSMC including Nλ = 1 eigenstates of the composite system. Also shown for the biggest model space are
the results for the NCSMC, including Nλ = 4 6He eigenstates. Experimental values for 6He are presented in the last column.

Nmax (Nλ) λSRG = 1.5 fm−1 λSRG = 2.0 fm−1 Expt. 6He

4He NCSM 6He NCSM 6He NCSMC 4He NCSM 6He NCSM 6He NCSMC

6 (1) 1.489 2.14 2.47 1.471 2.01 2.47
8 (1) 1.490 2.18 2.35 1.461 2.06 2.40 2.33(4) [64]
10 (1) 1.487 2.22 2.38 1.461 2.10 2.42 2.30(7) [65]
12 (1) 1.490 2.25 2.37 1.459 2.15 2.41 2.37(5) [66]
12 (4) 2.46(2)
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TABLE VII. Computed 4He and 6He point-proton radii (in fm) for λSRG = 1.5 and λSRG = 2.0 fm−1 as a function of the HO model space
size Nmax within the NCSM, and the NCSMC including Nλ = 1 eigenstates of the composite system. Also shown for the biggest model space
are the results for the NCSMC including Nλ = 4 6He eigenstates. Experimental values for 6He are presented in the last column.

Nmax (Nλ) λSRG = 1.5 fm−1 λSRG = 2.0 fm−1 Expt. 6He

4He NCSM 6He NCSM 6He NCSMC 4He NCSM 6He NCSM 6He NCSMC

6 (1) 1.501 1.75 1.92 1.474 1.68 1.91
8 (1) 1.493 1.77 1.85 1.464 1.70 1.86
10 (1) 1.490 1.78 1.86 1.464 1.72 1.89 1.938(23) [38]
12 (1) 1.487 1.79 1.85 1.462 1.74 1.87
12 (4) 1.90(2)

A summary of the rms radii obtained for the more realistic
λSRG = 2.0 fm−1 interaction is presented in Table VIII and
visualized in Fig. 7 together with the corresponding results
for the separation energy, the infinite-basis extrapolations
from Ref. [39], and the effective interaction hyperspherical
harmonics (EIHH) calculations from Ref. [38], based on the
Vlowk(N3LO) NN interaction at the resolution scales �lowk =
1.8 and 2.0 fm−1. (The results presented Table VIII have been
obtained with improved accuracy and supersede those shown in
Table II of Ref. [18], where the labeling of the HO model space
size was also incorrectly reported to be lower by two units.) An
estimate of our uncertainties, based on both the convergence
of the two-neutron emission threshold Eth(α + n + n) and the
influence of 6He square-integrable states beyond the g.s., is re-
ported for the largest model space. The two-nucleon separation
energy obtained within the NCSMC is close to its empirical
value, and the computed rm and rpp radii are, respectively,
at the upper end and on the lower side but are compatible
with their experimental bands. Interestingly, our point-proton
radius is substantially larger than both the extrapolated value
of Sääf et al., which calls for further investigation [39], and
the EIHH result of Bacca et al. [38]. This latter calculation
also yields a matter radius smaller than ours, though within the
experimental bounds. The present combination of S2n and rpp

values are more in line with the Green’s function Monte Carlo
results of Ref. [35], based on NN + 3N forces constrained to
reproduce the properties of light nuclei including 6He.

C. 4He + n + n continuum

We investigated the low-lying α + n + n continuum for
partial waves up to Jπ = 2± by solving the set of Eqs. (38)
with the boundary conditions from Eq. (44). The eigenphase

TABLE VIII. Summary of the results presented in Fig. 7, with
�lowk in units of fm−1. See text for further details.

S2n (MeV) rm (fm) rpp (fm)

NCSM (Nmax = 12) 0.49 2.15 1.74
NCSM [39] (Nmax = ∞) 0.95(10) 1.820(4)
NCSMC (Nmax = 12) 0.94(5) 2.46(2) 1.90(2)
EIHH [38] (�lowk = 1.8) 1.036(7) 2.30(6) 1.78(1)
EIHH [38] (�lowk = 2.0) 0.82(4) 2.33(5) 1.804(9)

Expt. 0.975 2.33(10) 1.938(23)

shifts were extracted from the diagonalization of the three-body
scattering matrix SνK,ν ′K ′ .

Convergence of the results with respect to the HO model-
space size and the parameters used to perform the matching
between the solutions in the internal region and the asymptotic
wave functions within the R-matrix approach was reached at
values similar to those used in our previous study of Ref. [32],
lacking the contribution from square-integrable eigenstates of
the composite system. Specifically, our best results were ob-
tained at Nmax = 12, which is the maximum computationally
accessible HO model space size, and interested readers can find
a complete list of the remaining parameters for each channel
in Appendix D.

In Figs. 8(a) and 8(b), we present a summary of the most
relevant attractive eigenphase shifts below 6 MeV obtained
for the λSRG = 1.5 fm−1 interaction within the NCSMC by
including the first nine positive-parity and six negative-parity
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FIG. 7. NCSM (green symbols) and NCSMC (blue symbols) rms
matter (triangles) and point-proton (squares) radii, and two-neutron
separation energy (circles), obtained using the SRG-N3LO NN

interaction with λSRG = 2.0 fm−1 in the largest HO model space
(Nmax = 12). Also shown are the infinite-basis (∞) extrapolations
from Sääf et al. [39] (red symbols) and the EIHH results from Ref. [38]
(indigo symbols) based on the Vlowk(N3LO) NN interaction at the
resolution scales �lowk = 1.8 and 2.0 fm−1. The range of experimental
values are represented by horizontal bands (see text for more details).
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FIG. 8. Most relevant attractive eigenphase shifts below 6 MeV above the two-neutron emission threshold [Eth(α + n + n)] computed
within the NCSMC [panels (a) and (b)] and within the more limited model space spanned by the 4He (g.s.) + n + n cluster basis alone of
Ref. [32] [panels (c) and (d)], using the SRG-evolved N3LO NN potential with λSRG = 1.5 fm−1. We show positive-parity states in panels (a)
and (c) and negative-parity states in panels (b) and (d).

J � 2 square-integrable eigenstates of the composite system.
This figure can be compared with Fig. 1 of Ref. [32]—
for convenience shown again in Figs. 8(c) and 8(d)—which
presents analogous results computed within the more limited
model space spanned by the 4He (g.s.) + n + n cluster basis
alone. Although the qualitative behavior of the eigenphase
shifts is similar, within the NCSMC the centroid values of
all resonances tend to be shifted to lower energies and the
resonance widths tend to shrink due to the effect of the
inclusion of discrete eigenstates of the composite system. The
most significant change is observed for the first 2+ resonance,
which becomes much sharper (with a width of � = 15 keV)
and is shifted to lower energies (with the new centroid at
0.536 MeV). This behavior suggests a likely significant in-
fluence of the chiral 3N force on this state. The effect in other
partial waves is more modest. In particular, the 1− eigenphase
shift does not change significantly, excluding core-polarization
effects as the possible origin of a low-lying soft dipole mode.
This can more readily be observed in Figs. 9 and 10, where
we show a direct comparison between the present results and
those of Ref. [32] for the lowest resonances in the 1± and 2+
channels and for the lowest three eigenphase shifts in the 0+
channel, respectively. The repulsive eigenphase shift in the 0+
channel corresponds to the ground state of 6He, and the small
difference between the calculations is related to the difference
in the binding energy, as was shown in Table III.

The convergence of the eigenphase shifts with respect to the
number of eigenstates of the composite system included in
the calculation was found to be very fast. The mere inclusion
of the lowest eigenstate is in general sufficient to obtain rea-
sonable convergence in the low-energy region. As an example,
we show in Fig. 11 the convergence pattern of the most relevant
Jπ = 0+ eigenphase shifts with respect to the number of
NCSM eigenstates of the composite system for a small model

space of size Nmax = 7. Two eigenstates are already sufficient
for obtaining convergence up to 5 MeV. For energies below
3 MeV, a single eigenstate is enough. This convergence
behavior is of course related to the value of the eigenenergies
associated with the included square-integrable eigenstates. The
further the eigenvalue is from the energy under consideration,
the smaller the contribution to the eigenphase shifts from the
corresponding eigenstate. (The eigenenergies of all positive-
and negative-parity eigenstates included in the Nmax = 12
calculations are shown in Tables I and II, respectively.) For
comparison, the eigenphase shifts of Ref. [32], calculated
within the cluster basis alone, are also shown (corresponding
to zero eigenstates included).
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within the more limited model space spanned by the 4He (g.s.) +
n + n cluster basis alone of Ref. [32] (red dot-dashed line) using the
SRG-evolved N3LO NN potential with λSRG = 1.5 fm−1.
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From the calculated eigenphase shifts, it is possible to ex-
tract information about the resonances by calculating the cen-
troids ER and widths � as the values of Ekin = E − Eth(α+n+n)

for which the first derivative δ′(Ekin) of the eigenphase shifts
is maximal and �=2/δ′(ER), respectively [71]. The resulting
low-lying 6He spectrum of energy levels for the SRG-evolved
N3LO NN interaction with λSRG = 1.5 fm−1 is shown in
Fig. 12. There, we compare the present NCSMC results with
the spectra computed within the cluster basis alone [32], and
within the NCSM (i.e., by treating the 6He excited states as
bound states). Besides the results at Nmax = 12, for the NCSM
we also show the spectrum obtained by extrapolation to the
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NCSMC calculation of the most relevant eigenphase shifts for the
0+ channel below 8 MeV above the two-neutron emission threshold
[Eth(α + n + n)], using the SRG-evolved N3LO NN potential with
λSRG = 1.5 fm−1. Also shown are the results from Ref. [32], corre-
sponding to the inclusion of zero composite states (cluster basis).
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excited states as bound states at Nmax = 12. For the NCSM, we show
both the energy levels at Nmax = 12 and the results of an extrapolation
to the infinite model space (∞), performed through the exponential
fit function from Eq. (53).

infinite HO model space using the exponential form of Eq. (53).
Note that while for the results of Ref. [32] and the NCSMC the
resonances are represented by their centroids (solid line) and
width (shaded area), for the NCSM we only show the energy
levels and associate estimated uncertainty of the extrapolation.
Indeed, such a bound-state technique does not yield resonance
widths. While broad, higher energy states such as the 12

+

resonance are well described already within a 4He (g.s)+n + n
picture and very narrow resonances such as the first 2+ can
already be explained within the bound-state approximations
of the NCSM, for other intermediate levels both short-range
many-body correlations and continuum degrees of freedom
play an important role.

The harder NN interaction obtained with the SRG reso-
lution scale of λ = 2.0 fm−1 produces a qualitatively similar
picture, but with higher lying and wider resonances. This is
highlighted in Figs. 13 and 14, showing respectively the lowest-
lying eigenphase shifts for the Jπ = 1± and 2+ channels, and a
comparison of the computed energy levels with the most recent
experimental spectrum of Ref. [27]. The observed dependence
on the value of the SRG resolution scale provides an estimate
of the effect of induced 3N (and higher order) forces, which
have been disregarded in the present study and are crucial to
restore the formal unitarity of the adopted SRG transformation
of the Hamiltonian. More in general, the inclusion of 3N forces
(including the initial chiral 3N force) is indispensable to arrive
at an accurate description of the spectrum as a whole. Indeed,
while the SRG-evolved NN interaction with λ = 2.0 fm−1
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FIG. 13. Lowest-lying attractive eigenphase shifts for the J π =
1± and 2+ channels computed within the NCSMC using the SRG-
evolved N3LO NN potential with λSRG = 1.5 fm−1 (solid lines) and
λSRG = 2.0 fm−1 (dashed lines).

provides a realistic description of the energy and structure of
the 6He ground state, neither of the two adopted resolution
scales describes accurately the spectrum of the low-energy
excited states. At the same time, based on these results we
conjecture that the parity of the J = 1 resonance populated
at SPIRAL through the 8He(p,3He)6He* two-neutron transfer
reaction [27] is likely positive, making it less probable that this
state is the soft-dipole mode called for by Refs. [24,26].
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FIG. 14. Spectra of low-lying energy levels of the 6He nucleus
computed within the NCSMC using the SRG-evolved N3LO NN

potential with λSRG = 1.5 and λSRG = 2.0 fm−1 compared to the most
recent experimental spectrum of Ref. [27].

IV. CONCLUSIONS

We presented the extension of the ab initio no-core shell
model with continuum to the treatment of bound and contin-
uum nuclear systems in the proximity of a three-body breakup
threshold. This approach takes simultaneously into account
both many-body short-range correlations and clustering
degrees of freedom, allowing for a comprehensive ab initio
description of nuclear systems presenting a three-cluster
configuration such as Borromean halo nuclei and light-nuclei
reactions with three nuclear fragments in either entrance or exit
channels.

After introducing the NCSMC ansatz for systems character-
ized by a three-cluster asymptotic behavior, we discussed the
dynamical equations and gave the algebraic expressions of the
overlap and Hamiltonian couplings between the discrete and
continuous NCSMC basis states for the particular case of core
+ n + n systems. Further, we discussed the procedure adopted
for the solution of the three-cluster dynamical equations for
bound and scattering states, and explained how we calculate the
probability density and the matter and point-proton root-mean-
square radii starting from the obtained NCSMC solutions for
core + n + n systems. The new formalism was then applied
to conduct a comprehensive study of many-body correlations
and α clustering in the ground-state and low-lying energy
continuum of the Borromean 6He nucleus using the chiral
N3LO NN potential or Ref. [51] softened via the similarity
renormalization group method [52–54].

Calculations were carried out using a soft (λSRG =
1.5 fm−1) SRG resolution scale to allow for a direct comparison
with the results obtained in the more limited studies of
Refs. [31,32], based solely on the three-cluster portion of
the NCSMC basis. While working within the 4He (g.s.) +
n + n microscopic cluster basis, it is possible to reproduce
the correct asymptotic behavior of the 6He wave function, we
demonstrated that additional short-range six-body correlations
(included in the form of square-integrable eigenstates of the
composite 6He system) are necessary to correctly describe also
the interior of the wave function for both the ground and scatter-
ing states. In particular, a significant portion of the ground-sate
energy and the narrow width of the first 2+ resonance stem from
many-body correlations that, in a microscopic-cluster picture,
can be interpreted as core-excitation effects.

A second and physically more interesting potential (λSRG =
2.0 fm−1) was also used. Though the inclusion of 3N forces
(currently under way) remains crucial to restore the formal
unitarity of the adopted SRG transformation of the Hamilto-
nian and arrive at an accurate description of the spectrum as
a whole, the present results demonstrated that rms matter and
point-proton radii compatible with experiment can be obtained
starting from a soft NN interaction reprodu cing the 6He small
binding energy.

In the future, we plan to re-examine the ab initio calculation
of the 6He β-decay half-life, first carried out in Ref. [34], in the
context of chiral effective field theory using wave functions
with proper asymptotic behavior. This work also sets the stage
for the ab initio study of the 4He(2n,γ )6He radiative capture
and is a stepping stone in the calculation of the 3H(3H,2n)4He
fusion.

034332-16



THREE-CLUSTER DYNAMICS WITHIN THE AB … PHYSICAL REVIEW C 97, 034332 (2018)

ACKNOWLEDGMENTS

Computing support for this work came from the Lawrence
Livermore National Laboratory (LLNL) institutional Comput-
ing Grand Challenge program and from an INCITE Award
on the Titan supercomputer of the Oak Ridge Leadership
Computing Facility (OLCF) at ORNL. This article was pre-
pared by LLNL under Contract No. DE-AC52-07NA27344.

This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Office of Nu-
clear Physics, under Work Proposals No. SCW1158 and No.
SCW0498, and by the Natural Sciences and Engineering
Research Council of Canada (NSERC) Grants No. 401945-
2011 and No. SAPIN-2016-00033. TRIUMF receives funding
via a contribution through the Canadian National Research
Council.

APPENDIX A: NORM AND HAMILTONIAN KERNELS

Here, we present the explicit expressions for the NCSMC Hamiltonian and norm kernels entering Eqs. (32) and (33). There,
the square and inverse-square root of the NCSMC norm kernel, N± 1

2 , can be written as

(N± 1
2 )λλ′

νxy,ν ′x ′y ′ =
(

0 0

0 δνν ′ δ(x−x ′)
xx ′

δ(y−y ′)
yy ′ − δνν ′δn′

xnx
δn′

yny
Rnx�x

(x)Rnx�x
(x ′)Rny�y

(y)Rny�y
(y ′)

)

+
(

δλλ̃ 0

0 Rnx�x
(x)Rny�y

(y)δνν̃

)
(N± 1

2 )λ̃λ̃′
ν̃nxny ,ν̃ ′n′

xn
′
y

(
δλ̃′λ′ 0

0 Rn′
x�

′
x
(x ′)Rn′

y�
′
y
(y ′)δν̃ ′ν ′

)
, (A1)

where the sum over the repeating indexes λ̃,ν̃,nx,ny,λ̃
′,ν̃ ′,n′

x , and n′
y is implied, and the notation

(N± 1
2 )λλ′

νnxny ,ν ′n′
xn

′
y
=
⎛
⎝ (N± 1

2 )(11)
λλ′ (N± 1

2 )(12)
λν ′n′

xn
′
y

(N± 1
2 )(21)

λ′νnxny
(N± 1

2 )(22)
νnxny ,ν ′n′

xn
′
y

⎞
⎠ (A2)

stands for the matrix elements of the square and inverse-square root of the NCSMC norm kernel within the model space, which
are computed from the NCSMC model-space norm kernel

Nλλ′
νnxny ,ν ′n′

xn
′
y
=
(

δλλ′ ḡλν ′n′
xn

′
y

ḡλ′νnxny
δνν ′δnxn′

x
δnyn′

y

)
(A3)

using the spectral theorem. The orthogonalized Hamiltonian within the model space can then be calculated as follows:

H
λλ′

νnxny ,ν ′n′
xn

′
y
=
⎛
⎝ H

(11)
λλ′ H

(12)
λν ′n′

xn
′
y

H
(21)
λ′νnxny

H
(22)
νnxny ,ν ′n′

xn
′
y

⎞
⎠ = (N− 1

2 )λλ̃
νnxny ,ν̃ñx ñy

Hλ̃λ̃′
ν̃ñx ñy ,ν̃ ′ñ′

x ñ
′
y
(N− 1

2 )λ̃
′λ′

ν̃ ′ñ′
x ñ

′
y ,ν

′n′
xn

′
y
, (A4)

where the sum over the repeating indexes λ̃,ν̃,ñx,ñy,λ̃
′,ν̃ ′,ñ′

x , and ñ′
y is, once again, implied, and

Hλλ′
νnxny ,ν ′n′

xn
′
y
=
(

Eλδλλ′ h̄λν ′n′
xn

′
y

h̄λ′νnxny
Hνnxny ,ν ′nx n′

y

)
(A5)

is the model-space component of the NCSMC Hamiltonian kernel of Eq. (6). We note that the coupling form factors in configuration
space, h̄λν(x,y) = [hN− 1

2 ]λν(x,y), are related to those in the model space, h̄λνnxny
, through Eqs. (11) and (25), and the lower-

diagonal block is the model-space component of the orthonormalized integration kernel of Eq. (8). Additional details on how this
kernel is computed can be found in Ref. [31], where we introduced the formalism for the description of three-cluster dynamics
based solely on expansions over three-cluster channels states of the type of Eq. (2).

Finally, in the following, we provide detailed expressions for the blocks forming the orthogonalized NCSMC Hamiltonian of
Eq. (32), including the terms that extend beyond the HO model space P . In particular, in the following we will use the notation
n ∈ P to indicate that the radial quantum number n � Nmax. Note that for the upper diagonal bock there are not additional terms
that reach beyond the the HO model space and, therefore, it is trivially given by the upper diagonal block of Eq. (A4):

H
(12)
λν ′ (x ′,y ′) =

∑
n′

xn
′
y

Rn′
x�

′
x
(x ′)Rn′

y�
′
y
(y ′)H

(12)
λν ′n′

xn
′
y
+
∑

λ̃

(N− 1
2 )(11)

λλ̃

⎡
⎣∑

n′
y∈P

RN+1�′
x
(x ′)gλ̃ν ′Nn′

y
T

�′
x

NN+1Rn′
y�

′
y
(y ′)

+
∑
n′

x∈P

RN+1�′
y
(y ′)gλ̃ν ′n′

xN
T

�′
y

NN+1Rn′
x�

′
x
(x ′)

⎤
⎦
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+
∑

ν̃

∑
ñx ñyn′

y∈P

(N− 1
2 )(12)

λν̃ñx ñy

(
1

2
�

− 1
2

ν̃ñx ñy ,ν ′Nn′
y
+ 1

2
�

1
2
ν̃ñx ñy ,ν ′Nn′

y

)
T

�′
x

NN+1RN+1�′
x
(x ′)Rn′

y�
′
y
(y ′)

+
∑

ν̃

∑
ñx ñyn′

x∈P

(N− 1
2 )(12)

λν̃ñx ñy

(
1

2
�

− 1
2

ν̃ñx ñy ,ν ′n′
xN

+ 1

2
�

1
2
ν̃ñx ñy ,ν ′n′

xN

)
T

�′
y

NN+1RN+1�′
y
(y ′)Rn′

x�
′
x
(x ′), (A6)

H
(21)
λ′ν (x,y) =

∑
nxny

Rnx�x
(x)Rny�y

(y)H
(21)
λ′νnxny

+
∑

λ̃

⎡
⎣∑

ny∈P

RN+1�x
(x)gλ̃νNny

T
�x

NN+1Rny�y
(y)

+
∑
nx∈P

RN+1�y
(y)gλ̃νnxN

T
�y

NN+1Rnx�x
(x)

⎤
⎦(N− 1

2 )(11)
λ̃λ′

+
∑

ν̃

∑
ñx ñyny∈P

RN+1�x
(x)Rny�y

(y)T �x

N+1N

(
1

2
�

− 1
2

νNny,ν̃ñx ñy
+ 1

2
�

1
2
νNny,ν̃ñx ñy

)
(N− 1

2 )(21)
λ′ ν̃ñx ñy

+
∑

ν̃

∑
ñx ñynx∈P

Rnx�x
(x)RN+1�y

(y)T
�y

N+1N

(
1

2
�

− 1
2

νnxN,ν̃ñx ñy
+ 1

2
�

1
2
νnxN,ν̃ñx ñy

)
(N− 1

2 )(21)
λ′ν̃ñx ñy

, (A7)

and

H
(22)
νν ′ (x,y,x ′,y ′) = δ(y − y ′)

yy ′ δνν ′Tν(x)
δ(x − x ′)

xx ′ + δ(x − x ′)
xx ′ δνν ′Tν(y)

δ(y − y ′)
yy ′

− δνν ′

⎧⎨
⎩
∑
ny∈P

[
RN+1�x

(x)T �x

N+1NRN�x
(x ′) + RN�x

(x)T �x

NN+1RN+1�x
(x ′)

]
Rny�y

(y)Rny�y
(y ′)

+
∑
nx∈P

Rnx�x
(x)Rnx�x

(x ′)
[
RN+1�y

(y)T
�y

N+1NRN�y
(y ′) + RN�y

(y)T
�y

NN+1RN+1�y
(y ′)

]

+
∑

nxnyn′
x∈P

Rnx�x
(x)T �x

nxn′
x
Rn′

x�
′
x
(x ′)Rny�y

(y)Rny�′
y
(y ′) +

∑
nxnyn′

y∈P

Rnx�x
(x ′)Rnx�′

x
(x ′)Rny�y

(y)T
�y

nyn′
y
Rn′

y�
′
y
(y ′)

⎫⎬
⎭

+
∑

nxnyn′
xn

′
y

Rn′
x�

′
x
(x ′)Rn′

y�
′
y
(y ′)Rnx�x

(x)Rny�y
(y)H

(22)
νnxnyν ′n′

xn
′
y

+
∑

λ̃

⎡
⎣∑

ny∈P

RN+1�x
(x)gλ̃νNny

T
�x

NN+1Rny�y
(y) +

∑
nx∈P

RN+1�y
(y)gλ̃νnxN

T
�y

NN+1Rnx�x
(x)

⎤
⎦

×
∑

n′
xn

′
y∈P

Rn′
x�

′
x
(x ′)Rn′

y�
′
y
(y ′)(N− 1

2 )(12)
λ̃ν ′n′

xn
′
y

+
∑

ν̃

∑
ñx ñy

nyn
′
x

n′
y ∈ P

RN+1�x
(x)Rny�y

(y)T �x

N+1N

(
1

2
�

− 1
2

νNny,ν̃ñx ñy
+ 1

2
�

1
2
νNny,ν̃ñx ñy

)

× (N− 1
2 )(22)

ν̃ñx ñy ,ν ′n′
xn

′
y
Rn′

x�
′
x
(x ′)Rn′

y�
′
y
(y ′)

+
∑

ν̃

∑
ñx ñy

n′
xn

′
y

nx ∈ P

Rnx�x
(x)RN+1�y

(y)T
�y

N+1N

(
1

2
�

− 1
2

νnxN,ν̃ñx ñy
+ 1

2
�

1
2
νnxN,ν̃ñx ñy

)

× (N− 1
2 )(22)

ν̃ñx ñyν ′n′
xn

′
y
Rn′

x�
′
x
(x ′)Rn′

y�
′
y
(y ′) +

∑
λ̃

∑
nxny

(N− 1
2 )(21)

λ̃νnxny
Rnx�x

(x)Rny�y
(y)

×
⎡
⎣∑

n′
y∈P

RN+1�′
x
(x ′)gλ̃ν ′Nn′

y
T

�′
x

NN+1Rn′
y�

′
y
(y ′) +

∑
n′

x∈P

RN+1�′
y
(y ′)gλ̃ν ′n′

xN
T

�′
y

NN+1Rn′
x�

′
x
(x ′)

⎤
⎦
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+
∑

ν̃

∑
ñx ñy

nxny

n′
y ∈ P

Rnx�x
(x)Rny�y

(y)(N− 1
2 )(22)

νnxny ,ν̃ñx ñy

(
1

2
�

− 1
2

ν̃ñx ñy ,ν ′Nn′
y
+ 1

2
�

1
2
ν̃ñx ñy ,ν ′Nn′

y

)
T

�′
x

NN+1RN+1�′
x
(x ′)Rn′

y�
′
y
(y ′)

+
∑

ν̃

∑
ñx ñy

nxny

n′
x ∈ P

Rnx�x
(x)Rny�y

(y)(N− 1
2 )(22)

νnyny ,ν̃ñx ñy

(
1

2
�

− 1
2

ν̃ñx ñy ,ν ′n′
xN

+ 1

2
�

1
2
ν̃ñx ñy ,ν ′n′

xN

)
T

�′
y

NN+1RN+1�′
y
(y ′)Rn′

x�
′
x
(x ′) ,

(A8)
where the subindex N is the maximum size of the HO model space, which has been referred to as Nmax throughout the paper,
T �

nn′ = 〈n�|T̂rel|n′�〉 are matrix elements of the relative kinetic energy operator, and � represents the model-space norm kernel
within the more limited formalism for the description of three-cluster dynamics based solely on expansions over three-cluster
channels states of the type of Eq. (2) (see Eqs. (A3)–(A6) of Ref. [31]).

APPENDIX B: WAVE FUNCTIONS

As described in Sec. II D, instead of solving directly Eq. (5) we solve the set of orthogonalized Schrödinger equations Eq. (32).

Therefore, we obtain the orthogonalized vector of the expansion coefficients C
λ

νxy instead of the original Cλ
νxy . These two arrays

are related through Eq. (33), which can be inverted into

Cλ
νxy = [N− 1

2 C]λνxy =
(

cλ

χν(x,y)

)
. (B1)

Therefore, we can recover the original Cλ
νxy through the following expressions:

cλ =
∑
λ′

(N− 1
2 )(11)

λλ′ cλ′ +
∑

ν

∫∫
dxx2dyy2(N− 1

2 )(12)
λνxyχν(xy),

χν(xy) =
∑

λ

(N− 1
2 )(21)

λνxycλ +
∑
ν ′

∫∫
dx ′x ′2dy ′y ′2(N− 1

2 )(22)
νxyν ′x ′y ′χν ′(x ′y ′) . (B2)

APPENDIX C: RADII EXPRESSIONS

The expectation value for the radii operators within the NCSMC wave function can be expressed in terms of the cluster and
composite bases as

〈�Jπ T |r̂2|�Jπ T 〉 =
∑
λλ′

cλcλ′ 〈AλJπT |r̂2|Aλ′JπT 〉 +
∑
λν ′

cλ

∫
dx ′dy ′x ′2y ′2GJπ T

ν ′ (x ′,y ′)
〈
φJπ T

ν ′x ′y ′
∣∣Âν ′ r̂2

∣∣AλJπT
〉

+
∑
λ′ν

cλ′

∫
dxdyx2y2GJπ T

ν (x,y)
〈
Aλ′JπT

∣∣r̂2Âν

∣∣φJπ T
νxy

〉

+
∑
νν ′

∫∫
dxdydx ′dy ′x2y2x ′2y ′2GJπ T

ν (x,y)GJπ T
ν ′ (x ′,y ′)

〈
φJπ T

ν ′x ′y ′
∣∣Âν ′ r̂2Âν

∣∣φJπ T
νxy

〉
, (C1)

where r̂2 represents either the matter or point proton radii operators. The root-mean-square radii are given by the square root
of these matrix elements. Note that in Eq. (C1) the first term corresponds to the expectation value within a NCSM calculation
weighted by the product of the discrete expansion amplitudes cλ and cλ′ . This first term is calculated using the general expressions
of the corresponding operators; however, the rest of the terms are calculated using the expressions that were derived in Sec. II F
considering the clusterization of the system, i.e., Eq. (51) and the right side of Eq. (52) for the matter and point-proton radii,
respectively. For the coupling terms, i.e., the second and third terms in Eq. (C1), mixed matrix elements are needed. We calculate
these matrix elements by expanding, in an approximate way, the NCSM state into the cluster basis. While this is in principle a
rough approximation we can conclude a posteriori that the results are not significantly affected by this approximation given that
the contribution of these coupling terms in this first order is already very small compared to the other terms.

When calculating the matter radius, Eq. (C1) reduces to

〈�Jπ T |r2
m|�Jπ T 〉 =

∑
λλ′

cJπ T
λ cJπ T

λ′ 〈AλJπT |r2
m|Aλ′JπT 〉

+
(

A − 2

A

)∑
νν ′

〈A − a23 α1I
π1
1 T1|r2(c)

m |A − a23 α1I
π1
1 T1〉

∫∫
dxdyx2y2WJπ T

νν ′ (x,y)

+ 1

A

∑
νν ′

∫∫
dxdyx2y2ρ2WJπ T

νν ′ (x,y) . (C2)
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For the point-proton radius, Eq. (52) is valid given that the core is the only charged cluster and has isospin zero. The expectation
value is given by

〈�Jπ T |r2
pp|�Jπ T 〉 =

∑
λλ′

cJπ T
λ cJπ T

λ′ 〈AλJπT |r2
pp|Aλ′JπT 〉

+
∑
νν ′

〈A − a23 α1I
π1
1 T1|r2(c)

pp |A − a23 α1I
π1
1 T1〉

∫∫
dxdyx2y2WJπ T

νν ′ (x,y)

+ 2

A(A − 2)

∑
νν ′

∫∫
dxdyx2y4WJπ T

νν ′ (x,y) . (C3)

Here and in the equation above, we have defined

WJπ T
νν ′ (x,y) = 1

2
GJπ T

ν ′− (x,y)GJπ T
ν+ (x,y) + 1

2
GJπ T

ν ′+ (x,y)GJπ T
ν− (x,y)

+
∑
λ′

cJπ T
λ′ gJπ T

λ′ν ′ (x,y)GJπ T
ν− (x,y) + GJπ T

ν ′− (x,y)
∑

λ

cJπ T
λ gJπ T

λν (x,y), (C4)

with

GJπ T
ν± (x,y) =

∑
ν ′

∫∫
dx ′dy ′x ′2y ′2[N Jπ T

νν ′ (x,y,x ′,y ′)
]±1/2

χJπ T
ν ′ (x ′,y ′). (C5)

APPENDIX D: PARAMETERS OF THE CALCULATIONS

A thorough study of the convergence of the results with
respect to the parameters defining the size of the continuous
portion of our model space besides the HO model space size
(Nmax = 12) was carried out if Refs. [31,32]. These are the
maximum value Kmax of the hyperangular momentum in the
expansion (37), and the size Next�Nmax of the extended HO
basis used to represent a δ function in the core-halo distance
entering the portion of the Hamiltonian kernel of Eq. (8)

TABLE IX. Parameters used for the calculations with λSRG =
1.5 fm−1.

J π Next Kmax a (fm) ns nα

0+ 200 40 45 125 40
0− 70 18 30 60 20
1+ 70 19 30 60 30
1− 110 23 40 80 40
2+ 90 20 30 60 40
2− 70 18 30 60 20

that accounts for the interaction between the halo neutrons
(see Eq. (39) of Ref. [31]). At all stages of the calculation,
the hyper-radius a used to match the internal and asymptotic
solutions within the R-matrix method on the Lagrange mesh,
and the number ns and nα of mesh points used for carrying
out the integrations in the hyper-radial and hyperangular
coordinates, respectively, were chosen large enough to reach
stable, a-independent results. For completeness, in Tables IX
and X we list all parameters besides the HO model space
size (Nmax = 12) used for our best calculations for each JπT
channel.

TABLE X. Parameters used for the calculations with λSRG =
2.0 fm−1.

J π Next Kmax a (fm) ns nα

0+ 200 40 45 150 50
1+ 110 23 40 95 45
1− 110 23 40 95 45
2+ 90 20 30 60 40
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