
PHYSICAL REVIEW C 97, 034330 (2018)

Transition sum rules in the shell model

Yi Lu
College of Physics and Engineering, Qufu Normal University, 57 Jingxuan West Road, Qufu, Shandong 273165, China;

School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China;
and Department of Physics, San Diego State University, 5500 Campanile Drive, San Diego, California 02182-1233, United States

Calvin W. Johnson
Department of Physics, San Diego State University, 5500 Campanile Drive, San Diego, California 02182-1233, United States

(Received 21 November 2017; revised manuscript received 26 January 2018; published 29 March 2018)

An important characterization of electromagnetic and weak transitions in atomic nuclei are sum rules. We focus
on the non-energy-weighted sum rule (NEWSR), or total strength, and the energy-weighted sum rule (EWSR); the
ratio of the EWSR to the NEWSR is the centroid or average energy of transition strengths from an nuclear initial
state to all allowed final states. These sum rules can be expressed as expectation values of operators, which in the
case of the EWSR is a double commutator. While most prior applications of the double commutator have been
to special cases, we derive general formulas for matrix elements of both operators in a shell model framework
(occupation space), given the input matrix elements for the nuclear Hamiltonian and for the transition operator.
With these new formulas, we easily evaluate centroids of transition strength functions, with no need to calculate
daughter states. We apply this simple tool to a number of nuclides and demonstrate the sum rules follow smooth
secular behavior as a function of initial energy, as well as compare the electric dipole (E1) sum rule against
the famous Thomas-Reiche-Kuhn version. We also find surprising systematic behaviors for ground-state electric
quadrupole (E2) centroids in the sd shell.
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I. INTRODUCTION

Atomic nuclei are neither static nor exist in isolation.
Their transitions play important roles in fundamental, applied,
and astrophysics, as well as revealing key information about
nuclear structure beyond just excitation energies. In this paper,
we focus on electromagnetic and weak transitions; such tran-
sition strength distributions are important for γ spectroscopy,
nucleosynthesis, and ββ decays, as they are used to extract
level densities [1], calculate nuclear reaction rates in stellar
processes [2], and analyze ββ decay matrix elements [3].

The strength function for a transition operator F̂ from an
initial state i at energy Ei to a final state f at absolute energy
Ef and excitation energy Ex = Ef − Ei is defined as

S(Ei,Ex) =
∑
f

δ(Ex + Ei − Ef )|〈f |F̂ |i〉|2. (1)

Sum rules are moments of the strength function,

Sk(Ei) =
∫

(Ex)kS(Ei,Ex) dEx. (2)

Two of the most important sum rules, which we consider
here, are S0, the non-energy-weighted sum rule (NEWSR) or
total strength, and S1, the energy-weighted sum rule (EWSR).
These sum rules provide compact information about strength
functions. For example, the famous Ikeda sum rule [4] for
Gamow-Teller (GT) transitions is the difference between the
total β− strength and total β+ strength:

S0(GT−) − S0(GT+) = 3(N − Z)g2
A,

where gA is the axial vector coupling relative to the vector
coupling gV . For investigations of quenching of gA [5], the
NEWSR S0 can be a probe of the missing strengths due to
hypothesized cross-shell configurations.

The centroid of a strength distribution is just the ratio of the
EWSR to the NEWSR,

Ecentroid(Ei) = S1(Ei)

S0(Ei)
. (3)

For a compact distribution of a giant resonance, Ecentroid(Ei)
will be roughly the location of the resonance peak, relative
to the parent state energy Ei ; of course, in the case of highly
fragmented strength distributions this interpretation no longer
holds, and in severely truncated model spaces the centroid
will be too low compared to experiment. Both the NEWSR S0

and Ecentroid(Ei) can test the validity of the general Brink-Axel
hypothesis [6,7]. The general Brink-Axel hypothesis [8–10]
assumes that the strength distribution of transitions from
any parent state is approximately the same; thus as a result
Ecentroid(Ei) is independent of Ei . Though it seems this
hypothesis needs to be modified for E1 [11–13], M1 [14–16]
(the low-energy γ anomaly), and GT [17] transitions, it is
still being widely used to calculate neutron-capture rates [18]
and extract nuclear level densities [1,19,20], and it can have a
substantial impact on astrophysical relevance [2,21].

Sum rules are appealing not only because they characterize
strength functions but also because using closure some sum
rules can be rewritten as expectation values of operators
[22]. Allowing for transition operators with good angular
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momentum rank K , one should sum over the z-component
M , and the total strength S0(Ei) becomes∑

f

∑
M

|〈f |F̂K,M |i〉|2 =
∑
M

〈i|(F̂K,M )†F̂K,M |i〉. (4)

Thus S0(Ei) can be easily evaluated numerically without
calculating any final state. The strength sum can be used to
evaluate the previously mentioned Ikeda sum rule, which is
useful as a check on computations.

The EWSR can be written as the expectation value of a
double commutator, as long as the transition operator behaves
as a spherical operator under Hermitian conjugation [23],

(F̂KM )† = (−1)MF̂K,−M. (5)

If we do not have (5), one cannot write the EWSR operator
as a double commutator. The requirement of this will have
consequences when we look at charge-changing transition such
as β decay. In that case, one must include both β− and β+
transitions.

Invoking closure and Eq. (5), S1(Ei) becomes

〈i|1

2

∑
M

(−1)M [F̂K,−M,[Ĥ ,F̂K,M ]]|i〉. (6)

As an example, the Thomas-Reiche-Kuhn sum rule [24] evalu-
ates the energy-weighted sum of E1 strengths of an atom with
N electrons and conserves to a constant proportional to N/me.
In nuclear physics, the corresponding sum rule is similar,
though the EWSR is proportional to NZ/2AmN because the
dipole is relative to the center of mass. Another example is
related to the “scissor mode” in rare-earth-metal nuclei [25],
for which the EWSR of low-lying (<4 MeV) orbital M1
transitions shows a striking correlation with the E2 transition,∑

x

B(M1; 01
+ → 1x

+)E1x
+ ∝

∑
x

B(E2; 01
+ → 2x

+).

(7)

This EWSR is derived both in the IBM-2 model [26] and in
the shell model [27,28] with phenomenological interactions.

One can compute sum rules with the Lanczos algorithm
[29–32], which has a deep connection to the classical moment
problem. Given some initial state |�i〉, one applies a transition
operator F̂ and then uses F̂ |�i〉 as the pivot or starting state
in the Lanczos algorithm. This requires, however, one to be
able to carry out a matrix-vector multiplication in the Hilbert
space under consideration, which may not always be possible
or practical, for example, in the case of coupled clusters [33]
or generator coordinate calculations [22,34,35]. Furthermore,
for example, in the M scheme, or fixed Jz, basis for the
configuration-interaction shell model, if the initial state has
angular momentum Ji > 0, then applying an operator F̂K with
angular momentum rank K will produce a state with mixed Jf ,
with |Ji − K| � Jf � Ji + K by the triangle rule. To compare
to experimental results, however, one generally needs a sum
over final M values and average over initial M values, and
to correctly use the Lanczos method one must either do this
explicitly or project out states of good angular momentum
and extract strength functions via appropriate Clebsch-Gordan
coefficients. This point is not emphasized in the literature.

In this paper, we go beyond specific cases and, in the next
section, write down the general form of the operators (4) and
(6) in a spherical shell model basis. Although straightforward,
the EWSR in particular is somewhat involved and to the best of
our knowledge is not published. The appendix provides some
of the details of derivation. In Ref. [36], we make available
a C++ code to generate those operator matrix elements. With
such machinery, one can directly compute the NEWSR and
EWSR easily for many nuclides and many transitions. Prior
work showed that the NEWSR follows simple secular behavior
with the initial energy Ei and gave a general argument [7]. In
Sec. III, we show a few cases and also find simple secular
behavior. Finally, we illustrate the applicability by looking at
systematics of ground-state E1 and E2 sum rules.

II. FORMALISM AND FORMULAS

We work in the configuration-interaction shell model, using
the occupation representation [37] with fermion single-particle
creation and annihilation operators â†, â, respectively. As is
standard, our operators have good angular momentum. The
labels of each single-particle state include the magnitude of
angular momentum j and z-component m; there are other im-
portant quantum numbers, in particular parity, orbital angular
momentum l, and label n for the radial wave function, but
those values are absorbed into the values of matrix elements,
so, for example, the details of our derivation are independent of
whether or not one uses harmonic oscillator or Woods-Saxon
or other single-particle radial wave functions. Because we
are working in a shell model basis, we differentiate between
single-particle states (labeled by j,m, and l,n, . . .) and orbits,
by which we mean the set of 2j + 1 states with the same j but
different m. We assign fermion operators of different orbits
different lower-case Latin letters: â†, b̂†, etc., to prevent a
proliferation of subscripts. (In our derivations, when discussing
generic operators, which may be single-fermion operators or
composed of products and sums of operators, we use lowercase
Greek letters: α,β, . . . .) In order to make our results broadly
usable, we will be slightly pedantic.

To denote generic operators α̂,β̂ coupled up to good total
angular momentum J and total z-component M , we use the
notation (α̂ ⊗ β̂)JM . Hence, we have the general pair creation
operator

Â
†
JM (ab) = (â† ⊗ b̂†)JM, (8)

with two particles in orbits a and b. We also introduce the
adjoint of A

†
JM (ab), the pair annihilation operator,

ÃJM (cd) = −(c̃ ⊗ d̃)JM. (9)

Here we use the standard convention c̃mc
= (−1)jc+mc ĉ−mc

,
where mc is the z component of angular momentum; this
guarantees that if â

†
jm transforms as a spherical tensor, so does

ãjm [23]. An alternate notation is

ÂJM (cd) = [Â†
JM (cd)]† = (−1)J+MÃJ,−M (cd). (10)

With this, we can write down a standard form for any
one- plus two-body Hamiltonian or Hamiltonian-like operator,
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which are angular momentum scalars. To simplify, we use

Ĥ =
∑
ab

eabn̂ab + 1

4

∑
abcd

ζabζcd

∑
J

VJ (ab,cd)

×
∑
M

Â
†
JM (ab)ÂJM (cd), (11)

where n̂ab = ∑
m â

†
mb̂m and ζab = √

1 + δab. Here
VJ (ab,cd) = 〈ab; J |V̂ |cd; J 〉 is the matrix element of
the purely two-body part of Ĥ between normalized two-body
states with good angular momentum J because H is a scalar
the value is independent of the z-component M . One can also
write this, in slightly different formalism, as∑

ab

eab[ja](â† ⊗ b̃)0,0 + 1

4

∑
abcd

ζabζcd

∑
J

VJ (ab,cd) [J ]

× (Â†
J (ab) ⊗ ÃJ (cd))0,0, (12)

where we use the notatation [x] = √
2x + 1, which some

authors write as x̂ (we use the former to avoid getting con-
fused with operators which always are denoted by either â
or ã).

Finally, we also introduce one-body transition operators
with good angular momentum rank K and z-component of
angular momentum M ,

F̂K,M =
∑
ab

Fab[K]−1(â† ⊗ b̃)K,M. (13)

Here Fab = 〈a||F̂K ||b〉 is the reduced one-body matrix element
using the Wigner-Eckart theorem and the conventions of
Edmonds [23]. For non-charge-changing transitions, Eq. (5)
implies

Fab = (−1)ja−jbF ∗
ba. (14)

With these definitions and conventions, we can now work
out general formulas for sum rules. An important issue will be
isospin. Realistic operators, such as M1, connect states with
different isospin, and so rather than working in a formalism
with good isospin we treat protons and neutrons as being in
separate orbits. (Counter to this, we give one example with
isoscalar E2 transitions in Sec. III.)

A. Non-energy-weighted sum rules

The non-energy-weighted sum rule operator is given by

ÔNEWSR = 	F † · 	F =
∑
M

(F̂KM )†F̂KM

=
∑
M

(−1)MF̂K−MF̂KM, (15)

using Eq. (5). Then

ÔNEWSR =
∑
ab

n̂ab

∑
c

F ∗
caFcb

2ja + 1
−

∑
abcd

F ∗
cbFad

×
∑

J

{
ja jd K
jc jb J

}∑
μ

Â
†
Jμ(ab)ÂJμ(cd)

=
∑
ab

(â† ⊗ b̃)00

∑
c

[ja]−1F ∗
caFcb −

∑
abcd

F ∗
cbFad

×
∑

J

{
ja jd K
jc jb J

}
[J ](Â†

J (ab) ⊗ ÃJ (cd))00.

(16)

By writing out the operator as an angular momentum scalar
and to look “just like” a Hamiltonian, for purposes of use in a
shell-model code, we have

ÔNEWSR =
∑
ab

gab[ja](a† ⊗ b̃)0,0 + 1

4

∑
abcdJ

ζabζcdWJ

× (ab,cd) [J ](A†
J (ab) ⊗ ÃJ (cd))0,0, (17)

where the single-particle matrix element is

gab =
∑

c

F ∗
caFcb

2ja + 1
. (18)

We do not assume isospin symmetry, but assume our orbital
labels also reference protons and/or neutrons. So in (18)
labels a and b must be the same, proton or neutron. Now
for the two-body matrix elements: For identical particles in
orbits (i.e., a,b,c,d all label protons or all label neutrons),
we need to enforce antisymmetry, that is, W

pp(nn)
J (ab,cd) =

−(−1)ja+jb+J W
pp(nn)
J (ba,cd), etc:

W
pp(nn)
J (ab,cd) = −2(1 + PabJ )ζ−1

ab ζ−1
cd

×
{
ja jd K
jc jb J

}
F

pp(nn)∗
cb F

pp(nn)
ad , (19)

where PabJ = −(−1)ja+jb+J Pab, and Pab is the exchange
operator swapping a ↔ b. Here the only terms in F̂ which
contribute are the non-charge-changing pieces, Fpp and Fnn.

For proton-neutron interactions, where we assume labels
a,c are proton and b,d are neutron, i.e., we want to compute
W

pn
J (aπbν,cπdν), we need to identify the proton-neutron parts

of F̂ . So we still have (18) and

W
pn
J (ab,cd) = −((

F
pn∗
cb F

pn
ad + (−1)ja+jb+jc+jd F

np∗
da F

np
bc

)
×

{
ja jd K
jc jb J

}
− (−1)J

[
(−1)ja+jbF pp∗

ca

× Fnn
bd + (−1)jc+jd F nn∗

db F pp
ac

]
×

{
ja jc K
jd jb J

})
. (20)

The first two terms are for charge-changing transitions, while
the last two are for charge-conserving transitions. Note it is
possible to create an operator for just one direction, e.g., a
non-energy-weighted sum rule for β− transitions.
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B. Energy-weighted sum rules

We define

ÔEWSR = 1

2

∑
M

(−1)M [F̂K,−M,[Ĥ ,F̂K,M ]]

=
∑
ab

gab[ja](a† ⊗ b̃)0,0 + 1

4

∑
abcd

ζabζcd

×
∑

J

WJ (ab,cd) [J ](A†
J (ab) ⊗ ÃJ (cd))0,0.

(21)

In this format, the EWSR operator is an angular momentum
scalar and, again, looks “just like” a Hamiltonian, for purposes
of use in a shell-model code.

In order to derive the EWSR as an expectation value of
a double commutator, we must use (5). Then, for example,
for GT we cannot compute the EWSR for β− or β+ alone,
but must compute it for the sum. While this is physically less
interesting, it is the only possibility for an expectation value of
a two-body operator. If we do not use (5), the EWSR becomes

S1(Ei) = 〈i|F̂ †[Ĥ ,F̂ ]|i〉 = 〈i|[F̂ †,Ĥ ]F̂ |i〉
= 1

2 〈i|F̂ †[Ĥ ,F̂ ] + [F̂ †,Ĥ ]F̂ |i〉, (22)

and the resulting operator will have three-body components.
After annihilating commutators and recoupling angular

momentums, the one-body parts of ÔEWSR in Eq. (21) are

gab = δjajb

2(2ja + 1)

∑
cd

(−eacFcdF
∗
bd + FacecdF

∗
bd

+F ∗
caecdFdb − F ∗

caFcdedb), (23)

where eab are the one-body parts of the Hamiltonian in Eq. (11)
and the two-body matrix elements of ÔEWSR are

WJ (abcd) =
5∑

i=1

Wi(abcd; J ), (24)

with [using Eq. (14) where possible to eliminate or reduce
phases]

W 1(abcd; J ) = −1

2
(1 + PcdJ )

∑
ef J ′

(−1)J+J ′
(2J ′ + 1)

×πJ ′
deζef ζ−1

cd VJ (ab,ef )

×FecFf d

{
J K J ′
jd je jf

}{
J K J ′
je jd jc

}
,

(25)

W 2(abcd; J ) = −1

2
(1 + PcdJ )

∑
ef J ′

(2J ′ + 1)

×πJ ′
cf ζceζ

−1
cd VJ (ab,ce)

×Fef F ∗
df

{
J K J ′
jf jc je

}{
J K J ′
jf jc jd

}
,

(26)

W 3(abcd; J ) = (1 + PabJ )(1 + PcdJ )
∑
ef J ′

(2J ′ + 1)

× ζbeζdf ζ−1
ab ζ−1

cd VJ ′ (be,df )

×F ∗
eaFf c

{
J K J ′
je jb ja

}{
J K J ′
jf jd jc

}
,

(27)

W 4(abcd; J ) = PacPbdW
1∗(abcd; J ), (28)

W 5(abcd; J ) = PacPbdW
2∗(abcd; J ), (29)

where ζab = √
1 + δab as previously defined and πJ ′

de is defined
as

πJ ′
de =

{
0, if d = e and J ′ is odd;
1, else. (30)

We introduce this symbol because in the derivations of
W 1(abcd; J ), J ′ is an intermediate angular momentum, which
accounts for the total angular momentum of two fermion
annihilators in orbits d and e. As the Pauli principle demands,
when d and e are the same orbit, J ′ must be even in (25).
Similarly, in (26) when c and f are the same orbit, J ′ must be
even. For detailed explanations, please see (A11) and (A12)
and discussion there.

III. RESULTS

Our formalism applies to configuration-interaction (CI)
calculations in a shell model basis. In CI calculations, one diag-
onalizes the many-body Hamiltonian in a finite-dimensioned,
orthonormal basis of Slater determinants, which are antisym-
meterized products of single-particle wave functions, typically
expressed in an occupation representation. The advantage of CI
shell model calculations is that one can generate excited states
easily, and for a modest dimensionality one can generate all
the eigenstates in the model space.

We use the BIGSTICK CI shell model code [38,39] to
calculate the many-body matrix elements Hαβ = 〈α|Ĥ |β〉
and then solve Ĥ |i〉 = Ei |i〉. Greek letters (α,β, . . .) denote
generic basis states, while lowercase Latin letters (i,j, . . .)
label eigenstates. As BIGSTICK computes not only energies but
also wave functions, we can easily compute sum rules as an
expectation value, as in Eq. (6). We also tested our formalism
by fully diagonalizing modest but nontrivial cases, with typical
M-scheme dimensions on the order of a few thousand, where
we compute transition density matrices and the subsequent
transition strengths between all states. This is a straightforward
generalization of previous work on the NEWSR [7].

To illustrate our formalism, we use phenomenological
spaces and interactions, for example, the 1s1/2-0d3/2-0d5/2 or
sd shell, using a universal sd interaction version B (USDB)
[40]. We show results for selected nuclides, for which we
can fully diagonalize the Hamiltonian in the model space, as
a function of initial energy (relative to the ground state) in
Fig. 1. The centroids are simply evaluated by the ratio of the
EWSR to the NEWSR, as in Eq. (3). Because of the finite
model space and because we consider the sum rules for all
states, the centroids and the EWSR must go from positive
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FIG. 1. Energy-weighted sum rules (EWSR) and transition
strength function centroids as a function of initial energy Ei . Results
are put into 2-MeV bins with the average and root-mean-square
flucutation shown; the fluctuations are not sensitive to the size of the
bins. (a) EWSRs for isoscalar E2 for 34Cl in the sd shell. The (red)
solid line is the secular behavior predicted by spectral distribution
theory, as described in Ref. [7]. (b) Centroids for M1 transitions in
21Ne in the sd shell. (c) EWSR for E1 transitions in 10B in 0p-1s-0d5/2

space. (d) Centroids for GT transitions, sum of β±, for 27Ne in the
sd shell.

to negative. Figure 1(a) shows the EWSR for isoscalar E2
transitions in 34Cl, while Fig. 1(b) shows the centroids for
transitions in 21Ne with standard g factors [41]. While we
assume harmonic oscillator single-particle wave functions for
the basis, taking h̄
 = 41A−1/3 MeV, because we compute
centroids the oscillator length divides out. All results were put
into 2-MeV bins, but the size of the fluctuations shown by error
bars are insensitive to the size of the bins. Also shown is the
spectral distribution theory prediction of the secular behavior:
One exploits traces of many-body operators to exactly arrive at
smooth secular behavior shown by the red solid line in Fig. 1(a).
Not only can one compute the EWSR as an expectation value,
the secular behavior with excitation energy is quite smooth and
by relating the EWSR to the expectation value of an operator,
and defining an inner product using many-body traces, that
behavior can be understood from a simple mathematical point
of view, as discussed in more detail in Ref. [7] (the reason
we choose isoscalar E2 is that the publicly available code we
used to compute the inner product [42] only allows interactions
with good isospin). Fig. 1(d) shows the centroids for charge-
changing GT transitions starting from 27Ne. Because Eq. (6)
requires the transition operator of rank K to follow (5), we
have to sum both β+ and β− transitions. For 27Ne, the total
β− strength is 21.239 g2

A, which dominates over β+ whose
total strength is 0.239 g2

A, satisfying the Ikeda sum rule. Again,
because we are taking ratios the value of gA divides out for the
centroids.

We also considered E1 transitions in a space with opposite
parity orbits, the 0p1/2-0p3/2-1s1/2-0d5/2 or p-sd5/2 space,
chosen so we could fully diagonalize for some nontrivial
cases. The interactions uses the Cohen-Kurath (CK) matrix

8 10 12 14 16 18 20
A

0

0.5

1

1.5

2

EW
SR

SM
/E

W
SR

TR
K

FIG. 2. Ground-state E1 energy-weighted sum rule (EWSR) for
Z = N nuclides computed in the 0p-1s-0d5/2 shell model space (SM),
normalized by the Thomas-Reiche-Kuhn (TRK) EWSR.

elements in the 0p shell [43], the older USD interaction
[44] in the 0d5/2-1s1/2 space, and the Millener-Kurath (MK)
p-sd cross-shell matrix elements [45]. Within the p and sd
spaces the relative single-particle energies for the CK and USD
interactions, respectively, are preserved, but sd single-particle
energies shifted relative to the p-shell single particle energies
to get the first 3− state in 16O at approximately 6.1 MeV above
the ground state. The rest of the 16O spectrum, in particular the
first excited 0+ state, is not very good, but the idea is to have
a nontrivial model, not exact reproduction of the spectrum.
Figure 1(c) shows the E1 EWSR for 10B, where, as with
the other cases, due to the finite model space the sum rule
is not constant. One of the most important and most famous
application of sum rules is to electric dipole (E1) transitions,
where the Thomas-Reiche-Kuhn (TRK) sum rule [24] predicts
S1 = (NZ/A)e2h̄2/2mN . Figure 2 shows the ground-state E1
energy-weighted sum rule for Z = N nuclides in this space,
normalized by the TRK prediction. The enhancement over the
TRK sum rule, between 40 and 125%, is similar to previous
results, [24,46–50]. While one should not take these results
as realistic, given the smallness of the model spaces and
the crudity of the interaction, it nonetheless illustrates the
simplicity of this approach.

By expressing sum rules as operators, one can efficiently
search for systematic behaviors. For example, we searched for
correlations in the sd shell suggested by Eq. (7) but found none.
Further investigation instead led us to systematics of the E2
transitions in the sd shell, shown in Fig. 3. Again, we used the
Brown-Richter USDB interaction and used effective charges
of 1.5e and 0.5e for protons and neutrons, respectively. The
USDB interaction is known to be relatively good at producing
low-lying energy spectra and transitions of sd-shell nuclei,
so we use it to calculate Ecentroid; while the E2 operator can
connect to 2h̄
 excitations, such transitions are excluded from
this model space, so here the centroids mostly signal the low-
lying transition strengths. The left panel, Fig. 3(a), gives the
energy centroid, the ratio of the EWSR to the NEWSR easily
calculated as expectation values, for isotopes of neon through
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FIG. 3. In the sd-shell using the Brown-Richter USDB interac-
tion. (a) Centroids of E2 transitions from the ground state as a function
of neutron number N . Includes nuclides with both even and odd proton
numbers, with symbols in the boxes on both panels. (b) Excitation
energies of the first 2+ state for even-even nuclides only.

argon, for neutron numbers N = 9–19. The data suggest a
convergence at the semimagic closure of the 0d5/2 shell at
N = 14, which is a maximum for nuclides with Z < 14 and
a minimum for Z > 14. We have no simple explanation for
this behavior, although it seems clearly tied to the semimagic
nature of N = 14; it is quite different from the excitation
energy of the first 2+ energy in the even-even nuclides, shown
in Fig. 3(b), which, although we do not show it, closely
follow the experimental values. (The closest behavior in the
literature we can find are simple behaviors of 21

+ and 41
+

excitation energies in heavy nuclei as a function of the number
of valence protons and neutrons [51–54], demonstrating the
close relationship between collectivity and the proton-neutron
interaction. However, we found that those simple relationships
between the number of valence nucleons and the 21

+ and 41
+

energies do not hold in the sd shell.) We also note an advantage
of sum rules over other regularities such as 2+ excitation
energies: They can be applied easily to all nuclides, while
E(21

+) may signal the underlying structure of only even-even
nuclei. Indeed, Fig. 3(a) demonstrates this. Clearly much more
exploration can be done.

IV. SUMMARY

We presented explicit formulas of operators for non-energy-
weighted (S0) and energy-weighted (S1) sums rules of transi-
tion strength functions, calculated as expectation values in a
shell model occupation-space framework. These formulas are
implemented in the publicly available code PANDASCOMMUTE

[36], which can generate the sum rule operator one- and two-
body matrix elements from general shell model interactions
and transition operator matrix elements. We presented exam-
ples of electromagnetic and weak transitions for typical cases
in sd and psd5/2 shell model spaces; sd shell calculations show
that the centroids exhibit an secular dependence on the parent
state energy. Calculation of the E1 energy-weighted sum rule
in a crude model space nonetheless show an enhancement over

the Thomas-Reiche-Kuhn sum rule similar to previous results.
We also showed intriguing systematics of E2 centroids in the
sd shell.

This methodology can be further extended to no-core shell
model spaces, even with isospin nonconserving forces (e.g.,
Coulomb force). As one only needs a parent state and the
Hamiltonian of the many-body system, Ecentroid might play
the role of a test signal in calculations in sequentially enlarged
spaces and thus may be useful to address, e.g., quenching,
impact of T = 0/T = 1 interactions on strength functions, and
so on.
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APPENDIX: DERIVATION OF THE DOUBLE
COMMUTATOR

In this appendix, we give some details of the derivation of
the matrix elements for the EWSR operator, which requires
double commutation. Given the one- and two-body matrix
elements of the Hamiltonian, eab and VJ (ab,cd) as defined
in (11), and the reduced one-body matrix elements Fab of
the transition operator as in (13), we want to find the one-
body matrix element gab and the two-body matrix elements
WJ (ab,cd) of the EWSR sum rule operator, as defined in (21).
We remind the reader that we do not assume isospin symmetry
and that the single-particle orbit labels, a,b,c,d, etc., may refer
to distinct proton and neutron orbits.

Taking the expression of the Hamiltonian in (12) into the
double commutator in (21), ÔEWSR splits into two terms,

ÔEWSR = −1

2
(−1)K [K]

∑
ab

eab[ja][[Q̂0(ab),F̂K ]K,F̂K ]0

− 1

8
(−1)K [K]

∑
abef

ζabζef

∑
J

VJ (ab,ef )[J ]

× [[(A†
J (ab) ⊗ ÃJ (ef ))0,F̂K ]K,F̂K ]0, (A1)

where Q̂KM (ab) is defined as Q̂KM (ab) ≡ (â† ⊗ b̃)KM . We
have changed dummy indices in the second term, so that
VJ (ab,ef ) rather than VJ (ab,cd) appears here, as it does
in (25), for convenience of later explanations of how to
derive (25).

These terms involve commutators with angular momentum
recouplings. Such commutators are dealt with in a unified

034330-6



TRANSITION SUM RULES IN THE SHELL MODEL PHYSICAL REVIEW C 97, 034330 (2018)

manner by authors of Refs. [55,56] with a generalized Wick
theorem. We introduce their methodology in brief and return
to (A1) with the borrowed tool. They define a generalized
commutator,

[α̂,β̂] = α̂β̂ − θαββ̂α̂, (A2)

where α̂,β̂ are operators in occupation space, including single-
particle fermion creation and annihilation operators, one-body
transition operators, and fermion pair creation and annihilation
operators. If jα,jβ are the angular momenta of the operators,
then

θαβ =
{−1, jα,jβ are half integers;

1, otherwise.
(A3)

With these definitions, it is straightforward to derive

[α̂β̂,γ̂ ] = α̂[β̂,γ̂ ] + θβγ [α̂,γ̂ ]β̂. (A4)

Now we also introduce a generalized commutator with good
angular momentum coupling,

[α̂,β̂]jm ≡ (α̂ ⊗ β̂)jm − (−1)jα+jβ−j θαβ(β̂ ⊗ α̂)jm, (A5)

and for spherical tensor products

[(α̂ ⊗ β̂)j ,γ̂ ]j ′ =
∑
j ′′

U (jαjβj ′jγ ; jj ′′)(α̂ ⊗ [β̂,γ̂ ]j ′′)j ′ + θβγ

∑
j ′′

(−1)jα+j ′−j−j ′′
U (jαjβjγ j ′; jj ′′)([α̂,γ̂ ]j ′′ ⊗ β̂)j ′ , (A6)

where

U (jαjβjγ j ′; jj ′′) ≡ (−1)jα+jβ+jγ +j ′
[j ][j ′′]

{
jα jβ j

j ′ jγ j ′′

}
, (A7)

and [x] ≡ √
2x + 1 as defined before.

Now we go back to (A1). We remind the reader that, according to (13), F̂K,M = ∑
ab Fab[K]−1Q̂K,M (ab), so the first term in

(A1) is a linear summation of terms in the form of [[Q̂0(ab),Q̂K (cd)]K,Q̂K (ef )]0.
With (A6) we can derive

[
Q̂J (ab),Q̂K (cd)

]
J ′M ′ = [

(â† ⊗ b̃)J ,(ĉ† ⊗ d̃)K
]
J ′M ′ = (−1)ja+jd+J ′

δbc[J ][K]

{
ja jb J

K J ′ jd

}
Q̂J ′M ′ (ad)

−(−1)jb+jc+J+Kδda[J ][K]

{
ja jb J

J ′ K jc

}
Q̂J ′M ′(cb), (A8)

and thereafter

[[
Q̂J (ab),Q̂K (cd)

]
J ′ ,Q̂K (ef )

]
JM

= [J ][J ′](2K + 1)

{
+φaeKδbcδf a

{
J K J ′
jd ja jb

}{
J K J ′
ja jd je

}
Q̂JM (ed)

−φdf JJ ′δbcδde

{
J K J ′
jd ja jb

}{
J K J ′
jd ja jf

}
Q̂JM (af )

+φbf Kδadδbe

{
J K J ′
jc jb ja

}{
J K J ′
jb jc jf

}
Q̂JM (cf )

−φceJJ ′δadδcf

{
J K J ′
jc jb ja

}{
J K J ′
jc jb je

}
Q̂JM (eb)

}
, (A9)

where φaeK = (−1)ja+je+K , other φ··· are similar. We take (A9) into the 1st term in (A1), and end up with the expression for gab

in (23).
The second term in (A1) is a linear summation of terms ({[A†

J (ab) ⊗ ÃJ (ef )]0,F̂K}K,F̂K )0. With (A6) it is straight forward
to derive

[(A†
J (ab) ⊗ ÃJ (ef ))0,F̂K ]K,M =

∑
J ′

(−1)J+K+J ′
[J ′][J ]−1[K]−1(A†

J (ab) ⊗ [ÃJ (ef ),F̂K ]J ′)K,M

+
∑
J ′

[J ′][J ]−1[K]−1([A†
J (ab),F̂K ]J ′ ⊗ ÃJ (ef ))K,M, (A10)
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and thereafter

[[(A†
J (ab) ⊗ ÃJ (ef ))0,F̂K ]K,F̂K ]0 =

∑
J ′

[J ′][J ]−1[K]−1{(−1)J+K+J ′
(A†

J (ab) ⊗ [[ÃJ (ef ),F̂K ]J ′ ,F̂K ]J )0 + 2([A†
J (ab),F̂K ]J ′

⊗[ÃJ (ef ),F̂K ]J ′)0 + (−1)J+K+J ′
([[A†

J (ab),F̂K ]J ′ ,F̂K ]J ⊗ ÃJ (ef ))0}. (A11)

Linear summations of the 1st term in the brace of (A11) lead to W 1(abcd; J ) and W 2(abcd; J ) in (25) and (26), the second term
to W 3(abcd; J ) in (27), and the third term to W 4(abcd; J ) and W 5(abcd; J ) in (28) and (29). The symmetry between (25) and
(26) on one hand and (28) and (29) on the other hand originates from here.

We take the first term in the brace of (A11) as an example and explain restrictions caused by Pauli’s principle mentioned before.
Use (A6) again to derive

[ÃJ (ef ),F̂K ]J ′M ′ =
∑
gd

Fgd [K]−1[ÃJ (ef ),Q̂K (gd)]J ′M ′ = −[J ](1 + Pef J )
∑

d

Ff d

{
je jf J

K J ′jd

}
ÃJ ′M ′(de). (A12)

Based on (A12), we derive [ÃJ ′ (de),F̂K ]JM and go further to

[[ÃJ (ef ),F̂K ]J ′ ,F̂K ]J,M =
∑
cdgh

(2K + 1)−1FgdFhc[[ÃJ (ef ),Q̂K (gd)]J ′ ,Q̂K (hc)]JM

= [J ][J ′](1 + Pef J )
∑
cd

πJ ′
deFf dFec

{
J K J ′
jd je jf

}{
J K J ′
je jd jc

}
ÃJM (cd)

+ (−1)J+J ′
[J ][J ′](1 + Pef J )

∑
cd

πJ ′
deFf dF

∗
cd

{
J K J ′
jd je jf

}{
J K J ′
jd je jc

}
ÃJM (ec). (A13)

Note that ÃJ ′M ′(de) does not show up in (A13), but as it appeared in (A12) as a necessary stone in the water; therefore, the
restriction by Pauli’s principle on ÃJ ′M ′(de) is inherited by (A13), i.e., when d and e in (25) are the same orbit J ′ must be even.
So we introduced πJ ′

de as defined in (30) to stand for this restriction.
We take the first term of (A13) into the first term in the brace of (A11), pick up factors in (A1), and we end up with

W 1(abcd; J ) in (25); similarly the second term of (A13) ends up with W 2(abcd; J ) in (26). Naturally the restriction πJ ′
de is

inherited by W 1(abcd; J ) and also W 2(abcd; J ), but because we exchange indices when deriving W 2(abcd; J ), the restriction
becomes πJ ′

cf in (26).
The same trick is applied to the other two terms in the brace of (A11); with (A6) it is straightforward to derive

[Â†
J (ab),F̂K ]J ′M ′ =

∑
ef

[K]−1Fef [Â†
J (ab),Q̂K (ef )]J ′M ′ = (−1)K [J ](1 + PabJ )

∑
e

F ∗
be

{
J K J ′
je ja jb

}
Â

†
J ′M ′(ea), (A14)

and thereafter

[[Â†
J (ab),F̂K ],F̂K ]JM = [J ][J ′](1 + PabJ )

∑
eg

πJ ′
aeF

∗
beF

∗
ag

{
J K J ′
je ja jb

}{
J K J ′
ja je jg

}
Â

†
JM (ge)

+ (−1)J+J ′
[J ][J ′](1 + PabJ )

∑
eg

πJ ′
aeF

∗
beFge

{
J K J ′
je ja jb

}{
J K J ′
je ja jg

}
Â

†
JM (ag). (A15)

With (A12) and (A14), one can derive the second term in the brace of (A11), and end up with W 3(abcd; J ) in (27); with (A15)
one can derive the third term in the brace of (A11), and get W 4(abcd; J ) and W 5(abcd; J ) in (28) and (29) after picking up
factors in (A1).
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