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Helical modes generate antimagnetic rotational spectra in nuclei
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A systematic analysis of the antimagnetic rotation band using r-helicity formalism is carried out for the first
time. The observed octupole correlation in a nucleus is likely to play a role in establishing the antimagnetic
spectrum. Such octupole correlations are explained within the helical orbits. In a rotating field, two identical
fermions (generally protons) with paired spins generate these helical orbits in such a way that its positive (i.e.,
up) spin along the axis of quantization refers to one helicity (right-handedness) while negative (down) spin along
the same quantization-axis decides another helicity (left-handedness). Since the helicity remains invariant under
rotation, therefore, the quantum state of a fermion is represented by definite angular momentum and helicity. These
helicity represented states support a pear-shaped structure of a rotating system having z axis as the symmetry
axis. A combined operation of parity, time-reversal, and signature symmetries ensures an absence of one of the
signature partner band from the observed antimagnetic spectrum. This formalism has also been tested for the
recently observed negative parity �I = 2 antimagnetic spectrum in odd-A 101Pd nucleus and explains nicely
its energy spectrum as well as the B(E2) values. Further, this formalism is found to be fully consistent with
twin-shears mechanism popularly known for such type of rotational bands. It also provides significant clue for
extending these experiments in various mass regions spread over the nuclear chart.
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I. INTRODUCTION

In nearly spherical nuclei, regular rotation-like bands in-
dicate the unusual type of collectivity, wherein a few high-j
valence particle and hole states become available for correlated
alignment. At the bandhead, due to the shape of their density
distribution, the valence particle (hole) angular-momentum
vector aligns itself towards the nuclear symmetry axis, whereas
the hole (particle) angular momentum aligns itself towards
an axis perpendicular to it. The resultant angular momentum
lies somewhere between the two. Along the band, the angular
momentum increases due to a gradual alignment of the particle
and hole angular momenta into the direction of the resultant
angular momentum. This coupling appears like a closing of
a pair of shears, and hence the term shears mechanism [1–3]
was assigned to this type of excitation. In this mechanism,
the magnetic dipole moment vector arises mainly from proton
particles (holes) and neutrons holes (particles) by rotating
around the resultant angular-momentum vector and acts as an
oder parameter inducing a violation of rotational symmetry.
This forms an analogy to a ferromagnet, where the total
magnetic dipole moment (equal to sum of the atomic magnetic
dipole moments) is an order parameter.

Parallel to ferromagnetism, antiferromagnetism has also
been observed in condensed matter physics. In an antiferro-
magnet, one-half of the atomic dipole moments are aligned on
one sublattice and the other half are aligned in the opposite
direction on the second sublattice. Although there is no net
magnetic moment in an antiferromagnet, the state is ordered;
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i.e., it breaks isotropy like a ferromagnet. In analogy to the spin
arrangement in antiferromagnetism, a unique proton-neutron
spin coupling giving rise to rotational band structures in
nearly spherical nuclei was proposed by Frauendorf [3]. Since
then the phenomenon called twin-shears mechanism or more
commonly, antimagnetic rotation (AMR), has gained much
scientific interest.

The AMR is expected to be observed in the same mass re-
gion that is also prone to magnetic rotation [3]. This expectation
is found to be true only in one mass region A ∼ 100–110 so
far. A number of magnetic rotation bands observed in this mass
region have already been interpreted within the framework of
shears mechanism [3–6], wherein the total angular momentum
is represented as a vector sum of the angular momentum of
individual valence proton (πg 9

2
) holes and neutron (νh 11

2
)

particles. The AMR bands based on the πg−2
9
2

configuration

have also been claimed experimentally in 105−108,110Cd [7–12]
and 101,104Pd [13,14] nuclei. The observed AMR spectrum in
each of these nuclei supports the following features.

(i) The magnetic dipole (M1) transitions are completely
absent in the band because the transverse magnetic
moments (μ⊥) of two subsystems (i.e., consisting of
neutron plus di-protons) are antialigned and hence
cancels each other contribution.

(ii) The antimagnetic rotor is symmetric with respect to a
rotation by 180◦ about the rotating axis, and as a result
the energy levels differ in angular momentum by 2h̄
and are connected by weak electric quadrupole (E2)
transitions reflecting a nearly spherical structure of a
system. Moreover, this phenomenon is characterized
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by a decrease of the B(E2) values with an increase
in spin; this hence ensures the decrease in charge
asymmetry with an increase in angular momentum.

(iii) Signature is a good quantum number for such a type
of rotating structure. However, one of the signature
partner band is found to be missing in the observed
spectrum.

Theoretical progress for the description of AMR was initi-
ated first by Frauendorf [3] and later its semiclassical version
was developed by Sugawara and coworkers [15]. In these
approaches, the high-spin states are generated by the so-called
two-shears-like mechanism, i.e., by simultaneous closing of
two valance protons (neutrons) toward the neutron (proton)
angular-momentum vector. Further, the mean-field approach,
based on geometrical arrangement of angular-momentum com-
position, was also used for understanding the observed features
of these rotational bands [3,16,17].

Recently, Zhao and coworkers [18–20] have extended
the mean-field approach using covariant density functional
formalism for investigating the AMR spectrum. For a com-
plete understanding of the spectrum, they have incorporated
the terms like scalar (ψ̄ψ), pseudoscalar (ψ̄γ 5ψ), vector
(ψ̄γ μψ), pseudovector (ψ̄γ μγ 5ψ), and antisymmetric tensor
(ψ̄ ι

2 (γ μγ ν − γ νγ μ)ψ) in their formalism. They have noticed
for the first time a strong contribution of polarization effects on
the measured quadrupole moments [i.e., the B(E2) values]. In
earlier calculations these effects were either completely absent
or were taken into account only partially by minimizing the
rotational energy with respect to few deformation parame-
ters. However, the tilted axis cranking plus covariant density
functional calculations are not so simple, and therefore an
alternative formalism based on the r-helicity state is presented
in this paper. This formalism has been proposed on the basis
of following experimental observations.

In a more recent experiment on 101Pd nucleus, a reported
negative-parity AMR band forms the yrast-line above I =
11
2 h̄ [13,21]. Note that in this spectrum the electric-dipole (E1)

transitions prevail from the νh 11
2

band to the νd 5
2

band. This
aspect corresponding to the νh 11

2
and νd 5

2
orbitals (i.e., Parity

change, �� = −1 and �l = �j = 3) is related to possible
octupole correlation in this nucleus. Such octupole correlations
are possible only if the weak perturbation HW violates time-
reversal (T̂ ) symmetry along with space-inversion (�) sym-
metry [22]. Both these violations lead to a pseudo-Hermitian
Hamiltonian, H�T , which generates a real discrete spectrum
above I = 11

2 h̄. Zhao and coworkers [18] have incorporated its
(pseudocharacter) contribution in their relativistic Lagrangian.

The violation of time-reversal symmetry is also apparent
when considering the following. The observed energy levels
in the ν(h 11

2
) band differ in angular momentum �I = 2h̄ and

are connected by weak electric quadrupole (E2) transitions;
hence a spheroidal structure with axis of rotation perpendicular
to symmetry axis is supported. The signature partners are
generally seen for such type of rotating nuclei and the states
with opposite signature are related by time-reversal symmetry.
However, one of the signature partner bands is completely
missing in the observed ν(h 11

2
) spectrum and as a result time-

reversal symmetry gets violated. An individual (i.e., parity and

time-reversal) violation is supported by the r helicity (hereafter
referred to as helicity) formalism. Therefore, its (helicity)
introduction in the particle wave function may resolve the
paradoxical situation, i.e., how does the AMR band emerge
in a given nucleus? This study may open up the possibilities
of discovering AMR bands in other mass domains.

In this paper, the concept of helicity has been introduced for
the first time in explaining the origin of the AMR spectrum.
Throughout the discussion I quote an observed νh 11

2
band

in 101Pd whose AMR character has already been established
by myself and my coworkers [13] using the framework of a
semiclassical rotor model as well as a cranked shell model. A
description of the helicity formalism together with appropriate
symmetries is given in Sec. II. The results and discussion are
given in Sec. III. Our conclusions are summarized in Sec. IV.

II. THE HELICITY FORMALISM

An interaction between particles with spins (i.e., π (g 9
2
)−2)

is usually an operator in the spin space. The present general-
ization of the helicity formalism projects the spin of proton
1 (�sπ1 ) on the direction of �r1 and the spin of proton 2 (�sπ2 )
on the direction �r2 and replaces the operators in spin space
by their matrix elements between states of a given helicity.
It is worthwhile to mention here that it (helicity) is also the
component of total angular momentum ( �j ) of a particle along
the direction of �r , because the orbital angular momentum
(�l = �r × �p) is always perpendicular to �r and, consequently,
its projection (ml) on the axis of quantization, i.e., the �r axis,
is zero. Keeping these points in mind, a complete formalism is
presented below.

Bohr and Mottelson [23] have already represented the
fermion wave function in helicity bases and pointed out that
it is equivalent to the rotational wave function of a system
whose intrinsic shape possesses an axial symmetry. Following
their footsteps, the bound state of a spin- 1

2 particle in helicity
formalism is carried out. The usual wave function for a
spin- 1

2 particle moving in a spherically symmetric and parity
conserving potential is given by

| jm〉 = flj (r)
∑
μ,σ

〈l 1

2
μσ | jm〉Yμ

l (θ,φ) | σ 〉, (1)

where | σ 〉 is the spin eigenfunction with a projection σ
along the axis of quantization and flj (r) is a normalized-
radial function. The angles θ and φ describe the direction
of �r in a fixed reference frame S as shown in Fig. 1. In the
helicity representation, the spin orientation refers to a rotated
coordinate system S ′ whose Z′ axis is in the direction of unit
vector êr (see Fig. 1). The orientation of S ′ with respect to the
fixed frame S is represented by three Euler angles, namely the
polar angles θ , φ, of �r and third angle ψ . The Euler angle ψ is
fixed by choosing the X′ and Y ′ axes of S ′ so that S ′ is obtained
from S by a rotation through an angle θ about an axis with the
direction of Z × Z′. Therefore, the Euler angles of S ′ are φ, θ ,
ψ = −φ. The spherical harmonic can be replaced by a matrix
element of the rotation operator (D function) which takes the
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FIG. 1. The fixed frame of reference X, Y , Z and the helicity
frame X′, Y ′, Z′.

axis of quantization in the direction of �r , i.e.,

Y
μ
l (θ,φ) =

√
2l + 1

4π
Dl∗

μ,0(φ,θ,ψ). (2)

The Euler angle ψ is related to some origin; when rotated
around �r , the spherical harmonic does not depend on it. Also,
| σ 〉 can be expressed in terms of two helicity functions | h〉
which have a projections h = ± 1

2 along �r

| σ 〉 =
∑

h

D
1
2 ∗
σ,h(φ,θ,ψ) | h〉. (3)

Substituting Eqs. (2) and (3) into Eq. (1) and using the Clebsch-
Gordan series for the product of two rotation matrix elements
together with their orthonormality constraint, the normalized-
state | jm〉 in helicity bases becomes

〈h | jm〉 =
√

2j + 1

16π2
flj (r)

[
D

j∗
m,− 1

2
(φ,θ,ψ) | h

= − 1

2
〉 + (−1)l+j− 1

2 D
j∗
m, 1

2
(φ,θ,ψ) | h = 1

2
〉
]
. (4)

The wave function (4) of a particle consists of a linear
combination of two states which differ in helicity. It does not
mean that a particle having positive helicity changes itself into
that of negative helicity. This implies that reversed helicity
does not occur. Under rotation, it is quite possible that the
direction of �r changes but the helicity of a particle remains
unchanged in a system. Thus, the wave function (4) clearly
represents the rotational state with definite j and h of a system
whose intrinsic shape possesses an axial symmetry. Further, the
axial symmetry makes it impossible to distinguish orientations
differing only in the value of third Euler angle ψ , and this
variable is redundant. Instead of treating the Euler angle ψ as
a redundant variable, one may constrain ψ to have a definite
value, such as ψ = 0 or ψ = −φ.

A. Operation of parity- and time-reversal symmetries on
helicity state

The action of parity operator � on a presently discussed
helicity state is exactly same as for standard p helicity [24]
because the vector �r and the impulsion behave similarly.
Therefore,

� | h〉 = η(−)s−h exp(ιπjy)|−h〉, (5)

where η is the intrinsic parity of the particle (i.e., η = +1 for
nucleon). The operator exp(ιπjy) corresponds to a rotation
about y axis through an angle 180◦.

The action of the time-reversal operator T̂ on a helicity state
is accomplished as

T̂ |h〉 = (−)s+h|−h〉, (6)

because T̂ does not change the vector �r .
An individual violation of parity- and time-reversal symme-

try is noticed in the helicity represented wave function (4) but
their (parity and time-reversal) combined operation remains
invariant except for the reflection symmetry about a plane.
Thus, the helicity representation (4) for the wave function of
a particle with spin 1

2 is equivalent to the representation for
rotational wave function of a system whose intrinsic shape
possesses an axial symmetry but not the reflection symmetry.

It is quite interesting to notice here that the system repre-
sented by wave function (4) possesses an axial symmetric shape
in which parity is no longer a good quantum number, i.e., it
refers to a pear-shaped system with the z axis as the symmetry
axis. For such type of a system, a combination of signature-
and parity-quantum numbers is conserved rather than the
signature alone. Under this combined symmetry (signature
plus parity), the rotational states with even parity having plus
(minus) signature get separated from odd-parity with minus
(plus) signature. Further, the states with opposite signature are
related by time-reversal symmetry, which also gets violated
in the present system represented by wave function (4). As
a result, one of the signature partner bands disappears from
the rotating system. Thus, the violation of reflection symmetry
ensures that one of the signature partner bands is missing and,
hence, explains the most prominent feature of the observed
spectrum.

III. RESULTS AND DISCUSSION

At the bandhead, the angular-momentum vectors �jπ1 and
�jπ2 of two proton holes [π (g 9

2
)−2] are pointing opposite to

each other and are nearly perpendicular to the neutron [ν(h 11
2

)]

angular momentum �jν . The reference frame is chosen in such
a way that the Euler angles φ1, θ1, ψ1 = −φ1 describe a
coordinate system with its z axis along �r1 and φ2, θ2, ψ2 = −φ2

another one with its z axis along �r2. In order to study the
rotational spectra, the axis of quantization is chosen along �r1

together with a frame of reference for proton 2 given by Euler
angles (φ2 = 0, θ2 = 2θ , ψ2 = −φ2 = 0), i.e., the vectors �r1

and �r2 are oriented at an angle 2θ (= 1800) as shown in Fig. 2.
I mention here that this figure is drawn for the purpose of next
subsection and that is why angle between the vectors �jπ1 and �jπ2

is shown to be 2θ . As a result, two protons in the g 9
2

orbital lying
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FIG. 2. Pictorial representation of total angular momentum gen-
erated by diprotons in which axis of quantization is chosen along
particle 1 together with a frame of reference of particle 2 having
Euler angles (φ2 = 0, θ2 = 2θ ψ2 = 0).

at position vectors �ri (with i = 1,2) follow helical orbits (i.e.,
left- and right-handed) in a rotating field, whose + 1

2 spin gives

one helicity state, i.e., |h1〉 while the − 1
2 gives another helicity

state |h2〉. Both these helicity functions |h〉 have projections
h = ± 1

2 along the quantization axis �r1.
One of the major advantages of using the helicity state is

that there is no need to separate total angular momentum �j
into orbital and spin parts, because the resultant orbital angular
momentum �L due to diprotons is always perpendicular to the
symmetry axis and generates the centrifugal term h̄2

2
 �L2. Here

 is the inertia tensor. For the observed negative-parity band,
the 
 is estimated from the slope of angular momentum I
vs. the rotational frequency h̄ω plot and it comes out to be
15.5 h̄2 MeV−1. The neutron acts as a spectator and contributes
to the bandhead angular momentum only. Thus, a complete
rotational spectrum is generated by the centrifugal term. The
matrix elements 〈jmh1

′h2
′| �L2|jmh1h2〉of the centrifugal term

for a given h1, h2 with h = h1 − h2 are given follows.
Case I: If h1

′ = h1 and h2
′ = h2, then

〈jmh1
′h2

′| �L2|jmh1h2〉 = j (j + 1) − h2 + sπ1 (sπ1 + 1) − h1
2 + sπ2 (sπ2 + 1) − h2

2. (7)

Case II: If h1
′ = h1 ± 1 and h2

′ = h2, then

〈jmh1
′h2

′| �L2|jmh1h2〉 = −
√

j (j + 1) − h(h ± 1)
√

sπ1 (sπ1 + 1) − h1(h1 ± 1). (8)

Case III: If h1
′ = h1 and h2

′ = h2 ± 1, then

〈jmh1
′h2

′| �L2|jmh1h2〉 = −
√

j (j + 1) − h(h ∓ 1)
√

sπ2 (sπ2 + 1) − h2(h2 ± 1). (9)

Case IV: If h1
′ = h1 ± 1 and h2

′ = h2 ± 1, then

〈jmh1
′h2

′| �L2|jmh1h2〉 = √
sπ1 (sπ1 + 1) − h1(h1 ± 1)

√
sπ2 (sπ2 + 1) − h2(h2 ± 1). (10)

The calculated rotational energy E vs. the angular momen-
tum J is shown in Fig. 3 (full line). The observed negative-
parity spectrum of 101Pd is also shown as solid circles con-
nected with solid line in this figure. The experimental energy
spectrum is reproduced in an excellent way by the present
helicity-based calculations. Therefore, we can conclude that
both the helical orbits contribute to the observed rotational
excitation energy.

Further, the transition probability B(E2) can be obtained
within the semiclassical approximation as

B(E2) = |〈jf m|r2Y20|jim〉|2

= 5

4π

∣∣∣Cji2jf

1
2 0 1

2

∣∣∣2
|
∫ ∞

0
drflf jf

(r)r4fliji
|2. (11)

The B(E2) values represented by Eq. (11) generally increase
with an increase in angular momentum, whereas the observed
spectrum shows a gradual decrease in the reduced transition
probability with increase in spin. This decrease in transition
probability can be understood from the following discussion.
The quadrupole moment operator in B(E2) of the rotational
spectrum involves the deformation degrees of freedom for
a given configuration. Also, the helicity operator always
commutes with rotation. Under rotation, the fermion having
positive helicity state |+h〉 goes one way circular motion
around the complex plane, while the fermion with |−h〉 goes
the other way. This implies that the phase of each particle

quantum helicity state keeps on changing and hence the degree
of polarization also changes (i.e., increases) with a gradual
increase in rotation. As a result an ordered (polarized) state
emerges at a critical rotational frequency h̄ω which breaks
down the isotropy symmetry of the system and an AMR band
emerges. This change in polarization also rearranges the charge
distribution in a rotating system which changes the quadrupole
moment and hence the B(E2) values accordingly.

Further, in the present model, the total angular momentum
is generated along an axis perpendicular to symmetry axis.
For such type of pictures, a gradual increase in rotational
frequency generally drives the nucleus toward sphericity and,
as result, a gradual decrease in the B(E2) values may occur
with increase in angular momentum. It is quite evident from
equation (11) that the calculated B(E2) values involve the
intrinsic degrees of freedom, which have not been included in
the present phenomenological model. Therefore, a complete
microscopic development of the helicity based wave function
will pinpoint the exact behavior of the B(E2) values and this
study is in progress.

A. Relevance with the twin-shears mechanism

Finally, it is quite interesting to notice that the present
formalism fully supports the twin-shears mechanism, which
is popularly known for these bands. In an antimagnetic rotor,
two angular-momentum vector blades �jπ1 and �jπ2 of the proton
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FIG. 3. The calculated rotational energy vs. angular momentum
is shown as full line. Also, the solid circles connected with solid line
show the observed spectrum of the negative-parity AMR band in the
101Pd nucleus.

holes are stretched apart, each coupled nearly perpendicular
to the angular-momentum vector �jν of a neutron particle,
such that the bandhead angular momentum is �jν . This type
of configuration is shown in Fig. 2 with angle 2θ = 180◦ at the
bandhead. The high-spin states in a spectrum are generated due
to the gradual closing of the proton blades �jπ1 and �jπ2 towards
the neutron angular momentum �jν with its resultant angular
momentum always pointing towards �jν . It is worthwhile to
mention here that in the helicity formalism the resultant angular
momentum is also obtained along an axis perpendicular to
symmetry axis and, hence, it is fully consistent with the
twin-shears mechanism.

Further, for an axially symmetric shape, Bohr and Mottel-
son [22] have already identified the K-quantum number with
the helicity value. Here, the quantum number K represents the
angular momentum of the intrinsic motion and has a fixed value
for the rotational band based on a given intrinsic state. For the
π (g 9

2
)−2 ⊗ ν(h 11

2
) configuration, two symmetric shears each

having angle θ are formed. It is quite evident from Fig. 2 that
the quantum number K is equal to jπ sin θ and its resemblance
with helicity can easily be drawn as follows. For a particle
of mass m, a complete set of orthogonal states are always
characterized by position vector �r and definite (2j + 1) helicity
h = −j, − j + 1, . . . , + j values.

Also, in the semiclassical picture of the twin-shears mech-
anism [10,25], the resultant angular momentum is related to
shear angle θ between �jπ and �jν and is given by the expression

J = jν + 2jπ cos θ

+

(

1.5Vπν cos θ

jπ

− 6Vππ cos 2θ cos θ

njπ

)
. (12)

A systematic study of the AMR band infers the interaction
strengths Vπν and Vππ equal to 1.2 and 0.15 MeV, respectively.
One neutron particle and two proton holes fix n = 2 with

FIG. 4. Variation of shears angle θ vs. the angular momentum.

jν = 5.5 h̄ and jπ = 4.5 h̄. The inertia parameter has already
been estimated to be 15.5 h̄2 MeV−1.

Equation (12) is a transcendental equation and its numerical
solution fixes θ for each angular momentum and is shown in
Fig. 4. Its decreasing trend of θ vs. the angular momentum
ensures that

B(E2) ∝
∣∣∣Cji2jf

K0K

∣∣∣2
∝ sin4 θ, (13)

where B(E2) values decrease with an increase in angular
momentum. On the other hand, the total angular momentum
is generated along an axis perpendicular to symmetry axis
and it involves cos θ . A decrease in θ increases the angular
momentum and hence the rotational energy.

Thus, the experimental spectrum as well as the B(E2)
values of the recently observed AMR spectrum in 101Pd are
fully consistent with the helical represented states. This simple
formalism has completely resolved the paradoxical situation
regarding how the AMR emerges in a nucleus. It is worthwhile
to mention here that its microscopic version will pinpoint
complete features of the AMR spectrum.

B. Role of octupole correlation in the AMR spectrum

As stated above, the octupole correlations likely to play a
role in generating the AMR spectrum. This conclusion has
been drawn on the basis of the following considerations.
Bohr and Mottelson [22] have already pointed out that for
configurations with particles in unfilled shells, there may occur
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FIG. 5. The experimental and calculated angular momentum I vs. the rotational frequency h̄ω for the 105,107.109Cd isotopes.

strong octupole transitions between orbits within a major shell
(1g 9

2
←→ 2p 3

2
for shells 28–50; 1h 11

2
←→ 2d 5

2
for shells

50–82; 1i 13
2

←→ 2f 7
2

for shells 82–126, and 1j 15
2

←→ 2g 9
2

for shells above 126). This implies that in normally deformed
nuclei, the tendency towards octupole correlation occurs just
above a closed shell with particle numbers (i.e., N or Z) ∼34
(1g 9

2
←→ 2p 3

2
coupling), ∼56 (1h 11

2
←→ 2d 5

2
coupling),

∼88 (1i 13
2

←→ 2f 3
2

coupling), and ∼134 (1j 15
2

←→ 2g 9
2

coupling). The AMR bands have already been confirmed in
100Pd [26] and 101Pd [13,17]. The octupole transitions have
clearly been observed in these nuclei which (100Pd and 101Pd)
fall in the N ∼ 56 region. The Cadmium-isotopes, which also
belong to that region, have been described as the optimal
candidates for the observed antimagnetic rotation and their
low-lying levels have already been interpreted as quadrupole-
octupole oscillations [27]. Therefore, the role of octupole
correlation in the AMR spectrum is discussed with reference
to odd-A i.e., 105,107,109Cd isotopes.

In odd-A nuclei, the E1 and E3 (i.e., the dipole
and octupole) transitions between opposite-parity states are

considered to be the manifestation of collective and intrinsic
degrees of freedom ensuing from the presence of quadrupole-
octupole shape deformations [28]. At low angular momenta,
the nucleus is characterized by a soft-octupole shape super-
posed on the top of a stable quadrupole deformation, while with
an increasing angular momentum the resultant quadrupole-
octupole shape is stabilized. Then it is considered that at
low angular momentum the system is capable of performing
octupole oscillations. At higher angular momenta, the octupole
deformation gets stabilized and the nucleus performs a rotation
that is completely governed by the complex quadrupole defor-
mation. Keeping these points in mind, a systematic analysis
of each of the odd-A i.e., 105,107,109Cd isotopes, is carried
out.

The J� = 11
2

−
level appears in all the three odd-A Cd

isotopes [29]. It is noticed that the energy gap between the 11
2

−

state and the ground sate J� = 5
2

+
in 105,107Cd is larger than

that of 109Cd. This large energy gap provides a considerable
space to several single particle states and as a result the
collective nature appears in the 105,107Cd-isotopes. Kisyov and
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TABLE I. The PAC model parameters are calculated for the ground-state and band-crossing negative-parity configurations in 105,109Cd
isotopes. These parameters for the 107Cd isotope for ground-state negative-parity configuration are also listed.

Isotope Configuration �p (MeV) �n (MeV) ε2 ε4 γ

105Cd π
[(

g 9
2

)−2]
0
⊗ ν

(
h 11

2

)
1.1578 1.0756 0.123 − 0.008 15.2◦

105Cd π
[(

g 9
2

)−2]
0
⊗ ν

(
h 11

2
g2

7
2

)
1.1578 1.0756 0.162 0.0 4.6◦

107Cd π
[(

g 9
2

)−2]
0
⊗ ν

(
h 11

2

)
1.1548 1.0759 0.139 0.01 10.3◦

109Cd π
[(

g 9
2

)−2]
0
⊗ ν

(
h 11

2

)
1.1698 1.1136 0.137 0.009 9.6◦

109Cd π
[(

g 9
2

)−2]
0
⊗ ν

(
h3

11
2

)
1.1698 1.1136 0.157 0.01 4.5◦

coworkers [30] have ensured experimentally that (105,107Cd)
11
2

−
-level decays via a dominant E1 branch, whereas 109Cd

isotope decays via an M2 transition. Further, the E1-decay
mode (i.e., 31

2
− → 29

2
+

with Eγ = 803 keV) just after the band
crossing has also been observed in the 109Cd isotope [16].
However, a large number of E1 transitions could not be
observed in these isotopes. A sudden drop of intensity of
the populated states at high angular momentum I could be
responsible for the missing E1 transitions. Thus, the lowest
excited negative-parity band consisting of �I = 2 transitions
in each of the odd-A cadmium isotope is controlled by a soft-
octupole shape superposed on the top of a stable quadrupole
deformation. Macroscopic-microscopic models [31,32] have
already predicted that the octupole deformation of the ground
state does not persist to high-angular-momentum I . Smith and
coworkers [33] have also pointed out that a sudden drop in
intensity of E1 at high angular momentum is the fingerprint of
such a change in shape.

I have tried to understand the absence of octupole contribu-
tion at higher angular momentum along the band using the prin-
cipal axis cranking (PAC) model. The PAC calculations based
on the Nilsson approach are carried out for each odd-A cad-
mium isotope. Considering the bandhead angular momenta,
parity, and excitation energy, the configuration π [(g 9

2
)−2]0 ⊗

ν(h 11
2

) has been chosen for each cadmium isotope. In this

configuration, π [(g 9
2
)−2]0 represents paired quasiparticles and

contributes zero angular momentum. In all these cases, the
proton and neutron pairing parameters (�p and �n) are chosen
as 80% of the odd-even mass difference. The deformation
parameters (ε2,ε4,γ ) are determined self-consistently by a
minimization of the total energy. The values of calculated �p,
�n, and the corresponding deformation parameters ε2, ε4, and
γ for each of the three cadmium isotopes are given in Table I.

Figures 5(a)–5(c) show the calculated as well as the ex-
perimental data of angular momentum I vs. the rotational
frequency h̄ω for the three Cd isotopes. I shall first analyze the
case of the 105Cd isotope [refer to Fig. 5(a)] in detail and then
discuss the results for other isotopes. The observed yrast band
built on the ν(h 11

2
) bandhead configuration is reasonably close

to the one predicted by the PAC model. The basic configuration
for this band is expected to be the prolate-driving ν(h 11

2
) orbital.

However, the difference between the observed and calculated
values may arise due to octupole oscillations which this system
generally performs at low angular momentum. Further, the

observed spectrum shows band crossing around the rotational
frequency ∼0.4 MeV. The PAC model calculations predict
the band crossing resulting from the alignment of the ν(g7/2)2

pair. Thus, after the band crossing, the high-spin states above
27
2 h̄ are generated due to alignment of a pair of π (g 9

2
)−2

proton holes with the configuration π [(g 9
2
)−2] ⊗ ν(h 11

2
g2

7/2)
along with the parameters listed in Table I. It is quite obvious
from the listed parameters that a prolate shape emerges after the
band crossing and reproduces the observed angular momentum
vs. the rotational frequency plot. Thus, a comparison with
observed data reveals that at low angular momenta the system is
capable of performing octupole oscillations. At higher angular
momenta, the octupole deformation gets stabilized and the
nucleus performs a rotation that is completely governed by
the complex quadrupole deformation.

Kisyov and coworkers [30] have already confirmed that
the structure of 107Cd is quite similar to that of 105Cd.
Unfortunately, its spectrum after band crossing has yet not
been reported. Again, its observed yrast band built on a ν(h 11

2
)

bandhead configuration is reasonably close to the predicted
one by the PAC model [Fig. 5(b)]. The differences between
the observed and calculated values reveal that at low angular
momenta the system is capable of performing octupole oscil-
lations, and these oscillations decrease with the increase in
angular momentum and hence ensure the prolate shape just
near the band-crossing frequency.

In Fig. 5(c), the results of 109Cd along with experimental
data are shown. The observed back-bending above 31

2 h̄ is
explained with the configuration π [(g 9

2
)−2] ⊗ ν(h3

11
2

) along

with the parameters listed in Table I. Again its comparison
with observed data supports similar conclusions as drawn in
case of 105Cd and 107Cd isotopes.

Further, the experimental and calculated B(E2) values for
105Cd and 109Cd isotopes in the high-spin range are compared
in Figs. 6(a) and 6(b), respectively. Except for their decreasing
trends, the calculated values are of same order of magnitude
as that of the observed ones. It is worthwhile to mention here
that the decrease of B(E2) values with an increase in angular
momentum is a clear signature of the shearslike mechanism.

These results ensure that the octupole deformation gets
stabilized at higher angular momentum and the nucleus per-
forms an AMR rotation that is completely governed by the
complex quadrupole deformation. Bohr and Mottelson [22]
have pointed out that the low-frequency quadrupole-octupole
oscillations contribute isoscalar and isovector polarization to a
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FIG. 6. The experimental and calculated B(E2) values vs. h̄ω for
the 105,109Cd isotopes.

system and these polarizations have been included by Zhao
and coworkers [18,19] in their covariant density functional
formalism for explaining the AMR spectrum. These points
reveal that the octupole mode may play some contribution in
fixing the antimagnetic character in a system, i.e., why it is
one of the rare phenomena that has been observed by using
sophisticated detectors.

C. Symmetries responsible for AMR spectrum

Zhao and coworkers [18,19] have noted that the combined
operation of space reflection (�), time-reversal (T ), and the
reflection in the y direction remains invariant, i.e., [H,�yT ] =
0, and is aids in explaining the AMR spectrum. Therefore, it
is important to understand the role of each of these individual
symmetries in the case of a deformed nucleus with an axis
of symmetry as the z axis. Such an axial-symmetric shape
in which parity alone is no longer a good quantum number
generally refers to a pear-shaped structure. Then the combined
operation of both parity and reflection in the y direction
(i.e., �y) is good symmetry instead of reflection in the y
direction alone. Under this combined symmetry operation, the
rotational states with even parity having plus (minus) signature
get separated from odd parity with minus (plus) signature.
Since [H,�yT ] = 0 it implies that either both �y and time
reversal (T ) are conserved or violated separately. The latter
choice is likely to be more favorable because the signature
partner bands with opposite parity have not been observed
in the AMR spectrum. Therefore, this combined operation of
three symmetries does not support two signature-partner bands
with same parity. The present formalism (as discussed in Sec. II
A) also ensures similar combined operation of three symmetry
operators and, hence, is fully consistent with that of Zhao and
coworkers [18,19].

It is worthwhile to mention here that the structure of
the 107Cd isotope is quite similar to that of 105Cd as noted
by Kisyov and coworkers [30]. A similar point has also
been drawn by Roy and Chattopadhyay [25] by plotting

FIG. 7. Left panel shows the observed dynamic moment of inertia

2 vs. the angular momentum I , whereas the right panel shows the
variation of angular momentum I vs. the γ -ray energy Eγ .

the aligned angular momenta i of 105,107Cd isotopes vs. the
rotational frequency h̄ω. It is apparent from their plot (Fig. 2
of Ref. [25]) that the alignment gain (i ∼ 4) is similar in
both of these isotopes. This implies that the neutron-aligned
yrast configuration for 107Cd is also similar to that of 105Cd
[i.e., π [(g 9

2
)−2]0 ⊗ ν(h 11

2
g2

7/2)]. Further, the structural similar-

ity in odd-A 105−109Cd isotopes can also be understood from
the plots shown in Fig. 7. The left panel of Fig. 7 shows
the observed dynamic moment of inertia 
2 vs. the angular
momentum I of the negative-parity bands based on the ν(h 11

2
)

bandhead configuration. A nearly similar behavior of 
2 in
both the 105,107Cd isotopes supports above conclusions. Also, a
comparison among three odd-A isotopes reveals that collectiv-
ity persists up to an angular momentum 27

2 h̄ and then decreases
gradually for higher angular momenta where the excited band
configurations start to dominate, leading the nucleus towards
noncollective shapes. These noncollective shapes are likely
to generate antimagnetic rotation in a system. The angular
momentum I vs. the γ -ray energy Eγ plot shown in the right
panel of Fig. 7 also favors the same results. However, the
negative-parity yrast sequence of the 107Cd nucleus is known
only up to 31

2 h̄ [34], which needs to be extended in order to
investigate the possibility of AMR in 107Cd.

IV. CONCLUSIONS

To summarize, we have carried out r-helicity-based analysis
of the observed negative parity AMR band in the 101Pd nucleus.
The helical modes are found to aid in explaining the observed
octupole correlations which force the system to generate
an antimagnetic spectrum. The helicity-based wave function
supports a pear-shaped structure of a nucleus having an axis
of symmetry. This structure conserves a combined operation
of parity and signature quantum numbers instead of signature
alone. Simultaneous violation of time-reversal symmetry in
the helicity-based formalism leads to disappearance of one
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of the signature partner band and hence explains one of the
prominent observed feature in AMR spectrum. Also, it has
been noticed that the degree of polarization breaks down
the isotropy symmetry of the nucleus and hence generates
an antimagnetic structure. This formalism has been tested
successfully for the recently observed negative parity �I = 2
antimagnetic spectrum in odd-A 101Pd nucleus. These results

establish the importance of helical orbits in the observed AMR
spectrum.
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