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0s-orbit � states in p-shell double-� hypernuclei (A��Z), 8
��Li, 9

��Li, 10,11,12
�� Be, 12,13

�� B, and 14
��C are

investigated. Microscopic cluster models are applied to core nuclear part and a potential model is adopted for �

particles. The �-core potential is a folding potential obtained with effective G-matrix �-N interactions, which
reasonably reproduce energy spectra of A−1

� Z. System dependence of the �-� binding energies is understood by
the core polarization energy from nuclear size reduction. Reductions of nuclear sizes and E2 transition strengths
by � particles are also discussed.

DOI: 10.1103/PhysRevC.97.034324

I. INTRODUCTION

In the recent progress in strangeness physics, experimental
and theoretical studies on hypernuclei have been extensively
performed. Owing to experiments with high-resolution γ -ray
measurements, detailed spectra of p-shell � hypernuclei have
been experimentally revealed [1–3]. The data of energy spectra
and electromagnetic transitions have been providing useful
information for properties of �-nucleon(N ) interactions. They
are also helpful to investigate impurity effects of a � particle
on nuclear systems. On the theoretical side, structure studies
of p-shell � hypernuclei have been performed with various
models such as cluster models [4–20], shell models [21–26],
mean-field and beyond-mean-field models [27–36], hyperan-
tisymmetrized molecular dynamics (HAMD) model [37–41],
no-core shell model [42], and so on.

For double-� hypernuclei, experimental observations with
nuclear emulsion have been used to extract information of the
�-� interaction in nuclear systems from binding energies [43].
Several double-� hypernuclei have been observed, but precise
data of binding energies are still limited because of experi-
mental uncertainties in energies and reaction assignments. The
most reliable datum is the binding energy of 6

��He, which sug-
gests a weak attractive �-� interaction. Another observation
is a candidate event for 10

��Be∗. In order to extract information
of the �-� interaction from the limited experimental data,
systematic investigations of binding energies of p-shell A−1

� Z
and A

��Z have been performed with semimicroscopic cluster
model [11,44,45] and shell model calculations [46]. In the
former calculation, dynamical effects in three-body and four-
body cluster systems as well as spin-dependent contributions
are taken into account in a semimicroscopic treatment of
antisymmetrization effect between clusters called the orthog-
onal condition model (OCM). In the latter calculation, the
spin-dependent and �-� coupling contributions in A−1

� Z are
taken into account perturbatively. A major interest concerning
the �-� interaction is so-called �-� binding energy �B��

defined with masses M of A−2Z, A−1
� Z, and A

��Z as,

�B��

(
A
��Z

) = 2M
(
A−1
� Z

) − M(A−2Z) − M
(
A
��Z

)
, (1)

which stands for the difference of the two-� binding en-
ergy in A

��Z from twice of the single-� binding energy in
A−1
� Z. In Refs. [11,44,46], they have discussed systematics
of �B��(A��Z) comparing with available data, and pointed
out that �B��(A��Z) has rather strong system (mass-number)
dependence because of various effects and is not a direct
measure of the �-� interaction. For example, �B��(A��Z)
of 10

��Be is significantly deviated from global systematics
in p-shell double-� hypernuclei because of remarkable 2α
clustering in the core nucleus, 8Be.

In the previous work [47], I have investigated energy spectra
of low-lying 0s-orbit � states in p-shell � hypernuclei by
applying microscopic cluster models for core nuclei and a
single-channel potential model for a � particle. As the core
polarization effect in A−1

� Z, the nuclear size reduction contribu-
tion by a � has been taken into account. The �-core potentials
have been calculated with local density approximations of
folding potentials using the G-matrix �-N interactions. Since
the spin-dependence of the �-N interactions are ignored,
the spin-averaged energies of low-energy spectra have been
discussed. The previous calculation describes the systematic
trend of experimental data for excitation energy shift by a
� from A−1Z to A

�Z, and shows that nuclear size difference
between the ground and excited states dominantly contributes
to the excitation energy shift. The size reduction by a � particle
in A−1

� Z has been also studied, and it was found that significant
size reduction occurs in 7

�Li and 9
�Be because of developed

clustering consistently with predictions by other calculations
[4,10,19]. The framework developed in the previous work of
� hypernuclei can be applied also to double-� hypernuclei
straightforwardly.

In the present paper, I extend the previous calculation to
p-shell double-� hypernuclei. I solve motion of two S-wave
� particles around a core nucleus in the �-core potential cal-
culated by folding the G-matrix �-N interactions in the same
way as the previous calculation for A−1

� Z. For the effective �-�
interaction, I adopt the parametrization used in Refs. [11,44]
with a slight modification to reproduce the �-� binding energy
in 6

��He. Systematics of the �-� binding energies in p-shell
double-� hypernuclei is investigated. System dependence of
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the �-� binding energies is discussed in relation with the core
polarization. The size reduction and excitation energy shift by
� particles in A−1

� Z and A
��Z are also discussed.

In the present calculation, S-wave �s are assumed and
the spin dependence of the �-N and �-� interactions are
disregarded. In A

��Z, the total spin Jπ of A
��Z is given just

by the core nuclear spin Iπ as A
��Z(Jπ = Iπ ). In A−1

� Z with a
nonzero nuclear spin (I �= 0), spin-doublet Jπ = (I ± 1/2)π

states completely degenerate in the present calculation. For
simplicity, I denote the spin-doublet Jπ = (I ± 1/2)π states
in � hypernuclei with the label Iπ of the core nuclear spin as
A−1
� Z(Iπ ).

This paper is organized as follows. In the next section, the
framework of the present calculation is explained. The effective
N -N , �-N , and �-� interactions are explained in Sec. III.
Results and discussions are given in Sec. IV. Finally, the paper
is summarized in Sec. V.

II. FRAMEWORK

A. Microscopic cluster models for core nuclei

Core nuclei A−2Z in A−1
� Z and A

��Z are calculated with the
microscopic cluster models in the same way as the previous
calculation for A−1

� Z [47]. The generator coordinate method
(GCM) [48,49] is applied using the Brink-Bloch cluster wave
functions [50] of α + d, α + t , 2α, 2α + n, 2α + nn, 2α + d,
2α + t , and 3α clusters for 6Li, 7Li, 8Be, 9Be, 10Be, 10B, 11B,
and 12C, respectively. d, nn, t , and α clusters are written by
harmonic oscillator 0s configurations with a common width
parameter ν = 0.235 fm−2. For 11B and 12C, the p3/2 config-
urations are taken into account by adding the corresponding
shell-model wave functions to the 2α + t , and 3α cluster wave
functions as done in Refs. [47,51]. For 10Be, the 6He + α wave
functions adopted in Ref. [52] are superposed in addition to the
2α + nn wave functions.

Let us consider a AN -nucleon system for a mass number
AN = A − 2 nucleus consisting of C1, . . . ,Ck clusters. k is
the number of clusters. The Brink-Bloch cluster wave function
	BB(S1, . . . ,Sk) is written by a AN -body microscopic wave
function parametrized by the cluster center parameters Sj (j =
1, . . . ,k). To take into account intercluster motion, the GCM is
applied to the spin-parity projected Brink-Bloch cluster wave
functions with respect to the generator coordinates Sj . Namely,
the wave function 
(Jπ

n ) for the Jπ
n state is given by a linear

combination of the Brink-Bloch wave functions with various
configurations of {S1, . . . ,Sk} as



(
Jπ

n

) =
∑

S1,...,Sk

∑
K

c
Jπ

n

S1,...,Sk ,K
P Jπ

MK	BB(S1, . . . ,Sk), (2)

where P Jπ
MK is the spin-parity projection operator. The co-

efficients c
Jπ

n

S1,...,Sk ,K
are determined by solving Griffin-Hill-

Wheeler equations [48,49], which is equivalent to the diago-
nalization of the Hamiltonian and norm matrices. For the α + d
and 2α wave functions, S1 and S2 are chosen to be S1 − S2 =
(0,0,d) with d = {1,2, · · · ,15 fm}. For the α + t wave func-
tions, d = {1,2, · · · ,8 fm} are adopted to obtain a bound-state
solution for the resonance state 7Li(7/2−

1 ) corresponding to a

bound-state approximation. For the configurations of 2α + nn,
2α + d, 2α + t , and 3α, S1,2,3 are chosen to be

S1 − S2 = (0,0,d), (3)

S3 − A2 S1 + A1 S2

A1 + A2
= (r sin θ,0,r cos θ ), (4)

with d = {1.2,2.2, . . . ,4.2 fm}, r = {0.5,1.5, . . . ,4.5 fm},
and θ = {0,π/8, . . . ,π/2}. Here Ai is the mass number of
the Ci cluster. For the 2α + n cluster, a larger model space of
d = {1.2,2.2, . . . ,6.2 fm}, r = {0.5,1.5, . . . ,6.5 fm}, and θ =
{0,π/8, . . . ,π/2} are used to describe remarkable clustering in
9Be.

The Hamiltonian of the nuclear part consists of the kinetic
term, effective nuclear interactions, and Coulomb interactions
as follows,

HN = T + V
(c)
N + V

(so)
N + Vcoul, (5)

T =
AN∑
i

1

2mN

p2
i − TG, (6)

V
(c)
N =

AN∑
i<j

v
(c)
NN (i,j ), (7)

V
(so)
N =

AN∑
i<j

v
(so)
NN (i,j ), (8)

Vcoul =
Z∑

i<j

vcoul(rij ), (9)

where the kinetic term of the center-of-mass (cm) motion, TG,
is subtracted exactly. v

(c)
NN (i,j ) and v

(so)
NN (i,j ) are the effective

N -N central and spin-orbit interactions, respectively. The
nuclear energy EN = 〈
(Jπ

n )|HN |
(Jπ
n )〉 and nuclear density

ρN (r) of the core nuclei are calculated for the obtained GCM
wave function 
(Jπ

n ). Here the radial coordinate r in ρN (r) is
the distance measured from the cm of core nuclei.

B. Folding potential model for � particles

Assuming two 0s-orbit � particles coupling to the spin-
singlet state, (0s)2

� states of A
��Z are calculated with a folding

potential model in a similar way to the previous calculation for
A−1
� Z [47].

The Hamiltonian of (0s)� states in A−1
� Z is given

by the nuclear Hamiltonian HN for the core nucleus A−2Z and
the single-particle Hamiltonian h�C for a � particle around
the core as

H = HN + h�C, (10)

h�C = t� + U�C, (11)

t� = 1

2μ�

p2, (12)

μ� = (A − 2)mNm�

(A − 2)mN + m�

. (13)
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The Hamiltonian of (0s)2
� states in A

��Z is written straight-
forwardly as

H = HN + H�� (14)

H�� = h�C(1) + h�C(2) + V��(r12), (15)

where V�� is the even part of the �-� interactions. Here, the
recoil kinetic term is dropped off for (0s)2

� states.
The �-core potential U�C is calculated by folding the �-N

interactions with the nuclear density ρN (r) as

U�C(r,r ′) = UD
�C(r) + |r〉UEX

�C(r,r ′)〈r ′|, (16)

UD
�C(r) =

∫
r ′′ρN (r ′′)vD

�N (kf ; |r − r ′′|), (17)

UEX
�C(r,r ′) = ρN (r,r ′)vEX

�N (kf ; |r − r ′|), (18)

vD
�N (kf ; r) = 1

2

[
V e

�N (kf ; r) + V o
�N (kf ; r)

]
, (19)

vEX
�N (kf ; r) = 1

2

[
V e

�N (kf ; r) − V o
�N (kf ; r)

]
, (20)

where V e
�N (kf ; r) and V o

�N (kf ; r) are even and odd parts of
the effective �-N central interactions, respectively, including
the parameter kf for density dependence. The nuclear density
matrix ρN (r,r ′) in the exchange potential UEX

�C(,r ′) is approxi-
mated with the density matrix expansion using the local density
approximation [53] as done in the previous paper.

For a given nuclear density ρN (r) of a core nuclear state
of A−2Z, the �-core wave functions φ�(r) in A−1

� Z and A
��Z

are calculated with the Gaussian expansion method [54,55] so
as to minimize the single-� energy E� = 〈φ�|h�C |φ�〉 and
two-� energy E�� = 〈φ2

�|H��|φ2
�〉, respectively. The rms

radius (r�) and the averaged nuclear density (〈ρN 〉�) for the
� distribution are calculated with the obtained �-core wave
function φ�(r),

r� =
√∫

φ∗
�(r)φ�(r)r2d r, (21)

〈ρN 〉� =
∫

φ∗
�(r)φ�(r)ρN (r)d r. (22)

C. Core polarization

The core polarization, i.e., the nuclear structure change
induced by 0s-orbit �s, is taken into account in the same
way as done in the previous calculation of � hypernuclei.
To prepare nuclear wave functions polarized by the � par-
ticles, I add artificial nuclear interactions εV art to the nuclear
Hamiltonian. By performing the GCM cluster-model calcu-
lation of the core nuclear part for the modified Hamiltonian
HN + εV art, the wave function 	N (ε) for A−2Z is obtained.
For the prepared nuclear wave function, the nuclear energy
EN (ε) = 〈	N (ε)|HN |	N (ε)〉 is calculated for the original
nuclear Hamiltonian HN of A−2Z without the artificial nuclear
interactions. Using the nuclear density ρN (ε; r) obtained with
	N (ε), the single- and two-� energies [E�(ε) and E��(ε)] in
A−1
� Z and A

��Z are calculated. Finally, the optimum ε value,
i.e., the optimum nuclear wave function 	N (ε) is chosen for
each Iπ state in A−1

� Z and A
��Z so as to minimize the total

energy

E
(
ε; A−1

� Z
) = EN (ε) + E�(ε) (23)

in A−1
� Z, and

E
(
ε; A

��Z
) = EN (ε) + E��(ε) (24)

in A
��Z.
For the artificial interaction V art, the central part of the

nuclear interactions as V art = V
(c)
N is adopted. It corresponds

to slight enhancement of the central nuclear interaction as

HN + εV art = T + (1 + ε)V (c)
N + V

(so)
N + Vcoul, (25)

where ε(�0) is regarded as the enhancement factor to sim-
ulate the nuclear structure change induced by the 0s-orbit
� particles. The main effect of the enhancement on the
structure change is size reduction of core nuclei. Therefore,
it is considered, in a sense, that the present treatment of the
core polarization simulates the nuclear size reduction, which is
determined by energy balance between the � potential energy
gain and nuclear energy loss. In the optimization of ε, only
the GCM coefficients are varied but the basis cluster wave
functions are fixed corresponding to the inert cluster ansatz. In
this assumption, the enhancement of the central nuclear inter-
actions acts as an enhancement of the intercluster potentials.

D. Definitions of energies and sizes for A−1
� Z and A

�� Z systems

The � binding energy (B�) in A−1
� Z is calculated as

B�

(
A−1
� Z

) = −[
E

(
ε; A−1

� Z
) − EN (ε = 0)

]
= −[δ�(EN ) + E�], (26)

δ�(EN ) ≡ EN

(
ε; A−1

� Z
) − EN (ε = 0), (27)

where EN (ε = 0) is the unperturbative nuclear energy without
the � particle and δ�(EN ) stands for the nuclear energy
increase by a � particle in A−1

� Z.
Similarly, the two-� binding energy (B��) in A

��Z is
calculated as

B��

(
A
��Z

) = −[
E

(
ε; A

��Z
) − EN (ε = 0)

]
= −[δ��(EN ) + E��], (28)

δ��(EN ) ≡ EN

(
ε; A

��Z
) − EN (ε = 0), (29)

where δ��(EN ) is the nuclear energy increase caused by two
� particles in A

��Z.
The �-� binding energy �B�� in A

��Z is given as

�B��

(
A
��Z

) = B��

(
A
��Z

) − 2B�

(
A−1
� Z

)
(30)

= −[
E

(
A
��Z

) + E(A−2Z) − 2E
(
A−1
� Z

)]
.

(31)

To discuss the �� binding, �B�� for excited states (Iπ
n ) is

defined as

�B��

(
A
��Z; Iπ

n

)
= −[

E
(
A
��Z; Iπ

n

) + E
(A−2

Z; Iπ
n

) − 2E
(
A−1
� Z; Iπ

n

)]
.

(32)
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As discussed by Hiyama et al. in Refs. [11,44], �B�� is not
necessarily a direct measure of the �-� interaction because it is
contributed also by various effects such as the core polarization
effect. Alternatively, the �� bond energy Vbond

��

Vbond
�� ≡ B��

(
A
��Z

) − B��

(
A
��Z; V�� = 0

)
(33)

has been discussed in Refs. [11,44]. Here B��(A��Z; V�� = 0)
is the two-� binding energy obtained by switching off the
�-� interactions (V�� = 0), andVbond

�� indicates the difference
of B�� between calculations with and without the �-�
interactions.

For excited states A−1
� Z(Iπ

n ) and A
��Z(Iπ

n ) with the excited
core A−2Z(Iπ

n ), excitation energies measured from the ground
states are denoted by Ex(A−1

� Z; Iπ
n ) and Ex(A��Z; Iπ

n ), respec-
tively. Note that the parameter ε is optimized for each state
meaning that the core polarization is state dependent. Because
of the impurity effect of � particles, the excitation energies are
changed from the original excitation energy Ex(A−2Z; Iπ

n ) of
isolate nuclei A−2Z. For each Iπ , I denote the energy change
caused by �s as

δ�(Ex) ≡ Ex

(
A−1
� Z

) − Ex(A−2Z), (34)

δ��(Ex) ≡ Ex

(
A
��Z

) − Ex(A−2Z), (35)

which I call the excitation energy shift.
The nuclear sizes RN in A−2Z, A−1

� Z, and A
��Z are calcu-

lated with the nuclear density ρN (r) as

R2
N = 1

A − 2

∫
4πr4ρN (r)dr. (36)

Nuclear size changes δ�(RN ) and δ��(RN ) by � particles in
A−1
� Z and A

��Z from the original size are defined as,

δ�(RN ) = RN

(
A−1
� Z

) − RN (A−2Z), (37)

δ��(RN ) = RN

(
A
��Z

) − RN (A−2Z). (38)

III. EFFECTIVE INTERACTIONS

A. Effective nuclear interactions

The same effective two-body nuclear interactions as the pre-
vious calculation are used; the finite-range central interactions
of the Volkov No. 2 force [56] with w = 0.40, m = 0.60, and
b = h = 0.125 and the spin-orbit interactions of the G3RS
parametrization [57] with u1 = −u2 = 1600 MeV except for
6Li and 7Li. For 6Li, I use the adjusted parameter set, w = 0.43,
m = 0.57, b = h = 0.125, and u1 = −u2 = 1200 MeV, which
reproduces the experimental 6Li(1+

1 ) and 6Li(3+
1 ) energies

measured from the α + d threshold energy. The same set of
interaction parameters is used also for 7Li. This interaction set
gives the α + d and α + t threshold energies, 1.48 MeV and
2.59 MeV, for 6Li and 7Li, respectively. (The experimental
threshold energies are 1.48 MeV for 6Li and 2.47 MeV for
7Li.)

B. Effective �-N interaction

As the effective �-N central interactions, I use the ESC08a
parametrization of the G-matrix �-N (�NG) interactions
derived from �-N interactions of the Nijmegen extended-soft-
core (ESC) model [58,59]. Since spin-dependent contributions
are ignored in the present folding potential model, the �-core
potentials are contributed by the spin-independent central
parts,

V e
�N (kf ; r) =

3∑
i

(
ce

0,i + ce
1,ikF + ce

2,ik
2
F

)
exp

[
−

(
r

βi

)2
]
,

(39)

V o
�N (kf ; r) =

3∑
i

(
co

0,i + co
1,ikF + co

2,ik
2
F

)
exp

[
−

(
r

βi

)2
]
,

(40)

ce
n,i = 1

4c1E
n,i + 3

4c3E
n,i , (41)

co
n,i = 1

4c1O
n,i + 3

4c3O
n,i . (42)

The values of the parameters βi and c
1E,3E,1O,3O
n,i are given in

Table II of Ref. [58].
As for the kf parameter in the �NG interactions, three

choices are adopted. The first choice is the density-dependent
kf called averaged density approximation (ADA) used in
Refs. [40,41,58]. The kf is taken to be kf = 〈kf 〉�, where
〈kf 〉� is the averaged Fermi momentum for the � distribution,

〈kf 〉� =
[

3π2

2
〈ρN 〉�

]1/3

, (43)

and self-consistently determined for each state. This choice of
the �NG interactions is labeled as ESC08a(DD) consistent
with the previous paper.

The second choice is the density-independent interaction
with a fixed kf value, kf = k

inp
f . I use a system-dependent

but state-independent value as the input parameter k
inp
f in

calculation of A−1
� Z, and use the same value k

inp
f in calculation

of A
��Z. As the k

inp
f value for each A−1

� Z system, I used the
averaged value of 〈kf 〉� self-consistently determined by the
ADA treatment in the ESC08a(DD) calculation for low-lying
states. This choice is labeled as ESC08a(DI).

The third choice is the hybrid version of the ESC08a(DD)
and ESC08a(DI) interactions. In the previous study of A−1

� Z
with the ESC08a(DD) and ESC08a(DI) interactions, it was
found that ESC08a(DD) fails to describe the observed excita-
tion energy shift in A−1

� Z, whereas ESC08a(DI) can describe a
trend of the excitation energy shift but somewhat overestimates
the experimental data. It suggests that a moderate density
dependence weaker than ESC08a(DD) may be favored. In
the hybrid version, the average of the ESC08a(DD) and
ESC08a(DI) interactions are used as

V e,o
�N (r) = 1

2

[
V e,o

�N (kf = kinp; r) + V e,o
�N (kf = 〈kf 〉�,r)

]
,

(44)

in which 〈kf 〉� is self-consistently determined for each state.
This interaction is labeled as ESC08a(Hyb).
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TABLE I. Ground-state properties of � hypernuclei (A−1
� Z). The � distribution size (r�), averaged Fermi momentum [〈kf 〉�], core nuclear

size (RN ), nuclear size change [δ�(RN )], nuclear energy change [δ�(EN )], and the � binding energy (B�) in A−1
� Z are listed. The calculated

results obtained with ESC08a(Hyb), ESC08a(DI), and ESC08a(DD) are shown. The experimental B� values are taken from the data compilation
in Ref. [60]. For I �= 0 nuclei, spin-averaged values [B̄� (MeV)] of the experimental � binding energies for spin-doublet states are also shown.
The spin-doublet splitting data are taken from Ref. [2] and references therein. The units of size, momentum, and energy values are fm, fm−1,
and MeV, respectively.

ESC08a(Hyb)

A−1
� Z(Iπ ) k

inp
f r� 〈kf 〉� RN δ�(RN ) δ�(EN ) B� B

exp
� B̄

exp
�

5
�He(0+

1 ) 0.96 2.83 0.967 1.46 − − 3.53 3.12(2) −
7
�Li(1+

1 ) 0.93 2.64 0.927 2.32 −0.24 0.23 5.35 5.58(3) 5.12(3)
8
�Li(3/2−

1 ) 0.91 2.55 0.955 2.34 −0.15 0.26 6.68 6.80(3)
9
�Be(0+

1 ) 0.90 2.59 0.930 2.57 −0.80 0.84 6.53 6.71(4) −
10
� Be(3/2−

1 ) 0.95 2.51 0.990 2.54 −0.18 0.34 8.06 9.11(22)
11
� Be(0+

1 ) 1.04 2.47 1.058 2.39 −0.06 0.11 9.01 −
11
� B(3+

1 ) 1.03 2.44 1.075 2.34 −0.05 0.08 9.31 10.24(5) 10.09(5)
12
� B(3/2−

1 ) 1.07 2.40 1.129 2.29 −0.04 0.05 10.06 11.37(6) 11.27(6)
13
� C(0+

1 ) 1.11 2.41 1.151 2.31 −0.04 0.05 10.44 11.69(12) −
ESC08a(DI)

k
inp
f r� 〈kf 〉� RN δ�(RN ) δ�(EN ) B�

5
�He(0+

1 ) 0.96 2.81 0.970 1.46 − − 3.60
7
�Li(1+

1 ) 0.93 2.57 0.955 2.22 −0.33 0.59 5.44
8
�Li(3/2−

1 ) 0.91 2.41 0.999 2.25 −0.24 0.79 7.32
9
�Be(0+

1 ) 0.90 2.44 0.982 2.44 −0.94 1.69 7.04
10
� Be(3/2−

1 ) 0.95 2.39 1.034 2.43 −0.28 0.99 8.69
11
� Be(0+

1 ) 1.04 2.41 1.081 2.34 −0.12 0.41 9.32
11
� B(3+

1 ) 1.03 2.36 1.103 2.29 −0.10 0.37 9.97
12
� B(3/2−

1 ) 1.07 2.33 1.158 2.24 −0.09 0.29 10.94
13
� C(0+

1 ) 1.11 2.35 1.176 2.26 −0.09 0.27 11.07
ESC08a(DD)

r� 〈kf 〉� RN δ�(RN ) δ�(EN ) B�

5
�He(0+

1 ) 2.84 0.965 1.46 − − 3.49
7
�Li(1+

1 ) 2.66 0.912 2.40 −0.15 0.08 5.43
8
�Li(3/2−

1 ) 2.61 0.930 2.42 −0.08 0.06 6.43
9
�Be(0+

1 ) 2.67 0.896 2.69 −0.68 0.44 6.43
10
� Be(3/2−

1 ) 2.57 0.963 2.62 −0.09 0.08 7.84
11
� Be(0+

1 ) 2.49 1.042 2.44 −0.02 0.01 8.92
11
� B(3+

1 ) 2.48 1.058 2.38 −0.01 0.00 8.97
12
� B(3/2−

1 ) 2.45 1.111 2.33 0.00 0.00 9.57
13
� C(0+

1 ) 2.44 1.134 2.35 0.00 0.00 10.13

It should be stressed that all of ESC08a(DD), ESC08a(DI),
and ESC08a(Hyb) are system-dependent interactions through
the kf values determined for each system (A−1

� Z). The dif-
ference between three interactions is the different treatments
for the density dependence. ESC08a(DI) is state independent,
but ESC08a(DD) and ESC08a(Hyb) are state-dependent inter-
actions reflecting density difference in the ground and excited
states. Namely, ESC08a(DI), ESC08a(Hyb), and ESC08a(DD)
have no, mild, and relatively strong state dependence of
the �NG interactions, respectively. The density-dependent
G-matrix interactions are constructed in nuclear matter, and it
is not obvious how to use them in finite systems. In the present
paper, I adopt three choices and test them in reproduction of

existing data. We show the mild state-dependent version of the
ESC08a(Hyb) can reproduce excitation energy shifts in A−1

� Z
with A � 12.

On the other hand, all these three interactions reasonably
reproduce the � binding energies B� of p-shell hypernuclei
because the �NG interactions are originally designed so as to
reproduce the systematics of experimental � binding energies
in a wide mass number region. In principle, the experimental
B� can be finely fitted by adjusting the input parameter k

inp
f in

cases of ESC08a(DI) and ESC08a(Hyb). However, as shown
later, such fine tuning of k

inp
f gives only minor change in the

�-� binding energies.
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C. Effective �-� interactions

For the �-� interaction in (0s)2
� states in A

��Z, I adopt
the singlet-even part of the effective �-� interactions used in
Refs. [11,44],

V��(r) =
∑

i=1,2,3

v1E
i e−γi r

2
, (45)

with γ1 = 0.555, γ2 = 1.656, and γ1 = 8.163 in fm−2.
The original values of the strength parameters v1E

i in the
earlier work in Ref. [11] are v1E

1 = −10.96, v1E
2 = −141.75,

and v1E
3 = 2136.6 in MeV, but a modified parameter v1E

3 =
2136.6a (a = 1.244) was used in the later work in Ref. [44]
to fit the revised experimental value of �B

exp
��(6

��He) =
0.67 ± 0.17 MeV [43]. By using V��(r) with a = 1.244 in
the ESC08a(Hyb) calculation, �B��(6

��He) = 0.58 MeV is
obtained for the frozen (0s)4 4He core with the experimental
size RN = 1.455 fm reduced from the charge radius data. In the
ESC08a(DD) and ESC08a(DI) calculations, the parameter is
readjusted as a = 1.51 and a = 1.07, respectively, which give
almost the same �B��(6

��He) values. It should be noted that
V��(r) is different between three calculations because in cases
of the ESC08a(DD) and ESC08a(Hyb) the �-N interactions
in 6

��He are different from those in 5
�He through the change

of 〈kf 〉� caused by the change of � distribution.

IV. RESULTS AND DISCUSSIONS

A. Properties of ground and excited states in A−1
� Z

Structure properties of the ground states in A−1
� Z calcu-

lated with the ESC08a(Hyb), ESC08a(DI), and ESC08a(DD)
interactions are listed in Table I together with observed �
binding energies (Bexp

� ) and spin-averaged values (B̄exp
� ). Note

that, for the input parameter k
inp
f used in the ESC08a(Hyb)

and ESC08a(DI) calculations, 0.01 fm−1 precision numbers
are adopted. The difference in the B� of 5

�He between three
calculations comes from a slight difference of k

inp
f from the

〈kf 〉� values obtained in the ESC08a(DD).
In the ESC08a(DI) result, significant core polarization by a

� particle in A−1
� Z generally occurs as seen in the nuclear

size reduction |δ�(RN )|. Compared with ESC08a(DI), the
ESC08a(DD) result shows relatively small core polarization
because the density dependence of the �NG interactions
suppresses the nuclear size reduction. The ESC08a(Hyb)
calculation shows moderate core polarization between the
ESC08a(DI) and ESC08a(DD) results. As explained in the
previous section, the nuclear size in A−1

� Z is determined
by the energy balance between the � potential energy gain
and the nuclear energy loss in the size reduction. As an
example, I show the energy balance in 7

�Li in Fig. 2 showing ε
dependence of energies plotted as functions of the core nuclear
size RN (ε). As RN (ε) decreases, the � gains the potential
energy through the �-N interactions [see Figs. 2(a)–2(c)].
The energy gain is largest in the ESC08a(DI) resulting in
the largest size reduction among three calculations. However,
in the ESC08a(DD) result, the � potential energy gain is
small because the density dependence of the �NG interactions
compensates the energy gain and gives weak RN dependence
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FIG. 1. (Top) Excitation energy shift δ�(Ex), (middle) nuclear
size difference (RN − RN,gs), (bottom) excitation energy shift plot-
ted against the nuclear size difference. The results obtained with
ESC08a(Hyb), ESC08a(DI), and ESC08a(DD) are shown. The ex-
perimental values of δ�(Ex) are shown in the top panel, and those
plotted against the size difference calculated with ESC08a(Hyb) are
shown in the bottom panel.

of E�(A−1
� Z) [see Fig. 2(c)]. Consequently, the size reduction

is suppressed in the ESC08a(DD) calculation.
The core polarization, i.e., the nuclear size reduction causes

the nuclear energy increase δ�(EN ) which I call the core polar-
ization energy. As shown in Table I, δ�(EN ) correlates sensi-
tively with the size reduction. ESC08a(DI), ESC08a(Hyb), and
ESC08a(DD) shows larger, moderate, and smaller core polar-
ization energies δ�(EN ). In each calculation of ESC08a(DI),
ESC08a(Hyb), and ESC08a(DD), the relatively significant
core polarization in 7

�Li, 8
�Li, 9

�Be, and 10
� Be is found in the

size and energy because of the remarkably developed α + d,
α + t , 2α, and 2α + n clustering compared with those in A−1

� Z
with A > 10.

Tables II shows energies for excited states in A−1
� Z. As

discussed in the previous paper, the excitation energy shift
δ�(Ex) by a � in A−1

� Z can be qualitatively described by the
size difference RN − RN,gs between the ground and excited
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TABLE II. Properties of excited states A−1
� Z(Iπ

n ) in � hypernuclei. The core nuclear size RN (A−1
� Z) and size difference RN (A−1

� Z) −
RN,gs(

A−1
� Z) from the ground-state size in A−1

� Z, the excitation energies Ex in A−2Z and A−1
� Z systems, and the excitation energy shift δ�(Ex).

The calculated values obtained with ESC08a(Hyb) are shown together with δ�(Ex) calculated with ESC08a(DI) and ESC08a(DD). The units
of sizes and energies are fm and MeV, respectively. For details of the experimental data of excitation energies, see the captions of Figs. 5 and 6.

A−1
� Z(Iπ ) RN

(
A−1
� Z

)
RN − RN,gs Ex(A−2Z) Ex(A−2Z) Ex

(
A−1
� Z

)
Ex

(
A−1
� Z

)
δ�(Ex) δ�(Ex) δ�(Ex) δ�(Ex)

Hyb Hyb Hyb exp Hyb exp Hyb DI DD exp

7
�Li(3+

1 ) 2.13 −0.19 2.08 2.19 1.50 1.86 −0.58 −1.19 −0.21 −0.33
8
�Li(1/2−

1 ) 2.39 0.04 0.49 0.48 0.70 0.20 0.38 0.10
8
�Li(7/2−

1 ) 2.25 −0.10 4.75 4.63 4.40 −0.34 −0.92 −0.05
9
�Be(2+

1 ) 2.59 0.02 3.11 3.04 2.79 3.04 −0.32 −0.43 −0.29 0.00
10
� Be(1/2−

1 ) 2.71 0.17 2.20 2.78 2.92 0.72 1.23 0.40
10
� Be(5/2−

1 ) 2.55 0.01 2.02 2.43 2.13 0.10 0.11 0.07
11
� Be(2+

1 ) 2.37 −0.03 3.21 3.37 3.12 −0.10 −0.25 −0.01
11
� Be(2+

2 ) 2.44 0.05 5.20 5.96 5.37 0.17 0.38 0.04
11
� B(1+

1 ) 2.53 0.18 1.21 0.72 1.97 1.67 0.77 1.51 0.23 0.95
12
� B(1/2−

1 ) 2.45 0.16 2.79 2.13 3.36 3.00 0.57 1.34 0.02 0.87
12
� B(3/2−

2 ) 2.51 0.23 5.57 5.02 6.42 6.02 0.85 1.88 0.11 1.00
12
� B(5/2−

1 ) 2.45 0.17 4.66 4.45 5.26 0.60 1.39 0.03
13
� C(2+

1 ) 2.44 0.13 4.47 4.44 4.88 4.89 0.41 1.03 −0.04 0.45
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FIG. 2. ε dependence of energies for the 6Li(1+
1 ) core plotted as

functions of the nuclear size RN (ε). Left: single-� energy [E�(ε)]
and two-� energy [E��(ε)]. 2E�(ε), which correspond to the
two-� energy for the V�� = 0 case is also shown. Right: nuclear
energy [EN (ε)], total energy E(ε; A−1

� Z) = EN (ε) + E�(ε) of A−1
� Z,

and total energy E(ε; A
��Z) = EN (ε) + E��(ε) of A

��Z. The values
of EN (ε) and E(ε;A� Z) are shifted by −5 MeV and +5 MeV,
respectively.

states. Note that the core polarization gives only a minor effect
to the size difference RN − RN,gs and also the excitation energy
shift δ�(Ex). This means that the excitation energy shift in
A−1
� Z dominantly originates in the original size difference
between the ground and excited states in A−2Z. Since the �
binding is generally deeper in higher nuclear density, a smaller
size state tends to gain more � binding than a larger size
state. As a result, δ�(Ex) and RN − RN,gs show the positive
correlation.

To see the correlation and its interaction dependence more
quantitatively, δ�(Ex) and RN − RN,gs are plotted in Fig. 1.
The ESC08a(DD) result shows no or only slight excitation
energy shift because the density dependence of the �NG
interactions cancels positive correlation between δ�(Ex) and
RN − RN,gs. The ESC08a(DD) result is inconsistent with
the experimental δ�(Ex) values. The ESC08a(DI) calculation
for the density-independent �NG interactions shows the
strong correlation, i.e., the large excitation energy shift, and
describes the qualitative trend of the experimental data of
δ�(Ex). However, it quantitatively overestimates the data. The
ESC08a(Hyb) interaction for the mild density dependence
gives moderate correlation and reasonably reproduces the
systematics of experimental δ�(Ex) in p-shell A−1

� Z.

B. Ground-state properties of A
�� Z

Calculated results of ground-state properties of A
��Z are

shown in Table III. Compared with A−1
� Z, further nuclear

size reduction occurs, especially, in A
��Z with A � 10. The

core nuclear size in A
��Z is determined so as to optimize the

potential energies of two �s and nuclear energy loss in the size
reduction. The energy balance in 7

�Li and 8
��Li is illustrated in

Fig. 2, in which energies are plotted as functions of RN (ε). As
shown in the figure, the RN dependence of two-� energy E��

is almost same as that of 2E� (twice of single-� energy) with a
constant shift. It means that the �-� interaction contribution is
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TABLE III. Ground-state properties of double-� hypernuclei. The � distribution size (r�), averaged Fermi momentum (〈kf 〉�), core nuclear
size (RN ), nuclear size change [δ��(RN )], nuclear energy change [δ��(EN )], two-� binding energy (B��), �-� binding energy (�B��), and
�� bond energy (Vbond

�� ) in A
��Z. The �-� binding energy calculated without the core polarization (�B

w/o cp
�� ) is also shown. The units of size,

momentum, and energy values are fm, fm−1, and MeV, respectively.

Hybrid

r� 〈kf 〉� RN δ��(RN ) δ��(EN ) B�� �B�� Vbond
�� �B

w/o cp
��

6
��He(0+

1 ) 2.81 0.929 1.46 − − 7.64 0.58 0.58 0.58
8
��Li(1+

1 ) 2.62 0.932 2.22 −0.33 0.60 11.56 0.85 0.48 0.49
9
��Li(3/2−

1 ) 2.53 0.967 2.27 −0.23 0.68 14.27 0.92 0.49 0.55
10
��Be(0+

1 ) 2.53 0.965 2.44 −0.93 1.68 14.80 1.74 0.55 0.68
11
��Be(3/2−

1 ) 2.49 1.012 2.44 −0.27 0.89 17.22 1.11 0.54 0.64
12
��Be(0+

1 ) 2.47 1.064 2.35 −0.10 0.31 18.74 0.72 0.54 0.57
12
��B(3+

1 ) 2.45 1.078 2.31 −0.08 0.24 19.29 0.67 0.52 0.54
13
��B(3/2−

1 ) 2.42 1.128 2.26 −0.07 0.15 20.71 0.60 0.50 0.52
14
��C(0+

1 ) 2.43 1.151 2.28 −0.07 0.14 21.44 0.56 0.48 0.49

DI

r� 〈kf 〉� RN δ��(RN ) δ��(EN ) B�� �B�� Vbond
�� �B

w/o cp
��

6
��He(0+

1 ) 2.79 0.937 1.46 − − 7.78 0.58 0.58 0.58
8
��Li(1+

1 ) 2.48 0.976 2.11 −0.45 1.49 12.58 1.70 0.74 0.89
9
��Li(3/2−

1 ) 2.33 1.031 2.14 −0.35 2.10 16.73 2.10 0.75 1.02
10
��Be(0+

1 ) 2.31 1.040 2.28 −1.10 3.83 17.57 3.49 0.89 1.03
11
��Be(3/2−

1 ) 2.30 1.080 2.30 −0.42 2.69 19.98 2.61 0.91 1.15
12
��Be(0+

1 ) 2.37 1.105 2.27 −0.19 1.18 20.32 1.68 0.96 1.07
12
��B(3+

1 ) 2.33 1.123 2.23 −0.16 1.09 21.53 1.59 0.93 1.04
13
��B(3/2−

1 ) 2.32 1.170 2.20 −0.13 0.75 23.26 1.38 0.90 0.99
14
��C(0+

1 ) 2.34 1.187 2.22 −0.13 0.64 23.46 1.32 0.90 0.98

DD

r� 〈kf 〉� RN δ��(RN ) δ��(EN ) B�� �B�� Vbond
�� �B

w/o cp
��

6
��He(0+

1 ) 2.83 0.920 1.46 − − 7.57 0.58 0.58 0.58
8
��Li(1+

1 ) 2.69 0.903 2.32 −0.24 0.23 11.21 0.36 0.23 0.18
9
��Li(3/2−

1 ) 2.64 0.926 2.37 −0.13 0.18 13.17 0.30 0.20 0.18
10
��Be(0+

1 ) 2.67 0.914 2.58 −0.79 0.79 13.64 0.77 0.19 0.31
11
��Be(3/2−

1 ) 2.60 0.967 2.57 −0.15 0.22 16.00 0.33 0.19 0.21
12
��Be(0+

1 ) 2.54 1.034 2.42 −0.03 0.03 18.04 0.20 0.19 0.18
12
��B(3+

1 ) 2.53 1.047 2.37 −0.02 0.01 18.13 0.20 0.19 0.19
13
��B(3/2−

1 ) 2.50 1.096 2.33 0.00 0.00 19.34 0.21 0.32 0.21
14
��C(0+

1 ) 2.49 1.121 2.35 0.00 0.00 20.41 0.16 0.33 0.16

negligible in the RN dependence. As seen in Table III, among
three calculations, the ESC08a(DI) [ESC08a(DD)] calculation
generally shows the strong (weak) RN dependence of the � po-
tential energy and the larger (smaller) size reduction than other
interactions. The size reduction, i.e., the core polarization is
moderate in the ESC08a(Hyb) case. More detailed discussion
of the size reduction is given later.

Let us focus on the �� binding in A
��Z. The calculated

values of the �-� binding energy �B�� show strong in-
teraction dependence. In general, values of �B�� obtained
with ESC08a(Hyb) are moderate among three calculations,
whereas those with ESC08a(DI) and ESC08a(DD) are larger
and smaller than the ESC08a(Hyb) result, respectively.

Moreover, each calculation shows rather strong system
(mass-number) dependence of �B��. In contrast, the values
obtained without the core polarization �B

w/o cp
�� (the �-�

binding energy calculated with frozen cores) show weak
system dependence. Furthermore, the �� bond energy Vbond

��

given in (33) is almost system independent except for 6
��He.

The main origin of the deviation of �B�� from Vbond
�� is

the core polarization energy by a �. As discussed previously,
a � particle in A−1

� Z reduces the core nuclear size to gain
its potential energy. The size reduction induces the core
polarization energy, i.e., the nuclear energy increase δ�(EN ).
Provided that the core polarization, namely, the nuclear density
ρN (r), is same in A−1

� Z and A
��Z, following relations are

obtained using (26):
B��(V�� = 0) = −[2E� + δ�(EN )] (46)

B�� = Vbond
�� + B��(V�� = 0)

= −δ�(EN ) − 2E� + Vbond
�� , (47)

�B�� = Vbond
�� + δ�(EN ). (48)
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2E� calculated with ESC08a(Hyb) are shown by dash-dotted, solid,
dashed, and dotted lines, respectively.

The essential point is that the single-� energy E� appears
twice but the core polarization energy δ�(EN ) does only once
in B��. As an example, the energy counting in 8

��Li is shown
in Fig. 3. At each RN (ε) for a fixed ε, the above relations are
exactly satisfied and the difference �B�� − Vbond

�� is simply
given by δ�(EN ). In other words, the deviation of �B�� from
Vbond

�� + δ�(EN ) comes from the additional core polarization
effect from the second � particle. Comparing the energies at
RN = 2.32 fm for 7

�Li and those at RN = 2.22 fm for 8
��Li,

the additional core polarization effect in �B�� is found to be
relatively minor.

In the top panel of Fig. 4, the calculated values of �B��,
Vbond

�� , and Vbond
�� + δ�(EN ) obtained with ESC08a(Hyb) are

compared. As seen in the figure, Vbond
�� is nearly system

independent. In A � 12 systems having minor core polar-
ization, �B�� is almost consistent with Vbond

�� and shows
system-independent behavior. However, in lighter-mass nuclei,
8
��Li, 9

��Li, 10
��Be, and 11

� Be, the departure of �B�� from
Vbond

�� is significantly large because of the remarkable core
polarization in the developed clustering. As is expected from
the above-mentioned discussion, the approximation �B�� ≈
Vbond

�� + δ�(EN ) is roughly satisfied indicating that the system
dependence of �B�� in the A � 10 region is mainly described
by δ�(EN ). In other words, the strong system dependence of
�B�� in the A � 10 region originates in the significant core
polarization energy because of developed clustering. The result
suggests that, in order to extract clean information of the �-�
binding from observations of binding energies of double-�
hypernuclei, heavier-mass nuclei are favored because they are
more free from the core polarization effect rather than very
light-mass ones.
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FIG. 4. Top: the values of �B��, Vbond
�� , and Vbond

�� + δ�(EN ) for
A
��Z calculated with ESC08a(Hyb). [δ�(EN ) is the nuclear energy
change δ�(EN ) in A−1

� Z.] For comparison, the theoretical �B̄�� (spin-
averaged values) of the OCM cluster model calculation in Ref. [11]
(OCM2002) and those in Ref. [44] (OCM2010) are also shown. Bottom:
�B��, �B

w/o cp
�� , and �B

w/o cp
�� + 2δ�(EN ) for A

��Z.

The system dependence of the �-� binding energies in
the A � 10 region has been discussed in detail with the OCM
cluster model calculation in Ref. [11]. In Fig. 4, the theoretical
�B̄�� (spin-averaged values) of the OCM cluster model
calculations are also shown for comparison. The A-dependent
behavior of �B�� in the present calculation is similar to the
result of Ref. [11]. The system-independent behavior of Vbond

��

in the present result is also consistent with their result. It should
be commented that, in the earlier work of OCM cluster model
calculations in Ref. [11], the �-� interaction was adjusted to
an old data of the 6

��He binding energy. It is slightly stronger
than that used in the later work in Ref. [44], which was adjusted
to the revised data.

In the case that the core polarization effect is small enough
and can be treated perturbatively, �B�� is given simply using
δ�(EN ) (core polarization energy) and �B

w/o cp
�� (the �-�

binding energy for the frozen core) as,

�B�� = �B
w/o cp
�� + 2δ�(EN ), (49)

as discussed in Ref. [61]. As shown in the bottom panel of
Fig. 4, the relation is not fulfilled in lighter-mass nuclei, in
which the perturbative evaluation is too simple to quantitatively
describe the core polarization in the remarkable clustering.
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TABLE IV. �-� binding energy �B�� (MeV) and �� bond
energy Vbond

�� (MeV) for excited states in A
��Z calculated with

ESC08a(Hyb), ESC08a(DI), and ESC08a(DD).

A
��Z(J π ) �B�� Vbond

�� �B�� Vbond
�� �B�� Vbond

��

Hyb Hyb DI DI DD DD

8
��Li(3+

1 ) 0.77 0.49 1.40 0.63 0.40 0.32
9
��Li(1/2−

1 ) 0.98 0.50 2.19 0.79 0.32 0.19
9
��Li(7/2−

1 ) 0.96 0.48 2.01 0.63 0.36 0.24
10
��Be(2+

1 ) 1.49 0.53 3.34 0.85 0.44 0.19
11
��Be(1/2−

1 ) 1.29 0.59 2.77 1.01 0.45 0.21
11
��Be(5/2−

1 ) 1.19 0.54 2.77 0.90 0.36 0.19
12
��Be(2+

1 ) 0.72 0.53 1.67 0.94 0.21 0.20
12
��Be(2+

2 ) 0.74 0.55 1.67 1.00 0.21 0.18
12
��B(1+

1 ) 0.84 0.57 1.88 1.03 0.23 0.18
13
��B(1/2−

1 ) 0.71 0.54 1.66 1.00 0.17 0.16
13
��B(3/2−

2 ) 0.79 0.56 1.80 1.03 0.19 0.16
13
��B(5/2−

1 ) 0.73 0.54 1.69 1.00 0.17 0.16
14
��C(2+

1 ) 0.65 0.50 1.54 0.98 0.12 0.12

Comparing with the ESC08a(Hyb) result, the ESC08a(DI)
calculation gives much larger �B�� values by a factor of ∼2
because of larger core polarization energy δ�(EN ), whereas
the ESC08a(DD) result shows generally small �B�� because
the core polarization is suppressed by the density dependence
of the �NG interactions.

As shown later, the calculated �B�� and Vbond
�� values

for excited states are similar to those for the ground state.
The present result of �B�� for 10

��Be(2+
1 ) obtained with

ESC08a(Hyb) is consistent with the experimental observa-
tion and in reasonable agreement with the theoretical value
of the OCM cluster model calculation [44]. However, the
ESC08a(DI) and ESC08a(DD) results much overestimate and
underestimate the observed �B��[10

��Be(2+
1 )], respectively.

Although the ESC08a(DI) and ESC08a(DD) calculations for
other double-� hypernuclei are not excluded by experimental
observations, the ESC08a(Hyb) result is likely to be favored.

It should be worth discussing k
inp
f dependence of �B��.

In the ESC08a(Hyb) calculation, I can fit the experimental
B� by adjusting the k

inp
f value. For instance, k

inp
f = 0.94,

0.87, and 1.01 (fm−1) give nice agreements as B�(5
�He) =

3.15 MeV, B�(9
�Be) = 6.79 MeV, and B�(13

� C) = 11.74 MeV,
respectively. These inputs give �B��(6

��He) = 0.62 MeV,
�B��(10

��Be) = 1.81 MeV, and �B��(14
��C) = 0.57 MeV,

indicating that fine tuning of k
inp
f adjusted to B� gives only

minor change in the �-� binding energy.

C. Properties of excited states of A
�� Z

I discuss properties of excited states in A
��Z such as the

�-� binding and energy spectra. The calculated values of
�B�� and Vbond

�� obtained by ESC08a(Hyb), ESC08a(DI), and
ESC08a(DD) are listed in Table IV. Trends of system and
interaction dependences for excited states in A

��Z are similar
to those for the ground states.
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FIG. 5. Energy spectra calculated with ESC08a(Hyb) and the
experimental spectra. The experimental data for A−2Z are taken from
Refs. [62,63], and those for A−1

� Z are from Refs. [2,64–67]. The
excitation energy of 8Be(2+) is calculated with the resonance energy
obtained by the resonating group method (RGM). The experimental
data for A−1

� Z are the spin-averaged values reduced from the excitation
energies of spin doublet states.
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FIG. 6. Energy spectra calculated with ESC08a(Hyb) and experimental spectra. The experimental data for A−2Z are taken from
Refs. [63,68,69], and those for A−1

� Z are from Refs. [2,67,70–74]. For the experimental spectra of 12
� B(1/2−

1 ) and 13
� C(2+), non-spin-averaged

values Ex(1−) and Ex(3/2+) are used, respectively. For 12
� B(3/2−

2 ), the experimental values of Ex(1−) in 12
� B and Ex(2−) of the mirror state in

12
� C are averaged by assuming the same Coulomb shift in 12

� B(3/2−
2 )-12

� C(3/2−
2 ) as that in 11B(3/2−

2 )-11C(3/2−
2 ).

The calculated energy spectra in A−2Z, A−1
� Z, and A

��Z are
shown in Figs. 5 and 6 compared with the observed energy
levels in A−2Z and A−1

� Z. Figure 7 shows the ESC08a(Hyb)
result of excitation energy shift δ��(Ex) in A

��Z compared
with δ�(Ex) in A−1

� Z. Similarly to the case ofA−1
� Z, the

excitation energy shift in A
��Z also correlates with the size

difference between the ground and excited states. The energy
shift δ��(Ex) in A

��Z is roughly twice of δ�(Ex) in A−1
� Z,

except for 10
��Be. The result indicates that the core polarization

effect is minor in the excitation energies and each � particle
almost independently contributes to the excitation energy shift
through the �N interactions.

D. Comparison of �B�� with experimental observations
of double-� hypernuclei

Experimental observations of double-� hypernuclei are
very limited and not enough to discuss details of system
dependence of the �-� binding energies. I here compare the
result with available data reported in experimental studies with
nuclear emulsion [43].

In the present calculation, the reproduction of B� is not pre-
cise enough to directly compare the result with observed B��
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FIG. 7. Excitation energy shift δ�(Ex) in A−1
� Z and δ��(Ex)

in A
��Z calculated with ESC08a(Hyb). The experimental values of

δ�(Ex) in A−1
� Z are also shown.

values. Alternatively, I compare the calculated �B�� with the
observed values. Note that the calculated B�(A−1

� Z) values
for I �= 0 correspond to the spin-averaged values because
the �-spin-dependent contributions are ignored in the present
calculation, and hence, one should compare the calculated
�B��(A��Z) with the observed �B

exp
��(A��Z) reduced using

the spin-averaged single-� binding energy �B̄
exp
� (A−1

� Z).
For 10

��Be, the Demachiyanagi event has been observed and
assigned to the excited state, 2+

1 . From the observed value
B

exp
�� = 11.90 ± 0.13 MeV, �B

exp
��(10

��Be; 2+
1 ) is estimated to

be 1.54 ± 0.15 MeV using E
exp
x (8Be; 2+

1 ) = 3.04 MeV for the
resonance state and the spin-averaged data E

exp
x (9

�Be; 2+
1 ) =

3.05 MeV. The present result, �B��(10
��Be; 2+

1 ) = 1.49 MeV,
of ESC08a(Hyb) agrees with the experimental value.
There is no experimental data for the ground state,
10
��Be(0+

1 ). 10
��Be has been theoretically investigated with

four-body calculations of the OCM 2α + �� cluster model
in Refs. [11,44]. The latest calculation in Ref. [44]
successfully reproduces B

exp
��(10

��Be; 2+
1 ) for the excited

state, and predicts �B��(10
��Be; 0+

1 ) = 1.32 MeV for the
ground state. The present result of �B��(10

��Be; 0+
1 ) =

1.74 MeV obtained with ESC08a(Hyb) is in reasonable
agreement with their prediction. However, the ESC08a(DI)
(ESC08a(DD)) calculation gives much larger (smaller)
�B�� values than those of ESC08a(Hyb) and seem to
contradict the observed value and theoretical predictions
in Ref. [44].

For 11
��Be and 12

��Be, a candidate event called the
HIDA event has been observed. For a possibility of
11
��Be, �B

exp
��(11

��Be) = 2.61 ± 1.34 MeV was estimated using
the non-spin-averaged value B

exp
� (10

� Be; Jπ = 1−
1 ) = 9.11 ±

0.22 MeV. The spin-doublet splitting between Jπ = 1−
1 and

Jπ = 2−
1 in 10

� Be is considered to be as small as < 100 keV
in the observation and 120 keV in the shell-model estimation
[46]. If the shell-model value is used for an evaluation of
the spin-doublet splitting, �B��(11

��Be) = 2.76 ± 1.34 MeV
is reduced. The five-body cluster model calculation with the
OCM in Ref. [44] predicted �B��(11

��Be) = 0.29 MeV, which
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TABLE V. Properties of size reduction in A−1
� Z and A

��Z calculated with ESC08a(Hyb): Nuclear size RN , size change δ�(RN ) and δ��(RN ) by
�s, size reduction factors Srmsr(

A−1
� Z) = RN (A−1

� Z)/RN (A−2Z) and Srmsr(
A
��Z) = RN (A��Z)/RN (A−2Z) defined by sizes, E2 transition strength,

and the reduction factors SE2(A−1
� Z) = [

B(E2,A−1
� Z)

B(E2,A−2Z)
]1/4 and SE2(A��Z) = [

B(E2,A��Z)

B(E2,A−2Z)
]1/4 reduced from B(E2). The units of sizes and E2 transition

strengths are fm and e2fm4, respectively.

core (A−2Z) J π RN

(
A−1
� Z

)
δ�(RN ) Srmsr

(
A−1
� Z

)
RN

(
A
��Z

)
δ��(RN ) Srmsr

(
A
��Z

)
6Li 1+

1 2.32 −0.24 0.91 2.22 −0.33 0.87
7Li 3/2−

1 2.34 −0.15 0.94 2.27 −0.23 0.91
8Be 0+

1 2.57 −0.80 0.76 2.44 −0.93 0.72
9Be 3/2−

1 2.54 −0.18 0.94 2.44 −0.27 0.90
10Be 0+

1 2.39 −0.06 0.97 2.35 −0.10 0.96
10B 3+

1 2.34 −0.05 0.98 2.31 −0.08 0.97
11B 3/2−

1 2.29 −0.04 0.98 2.26 −0.07 0.97
12C 0+

1 2.31 −0.04 0.98 2.28 −0.07 0.97

core (A−2Z) Iπ
i → Iπ

f B(E2,A−2Z) B(E2,A−2Z)exp B
(
E2,A−1

� Z
)

SE2

(
A−1
� Z

)
B

(
E2,A��Z

)
SE2

(
A
��Z

)
6Li 3+

1 → 1+
1 11.3 10.7(8) 5.0 0.82 3.7 0.76

7Li 1/2−
1 → 3/2−

1 19.6 15.7(1.0) 12.4 0.89 9.5 0.83
7Li 7/2−

1 → 3/2−
1 11.0 3.4 5.8 0.85 4.3 0.79

8Be 2+
1 → 0+

1 22.6 15.3
9Be 5/2−

1 → 3/2−
1 36.1 24.4(1.8) 25.0 0.91 20.2 0.87

10Be 2+
1 → 0+

1 11.7 10.2(1.0) 9.6 0.95 9.2 0.94
10B 1+

1 → 3+
1 5.2 4.15(2) 4.0 0.94 3.3 0.89

11B 5/2−
1 → 3/2−

1 9.5 8.9(3.2) 8.2 0.96 7.3 0.94
12C 2+

1 → 0+
1 7.3 7.6(4) 6.1 0.96 5.5 0.93

seems not consistent with the 11
��Be assignment of the data. The

result of ESC08a(Hyb) is�B��(11
��Be) = 1.11 MeV. An alter-

native interpretation of the HIDA event is a possibility of 12
��Be

production. For 12
��Be, �B�� can not be reduced because

B�(11
� Be) is not known. In the shell-model estimation with

�-� coupling and spin-dependent contributions, B̄�(11
� Be) =

10.02 ± 0.05 MeV is predicted from B̄
exp
� (11

� B) [46]. Using the
shell-model value, �B��(12

� Be) = 2.44 ± 1.21 MeV can be
evaluated from B

exp
��(12

� Be) = 22.48 ± 1.21 of the HIDA event.
The result of ESC08a(Hyb) is �B��(12

��Be) = 0.72 MeV.
Because of the large uncertainty of the experimental data, it
is difficult to discuss agreement with data nor conclude which
assignment is more likely.

For the 13
��B ground state, the experimental value �B

exp
�� =

0.6 ± 0.8 MeV has been reported [43]. The result �B�� =
0.60 MeV of ESC08a(Hyb) is likely to be consistent with the
data.

E. Size reduction in A−1
� Z and A

�� Z

In order to discuss the size reduction of core nuclei by �
particles in A−1

� Z and A
��Z, I analyze ratios of nuclear sizes

RN (A−1
� Z) and RN (A��Z) to the original size RN (A−2Z) defined

as

Srmsr
(
A−1
� Z

) ≡ RN

(
A−1
� Z

)
RN

(
A−2Z

) (50)

Srmsr
(
A
��Z

) ≡ RN

(
A
��Z

)
RN

(
A−2Z

) . (51)

I also calculate B(E2) values and the size reduction factor SE2

from the ratios of B(E2,A−1
� Z) and B(E2,A��Z) in A−1

� Z and

A
��Z to the original value B(E2,A−2Z) defined as

SE2
(
A−1
� Z

) ≡
[

B
(
E2,A−1

� Z
)

B(E2,A−2Z)

]1/4

, (52)

SE2
(
A
��Z

) ≡
[

B
(
E2,A��Z

)
B(E2,A−2Z)

]1/4

. (53)

In the calculation of B(E2,A−1
� Z), I simply calculate the E2

transition strength for Iπ
i → Iπ

f in the core nuclear part while
disregarding the spin coupling with �s.

The ESC08a(Hyb) result of nuclear sizes, E2 strengths,
and reduction factors are listed in Table V. The significant size
reduction by a � particle occurs in A−1

� Z with the core nuclei,
6Li, 7Li 8Be, and 9Be, because these nuclei have developed
cluster structures, which are fragile against the size reduction.
In these clustered nuclei, further size reduction occurs by the
second � particle in A

��Z. The nuclear size reduction is 5% ∼
25% in A−1

� Z and 10% ∼ 30% in A
��Z for these light nuclei.

However, in the case of heavier-mass core nuclei, 10Be, 10,11B,
and 12C, the size reduction is as small as 2% − 4% in A−1

� Z
and A

��Z.
The size reduction by a � particle in 7

�Li has been
investigated in experimental and theoretical studies. The
theoretical predictions of the OCM cluster model cal-
culations are SE2(7

�Li) = 0.83 in Ref. [4] and 0.75 in
Ref. [10], which agree with the experimental value S

exp
E2 =

0.81 ± 4 reduced from the B(E2) values in 6Li and 7
�Li

[64]. As discussed in the previous paper, SE2 = 0.74 and
SE2 = 0.86 for 7

�Li are obtained in the ESC08a(DI) and
ESC08a(DD) calculations, respectively. In the ESC08a(Hyb)
calculation, an intermediate value SE2 = 0.82 is obtained.
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The value is consistent with the experimental data and other
calculations.

V. SUMMARY

Low-lying 0s-orbit � states in p-shell double-� hyper-
nuclei were investigated with microscopic cluster models for
nuclear structure and a folding potential model for � particles.
Systematics of the energy spectra and �� binding were
discussed in relation with the nuclear core polarization. The
reductions of the nuclear sizes andE2 transitions by�particles
in A−1

� Z and A
��Z were also discussed.

The density-dependent effective G-matrix �-N interac-
tions with the ESC08a parametrization were used. As for
the kf parameter of the density dependence in the �NG
interactions, three choices of ESC08a(DI), ESC08a(Hyb),
and ESC08a(DD) were adopted. All three interactions are
system dependent through the kf values determined for each
system (A−1

� Z). The difference between three interactions is the
different treatments for the density dependence. ESC08a(DI)
is state-independent, but ESC08a(DD) and ESC08a(Hyb)
are state-dependent interactions reflecting density difference
in the ground and excited states. Namely, ESC08a(DI),
ESC08a(Hyb), and ESC08a(DD) have no, mild, and relatively
strong state dependence of the �NG interactions, respectively.
I tested these three versions and showed that the mild version of
the ESC08a(Hyb) consistently reproduces both the �-� bind-
ing energy in 10

��Be∗ and the excitation energy shifts in A−1
� Z

with A � 12. However, ESC08a(DI) and ESC08a(DD) over-
estimates and underestimates the observed data, respectively.
To determine the best treatment of the density dependence of
the �-N interactions for global description of �B�� in p-shell
double-� hypernuclei, further experimental data of �B�� for
various systems are required.

The �� binding in p-shell double-� nuclei was discussed
by focusing on the system dependence of �B�� (the �-�
binding energy) and Vbond

�� (the �� bond energy). In the

present result, �B�� shows significant system dependence,
whereas Vbond

�� is nearly independent from system (mass-
number independent). The system-independent behavior of
Vbond

�� is consistent with the results of OCM cluster model
calculations in Refs. [11,44] and supports their argument. The
system dependence of �B�� is dominantly described by the
core polarization energy δ�(EN ). In the light-mass nuclei,
8
��Li, 9

��Li, 10
��Be, and 11

� Be, significant deviation of �B��

from the global systematics is found because of remarkable
core polarization in the developed cluster structures. In A � 12
systems, the core polarization effect is minor, and �B��

approaches Vbond
�� with increase of the mass number and shows

only slight system dependence. In order to extract clean
information of the �� binding from observation of binding
energy of double-� hypernuclei, heavier-mass nuclei may be
favored because they are more free from the core polarization
effect rather than very light-mass ones.

In the present calculation, the system dependence of �B��

comes dominantly from the core polarization. Other effects
might also contribute to �B��, for example, higher partial
waves of �s, spin dependence of the �-N interactions, �-�
coupling, which are ignored in the present calculation. These
effects may give additional contributions to �B��. For precise
description of �B��, improved calculations by considering
these effects are requested.
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