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An improved formalism of the two-neutrino double-beta decay (2νββ-decay) rate is presented, which takes
into account the dependence of energy denominators on lepton energies via the Taylor expansion. Until now,
only the leading term in this expansion has been considered. The revised 2νββ-decay rate and differential
characteristics depend on additional phase-space factors weighted by the ratios of 2νββ-decay nuclear matrix
elements with different powers of the energy denominator. For nuclei of experimental interest all phase-space
factors are calculated by using exact Dirac wave functions with finite nuclear size and electron screening. For
isotopes with measured 2νββ-decay half-life the involved nuclear matrix elements are determined within the
quasiparticle random-phase approximation with partial isospin restoration. The importance of correction terms
to the 2νββ-decay rate due to Taylor expansion is established and the modification of shape of single and
summed electron energy distributions is discussed. It is found that the improved calculation of the 2νββ-decay
predicts slightly suppressed 2νββ-decay background to the neutrinoless double-beta decay signal. Furthermore,
an approach to determine the value of effective weak-coupling constant in nuclear medium geff

A is proposed.
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I. INTRODUCTION

The two-neutrino double beta decay (2νββ-decay) [1–3],

(A,Z) → (A,Z + 2) + 2e− + 2νe, (1)

a process fully consistent with the standard model of elec-
troweak interaction, is the rarest process measured so far in
nature. It has been observed in twelve even-even nuclei, in
which single-β decay is energetically forbidden or strongly
suppressed [4].

The 2νββ-decay is a source of background in experiments
looking for a signal of the neutrinoless double beta decay
(0νββ-decay) [1–3],

(A,Z) → (A,Z + 2) + 2e−, (2)

the observation of which would prove that neutrinos are
Majorana particles, i.e., their own antiparticles.

The inverse half-life of the 2νββ-decay is commonly
presented by the product of a phase-space factor G2ν , the
fourth power of the effective axial-vector coupling constant
geff

A and the 2νββ-decay nuclear matrix element (NME) M2ν
GT

as follows: (
T 2ν

1/2

)−1 = (
geff

A

)4∣∣M2ν
GT

∣∣2
G2ν . (3)

The matrix element M2ν
GT , which value can be determined from

the measured 2νββ half-life by making assumption about the
value of geff

A , plays an important role in understanding of the
nuclear structure of double-beta-decay isotopes [5]. Its value is
used to adjust the residual part of the nuclear Hamiltonian in the

calculation of the 0νββ-decay NME within the proton-neutron
quasiparticle random-phase approximation (pnQRPA) [6,7].
With to this procedure, the results are only weakly sensitive
to the size of the model space and the chosen type of NN
interaction. So far, 2νββ-decay NMEs have been calculated
without the closure approximation only within the interacting
shell model (ISM) [8] and the pnQRPA [9].

The measured single and summed electron differential
decay rates of the 2νββ-decay allow us to get valuable informa-
tion concerning many interesting physical issues. In particular,
from the shape of the summed electron distribution we get
constraints on the Majoron mode of the 0νββ-decay [10], the
bosonic neutrino component [11], and violation of Lorentz
invariance [12]. In addition, a reconstruction of individual
electron energies and angular correlations in the NEMO3
experiment allow us to obtain information about the single-
state dominance (SSD) and higher-state dominance (HSD)
hypotheses discussing the importance of various contributions
to the 2νββ-decay NME from transitions through intermediate
nuclear states [13,14].

Recently, significant progress has been achieved in double-
beta-decay experiments. The 2νββ-decay mode has been mea-
sured with high statistics in the GERDA (76Ge) [15], NEMO3
(100Mo) [16], CUORE (130Te) [17], EXO (136Xe) [18], and
KamlandZEN (136Xe) [19] experiments. As a consequence
there is a request for more accurate description of the 2νββ-
decay process and corresponding differential characteristics.
In this contribution we improve the theoretical description of
the 2νββ-decay process by taking into account the dependence
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on lepton energies from the energy denominators of nuclear
matrix elements, which has been neglected until now. In
addition, a possibility to determine the effective axial-vector
coupling constant geff

A is proposed.

II. IMPROVED FORMALISM FOR DESCRIPTION
OF DOUBLE-BETA DECAY

In what follows we present improved formulas for the 2νββ-
and 0νββ-decay half-lives in which the effect of the lepton
energies in the energy denominator of NMEs is taken into
account.

A. 2νββ-decay rate

The inverse half-life of the 2νββ-decay transition to the 0+
ground state of the final nucleus takes the form

[
T 2ν

1/2

]−1 = me

8π7 ln 2

(
Gβm2

e

)4(
geff

A

)4
I 2ν, (4)

where Gβ = GF cos θC (GF is Fermi constant and θC is the
Cabibbo angle), me is the mass of the electron, and

I 2ν = 1

m11
e

∫ Ei−Ef −me

me

F0(Zf ,Ee1 )pe1Ee1dEe1

×
∫ Ei−Ef −Ee1

me

F0(Zf ,Ee2 )pe2Ee2dEe2

×
∫ Ei−Ef −Ee1 −Ee2

0
E2

ν1
E2

ν2
A2νdEν1 . (5)

Here, Eν2 = Ei − Ef − Ee1 − Ee2 − Eν1 due to energy con-
servation. Ei , Ef , Eei

[Eei
= (p2

ei
+ m2

e)1/2], and Eνi
(i =

1,2) are the energies of initial and final nuclei, electrons,
and antineutrinos, respectively. F (Zf ,Eei

) denotes relativistic
Fermi function and Zf = Z + 2. A2ν consists of products of
the Gamow–Teller nuclear matrix elements (we neglect the
contribution from the double Fermi transitions to the 2νββ-
decay rate), which depends on lepton energies [5]:

A2ν =
[

1
4

∣∣MK
GT + ML

GT

∣∣2 + 1
12

∣∣MK
GT − ML

GT

∣∣2
]
,

where

M
K,L
GT = me

∑
n

Mn

En − (Ei + Ef )/2

[En − (Ei + Ef )/2]2 − ε2
K,L

, (6)

with

Mn = 〈0+
f |

∣∣∣∣∣
∑
m

τ−
m σm

∣∣∣∣∣|1+
n 〉〈1+

n |
∣∣∣∣∣
∑
m

τ−
m σm

∣∣∣∣∣|0+
i 〉. (7)

Here, |0+
i 〉, |0+

f 〉 are the 0+ ground states of the initial and final
even-even nuclei, respectively, and |1+

n 〉 are all possible states
of the intermediate nucleus with angular momentum and parity
Jπ = 1+ and energy En(1+). The lepton energies enter in the
factors

εK = (Ee2 + Eν2 − Ee1 − Eν1 )/2,

εL = (Ee1 + Eν2 − Ee2 − Eν1 )/2. (8)

The maximal value of |εK | and |εL| is half of the Q value
of the process [εK,L ∈ (−Q/2,Q/2)]. For 2νββ-decay with

energetically forbidden transitions to an intermediate nucleus
(En − Ei > −me) the quantity En − (Ei + Ef )/2 = Q/2 +
me + (En − Ei) is always larger than half of the Q value.

The calculation of the 2νββ-decay probability is usually
simplified by an approximation

M
K,L
GT � M2ν

GT = me

∑
n

Mn

En − (Ei + Ef )/2
, (9)

which allows a separate calculation of the phase-space factor
and nuclear matrix element.

The calculation of M2ν
GT requires us to evaluate explicitly

the matrix elements to and from the individual |1+
n 〉 states in

the intermediate odd-odd nucleus. In the IBM calculation of
this matrix element [20], the sum over virtual intermediate
nuclear states is completed by closure after replacing En −
(Ei + Ef )/2 by some average value Eav:

M2ν
GT � me

Eav

M2ν
GT −cl, (10)

with

M2ν
GT −cl = 〈0+

f |
∑
m,n

τ−
m τ−

n �σm · �σn|0+
i 〉. (11)

The validity of the closure approximation is as good as the
guess about the average energy to be used. This approximation
might be justified, e.g., in the case there is a dominance of
transition through a single state of the intermediate nucleus
[21].

We get a more accurate expression for the 2νββ-decay
rate by performing the Taylor expansion in matrix elements
M

K,L
GT over the ratio εK,L/[En − (Ei + Ef )/2]. By limiting

our consideration to the fourth power in ε we obtain

[
T 2ν

1/2

]−1 ≡ 	2ν

ln (2)
� 	2ν

0 + 	2ν
2 + 	2ν

4

ln (2)
, (12)

where partial contributions to the full 2νββ-decay width 	2ν

associated with the leading 	2ν
0 , next-to-leading 	2ν

2 , and next-
to-next-to-leading 	2ν

4 orders in the Taylor expansion are given
by

	2ν
0

ln (2)
= (

geff
A

)4M0G
2ν
0 ,

	2ν
2

ln (2)
= (

geff
A

)4M2G
2ν
2 ,

	2ν
4

ln (2)
= (

geff
A

)4(M4G
2ν
4 + M22G

2ν
22

)
. (13)

The phase-space factors are defined as

G2ν
N = c2ν

m11
e

∫ Ei−Ef −me

me

F0(Zf ,Ee1 )pe1Ee1dEe1

×
∫ Ei−Ef −Ee1

me

F0(Zf ,Ee2 )pe2Ee2dEe2

×
∫ Ei−Ef −Ee1 −Ee2

0
E2

ν1
E2

ν2
A2ν

N dEν1 (N = 0,2,4,22),

(14)
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with c2ν = me(Gβm2
e)4/(8π7 ln 2) and

A2ν
0 = 1, A2ν

2 = ε2
K + ε2

L

(2me)2 ,

A2ν
22 = ε2

Kε2
L

(2me)4 , A2ν
4 = ε4

K + ε4
L

(2me)4 . (15)

The products of nuclear matrix elements are given by

M0 = (
M2ν

GT −1

)2
, M2 = M2ν

GT −1M
2ν
GT −3,

M22 = 1
3

(
M2ν

GT −3

)2
,

M4 = 1
3

(
M2ν

GT −3

)2 + M2ν
GT −1M

2ν
GT −5, (16)

where nuclear matrix elements take the forms

M2ν
GT −1 ≡ M2ν

GT ,

M2ν
GT −3 =

∑
n

Mn

4m3
e

[En − (Ei + Ef )/2]3
,

M2ν
GT −5 =

∑
n

Mn

16m5
e

[En − (Ei + Ef )/2]5
. (17)

By introducing two ratios of nuclear matrix elements,

ξ 2ν
31 = M2ν

GT −3

M2ν
GT −1

, ξ 2ν
51 = M2ν

GT −5

M2ν
GT −1

, (18)

the 2νββ-decay half-life,

[
T

2νββ
1/2

]−1
= (

geff
A

)4∣∣M2ν
GT −1

∣∣2{
G2ν

0 + ξ 2ν
31 G2ν

2

+ 1
3

(
ξ 2ν

31

)2
G2ν

22 + [
1
3

(
ξ 2ν

31

)2 + ξ 2ν
51

]
G2ν

4

}
, (19)

is expressed with single NME (M2ν
GT −1) and two ratios of

nuclear matrix elements (ξ 2ν
31 and ξ 2ν

51 ), which have to be
calculated by means of nuclear structure theory, four phase-
space factors (G2ν

0 , G2ν
2 , G2ν

22, and G2ν
4 ), which can be computed

with a good accuracy, and the unknown parameter geff
A .

B. 0νββ-decay rate

The inverse lifetime of the 0νββ decay is commonly
presented as a product of the total lepton number violating
Majorana neutrino mass mββ , the phase-space factor G0ν ,
the nuclear matrix element M ′0ν(geff

A ), and the unquenched
axial-vector coupling constant gA (gA = 1.269) in the fourth
power as follows [3]:

(
T 0ν

1/2

)−1 =
∣∣∣∣mββ

me

∣∣∣∣
2

g4
A

∣∣∣M ′0ν(
geff

A

)∣∣∣2
G0ν, (20)

where

G0ν = G4
βm7

e

32π5R2 ln (2)

1

m5
e

∫ Ei−Ef −me

me

F0(Zf ,Ee1 )

×pe1Ee1F0(Zf ,Ee2 )pe2Ee2dEe1 , (21)

with Ee2 = Ei − Ef − Ee1 , pei
= (E2

ei
− m2

e)1/2 (i = 1,2).
The NME takes the form

M ′0ν(
geff

A

) = R

2π2g2
A

∑
n

∫
eip·(x−y)

× 〈0+
f |Jμ†

L (x)|n〉〈n|J †
Lμ(y)|0+

i 〉
p(p + En − Ei−Ef

2 )
d3pd3xd3y.

(22)

We note that the axial-vector geff
A (p2) and induced pseudoscalar

geff
P (p2) form factors of nuclear hadron currents Jμ† are

“renormalized in the nuclear medium.” The magnitude and
origin of this renormalization is the subject of the analysis of
many works, since it tends to increase the 0νββ-decay half-life
in comparison with the case in which this effect is absent
[22,23].

In the derivation of the 0νββ-decay rate in Eq. (20) the stan-
dard approximations were adopted: (i) A factorization of the
phase-space factor and nuclear matrix element was achieved
by an approximation in which electron wave functions were
replaced by their values at the nuclear radius R. (ii) The
dependence on lepton energies in energy denominators of the
0νββ-decay NME was neglected.

Here, we go beyond the approximation (ii). The 0νββ
nuclear matrix element contains a sum of two energy denom-
inators:

1

p0 + En − Ei + Ee1

+ 1

p0 + En − Ei + Ee2

, (23)

where p = (p0, p) is the four-momentum transferred by the
Majorana neutrino [common for all neutrino mass eigenstates,
since the neutrino masses mi can be safely neglected in
p0 = ( �p 2 + m2

i )1/2 ≈ | �p | ∼ 100 MeV]. By taking advantage
of the energy conservation Ei = Ef + Ee1 + Ee2 (the effect of
nuclear recoil is disregarded) the approximation was adopted
as follows:

2
(
p0 + En − Ei+Ef

2

)
(
p0 + En − Ei+Ef

2

)2
− ε2

� 2

p0 + En − Ei+Ef

2

, (24)

with ε = (Ee1 − Ee2 )/2. A more accurate expression for the
0νββ-decay half-life is achieved by taking into account next
term in the Taylor expansion over the quantity ε2/[p0 + En −
(Ei + Ef )/2]2 in Eq. (24). We end up with

(
T 0ν

1/2

)−1 =
∣∣∣∣mββ

me

∣∣∣∣
2

g4
A

∣∣∣M ′0ν
1

∣∣∣2(
G0ν

0 + 2ξ 0ν
31 G0ν

2

)
, (25)

where

G0ν
N = G4

βm7
e

32π5R2 ln (2)

1

m5
e

∫ Ei−Ef −me

me

A0ν
N F0(Zf ,Ee1 )

×pe1Ee1F0(Zf ,Ee2 )pe2Ee2dEe1 , (26)

with

A0ν
0 = 1, A0ν

2 = ε2/(2me)2. (27)
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TABLE I. Phase-space factors G2ν
0,2,22,4 (G0ν

0,2) entering the 2νββ-decay (0νββ-decay) rate in Eq. (12) [Eq. (25)]. The radial wave functions
g−1 and f+1 of an electron, which constitute the Fermi function in Eq. (31), were calculated in two approximation schemes: (A) The standard
approximation of Doi et al. [2]. (B) The exact Dirac wave functions with finite nuclear size and electron screening [25].

2νββ-decay 0νββ-decay

Nucleus Elec. w. f. G2ν
0 [yr−1] G2ν

2 [yr−1] G2ν
4 [yr−1] G2ν

22 [yr−1] G0ν
0 [yr−1] G0ν

2 [yr−1]

48Ca A 1.608 × 10−17 1.372 × 10−17 1.484 × 10−17 3.297 × 10−18 2.641 × 10−14 2.284 × 10−14

B 1.534 × 10−17 1.307 × 10−17 7.064 × 10−18 3.140 × 10−18 2.489 × 10−14 2.150 × 10−14

76Ge A 5.278 × 10−20 1.113 × 10−20 2.924 × 10−21 6.898 × 10−22 2.613 × 10−15 6.269 × 10−16

B 4.816 × 10−20 1.015 × 10−20 1.332 × 10−21 6.284 × 10−22 2.370 × 10−15 5.670 × 10−16

82Se A 1.763 × 10−18 7.805 × 10−19 4.333 × 10−19 9.912 × 10−20 1.147 × 10−14 5.449 × 10−15

B 1.591 × 10−18 7.037 × 10−19 1.952 × 10−19 8.931 × 10−20 1.020 × 10−14 4.830 × 10−15

96Zr A 7.777 × 10−18 4.292 × 10−18 2.974 × 10−18 6.774 × 10−19 2.423 × 10−14 1.422 × 10−14

B 6.796 × 10−18 3.745 × 10−18 1.296 × 10−18 5.907 × 10−19 2.067 × 10−14 1.209 × 10−14

100Mo A 3.818 × 10−18 1.747 × 10−18 1.001 × 10−18 2.301 × 10−19 1.890 × 10−14 9.357 × 10−15

B 3.303 × 10−18 1.509 × 10−18 4.320 × 10−19 1.986 × 10−19 1.599 × 10−14 7.886 × 10−15

110Pd A 1.629 × 10−19 3.405 × 10−20 8.832 × 10−21 2.115 × 10−21 5.783 × 10−15 1.408 × 10−15

B 1.379 × 10−19 2.881 × 10−20 3.735 × 10−21 1.789 × 10−21 4.833 × 10−15 1.172 × 10−15

116Cd A 3.314 × 10−18 1.318 × 10−18 6.546 × 10−19 1.522 × 10−19 2.064 × 10−14 9.061 × 10−15

B 2.763 × 10−18 1.097 × 10−18 2.722 × 10−19 1.266 × 10−19 1.677 × 10−14 7.334 × 10−15

124Sn A 6.717 × 10−19 1.794 × 10−19 5.954 × 10−20 1.414 × 10−20 1.124 × 10−14 3.442 × 10−15

B 5.534 × 10−19 1.476 × 10−19 2.448 × 10−20 1.163 × 10−20 9.077 × 10−15 2.768 × 10−15

128Te A 3.314 × 10−22 1.314 × 10−23 6.409 × 10−25 1.688 × 10−25 7.263 × 10−16 3.875 × 10−17

B 2.699 × 10−22 1.070 × 10−23 2.609 × 10−25 1.374 × 10−25 5.904 × 10−16 3.145 × 10−17

130Te A 1.885 × 10−18 6.112 × 10−19 2.467 × 10−19 5.812 × 10−20 1.807 × 10−14 6.619 × 10−15

B 1.530 × 10−18 4.953 × 10−19 9.985 × 10−20 4.707 × 10−20 1.428 × 10−14 5.212 × 10−15

134Xe A 2.924 × 10−22 1.066 × 10−23 4.773 × 10−25 1.264 × 10−25 7.613 × 10−16 3.761 × 10−17

B 2.347 × 10−22 8.553 × 10−24 1.915 × 10−25 1.014 × 10−25 6.100 × 10−16 3.008 × 10−17

136Xe A 1.793 × 10−18 5.516 × 10−19 2.110 × 10−19 4.994 × 10−20 1.881 × 10−14 6.590 × 10−15

B 1.433 × 10−18 4.404 × 10−19 8.417 × 10−20 3.986 × 10−20 1.464 × 10−14 5.107 × 10−15

150Nd A 4.817 × 10−17 2.731 × 10−17 1.937 × 10−17 4.479 × 10−18 8.827 × 10−14 5.462 × 10−14

B 3.642 × 10−17 2.061 × 10−17 7.295 × 10−18 3.380 × 10−18 6.339 × 10−14 3.903 × 10−14

The additional term in the 0νββ-decay rate in Eq. (25) is
weighted by the ratio ξ 0ν

31 ,

ξ 0ν
31 = M ′0ν

3

(
geff

A

)
M ′0ν

1

(
geff

A

) , (28)

of two NMEs defined as follows:

M ′0ν
1

(
geff

A

) ≡ M ′0ν(
geff

A

)

M ′0ν
3

(
geff

A

) = R

2π2g2
A

(2me)2
∑

n

∫
eip·(x−y)

×〈0+
f |Jμ†

L (x)|n〉〈n|J †
Lμ(y)|0+

i 〉
p(p + En − Ei−Ef

2 )3

× d3pd3xd3y. (29)

III. CALCULATIONS AND RESULTS

A. Phase-space factors and quasiparticle random-phase
approximation nuclear matrix elements

The 2νββ- and 0νββ-phase-space factors presented in the
previous section are associated with the s1/2 electron wave
function distorted by the Coulomb field:

�(s1/2)(Ee,r) =
(

g−1(Ee,r)χs

f+1(Ee,r)(σ · p̂e)χs

)
, (30)

where Ee and pe are the electron energy and momentum,
respectively. p̂e = pe/| pe| and r = |r| is the radial coordinate
of the position of the electron. The values of the radial functions
g−1(Ee,r) and f+1(Ee,r) at nuclear radius r = R constitute the
Fermi function as follows:

F0(Z,Ee) = g2
−1(Ee,R) + f 2

+1(Ee,R). (31)

Two different approximation schemes for the calculation of
radial wave functions g−1(Ee,R) and f+1(Ee,R) are consid-
ered.

1. The approximation scheme A.

The relativistic electron wave function in a uniform charge
distribution in nucleus is considered. The lowest terms in the
power expansion in r/R are taken into account. The Fermi
function takes the form

F0 =
[

	(3)

	(1)	(1 + 2γ0)

]2

(2peR)2(γ0−1)eπy |	(γ0 + iy)|2,

(32)

where γ0 = [1 − (α)2]1/2 and y = αZ ε
pe

.

2. The approximation scheme B.

The exact Dirac wave functions with finite nuclear size and
electron screening are used [25]. The effect of screening of
atomic electrons is taken into account by the Thomas–Fermi
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TABLE II. The 2νββ- and 0νββ-decay nuclear matrix elements and ratios of nuclear matrix elements [see Eqs. (18) and (28)] calculated
within the pnQRPA with partial isospin restoration [24]. P 2ν

0 , P 2ν
2 , and P 2ν

4 are the leading first-, second-, and third-order contributions to the
2νββ-decay rate in the Taylor expansion. T

2ν−exp
1/2 is the averaged value of the 2νββ-decay half-life [4] considered in the calculation of the

2νββ-decay NMEs. geff
A is the effective axial-vector coupling constant.

2νββ-decay 0νββ-decay

Nucleus geff
A M2ν

GT −1 M2ν
GT −3 M2ν

GT −5 ξ 2ν
31 ξ 2ν

51 P 2ν
0 P 2ν

2 P 2ν
4 T

2ν−exp
1/2 [yr] M ′0ν

1 ξ 0ν
31

48Ca 0.800 0.0553 0.0105 0.00163 0.1891 0.0295 0.8456 0.1362 0.0182 4.4 × 1019 0.4066 6.463 × 10−4

1.000 0.0352 0.00723 0.00105 0.2055 0.0298 0.8346 0.1461 0.0193 0.4543 6.732 × 10−4

1.269 0.0214 0.00539 0.00075 0.2514 0.0351 0.8036 0.1722 0.0242 0.5288 6.814 × 10−4

76Ge 0.800 0.175 0.0214 0.00445 0.1220 0.0254 0.9741 0.0250 0.0009 1.65 × 1021 3.1822 2.629 × 10−4

1.000 0.111 0.0133 0.00263 0.1204 0.0237 0.9745 0.0247 0.0008 3.8830 2.484 × 10−4

1.269 0.689 0.00716 0.00716 0.1040 0.0170 0.9780 0.0214 0.0006 5.1527 2.282 × 10−4

82Se 0.800 0.124 0.0216 0.00645 0.1745 0.0521 0.9213 0.0711 0.0076 0.92 × 1020 2.7859 2.243 × 10−4

1.000 0.0795 0.0129 0.00355 0.1620 0.0446 0.9271 0.0664 0.0065 3.4668 2.146 × 10−4

1.269 0.0498 0.00643 0.00136 0.1290 0.0272 0.9421 0.0538 0.0041 4.6511 2.020 × 10−4

96Zr 0.800 0.1146 0.0348 0.00885 0.3036 0.0773 0.8399 0.1405 0.0195 2.3 × 1019 1.9299 6.872 × 10−4

1.000 0.0718 0.273 0.00697 0.3800 0.0971 0.8056 0.1687 0.0257 2.2449 8.552 × 10−4

1.269 0.0431 0.0220 0.00564 0.5101 0.1309 0.7518 0.2113 0.0369 2.8163 1.009 × 10−3

100Mo 0.800 0.292 0.123 0.0453 0.4230 0.1553 0.8163 0.1578 0.0259 7.1 × 1018 3.4765 8.297 × 10−4

1.000 0.184 0.0876 0.0322 0.4752 0.1745 0.7972 0.1731 0.0297 4.1737 8.997 × 10−4

1.269 0.112 0.0633 0.0233 0.5646 0.2075 0.7661 0.1976 0.0363 5.3824 8.908 × 10−4

116Cd 0.800 0.1653 0.0478 0.0142 0.2890 0.0857 0.8872 0.1018 0.0110 2.87 × 1019 2.5488 4.930 × 10−4

1.000 0.1053 0.0327 0.00972 0.3102 0.0923 0.8796 0.1083 0.0121 3.0859 5.240 × 10−4

1.269 0.0651 0.0219 0.00654 0.3370 0.1000 0.8702 0.1164 0.0134 4.0381 4.998 × 10−4

130Te 0.800 0.0466 0.00873 0.00239 0.1873 0.0512 0.9389 0.0569 0.0042 6.9 × 1020 2.4122 4.830 × 10−4

1.000 0.0298 0.00577 0.00144 0.1937 0.0482 0.9371 0.0588 0.0041 2.9617 2.629 × 10−4

1.269 0.0185 0.00373 0.00078 0.2015 0.0420 0.9352 0.0610 0.0038 3.9026 1.488 × 10−4

136Xe 0.800 0.0268 0.00706 0.00232 0.2637 0.0866 0.9190 0.0745 0.0065 2.19 × 1021 1.3425 1.608 × 10−4

1.000 0.0170 0.00526 0.00169 0.3098 0.0995 0.9059 0.0863 0.0078 1.6525 1.561 × 10−4

1.269 0.0104 0.00403 0.00126 0.3867 0.1207 0.8848 0.1051 0.0101 2.1841 1.509 × 10−4

approximation. The numerical calculation is accomplished by
the subroutine package RADIAL [26].

In Table I the 2νββ- and 0νββ-decay phase-space factors
calculated within approximations A and B are presented
for 13 isotopes of experimental interest. We see that all
phase-space factors calculated with exact relativistic electron
wave functions (the approximation scheme B) are smaller in
comparison with those obtained in approximation scheme A.
We note that, in both approximation schemes, the factorization
of phase-space factors and nuclear matrix elements is achieved
by considering radial electron wave functions at the nuclear
radius and the difference between them is due to a different
treatment of the Coulomb interaction.

In what follows, entries B from Table I will be used in the
calculation of the 2νββ differential characteristics and decay
rates.

B. Nuclear matrix elements

The 2νββ- and 0νββ-decay nuclear matrix elements
[see Eqs. (17) and (29)] are calculated within the proton-
neutron quasiparticle random-phase approximation (QRPA)
with isospin restoration [24]. They were obtained by consider-
ing the same model spaces and mean fields as in Ref. [24]. The
G-matrix elements of a realistic Argonne V18 nucleon-nucleon

potential are considered. By using the improved theoretical
description of the 2νββ-decay rate in Eqs. (12)–(17), the
isoscalar neutron-proton interaction of the nuclear Hamilto-
nian is adjusted to reproduce correctly the average 2νββ-decay
half-live [4] for each nucleus and each geff

A .
In Table II the calculated 2νββ-deacy NMEs are presented

for geff
A = 0.8, 1.0, and 1.269 (unquenched value). We see that,

for all isotopes, the inequality M2ν
GT −1 > M2ν

GT −3 > M2ν
GT −5 is

valid. The ratios of nuclear matrix elements ξ 2ν
31 , ξ 2ν

51 , and ξ 0ν

depend only weakly on geff
A . The largest values ξ 2ν

31 = 0.56 and
ξ 2ν

51 = 0.21 are in the case 100Mo.
The ratio ξ 2ν

31 of nuclear matrix elements M2ν
GT −3 and M2ν

GT −1
[see Eq. (18)] is an important quantity due to a different
structure of both nuclear matrix elements. This fact is displayed
in Fig. 1 (Fig. 2), where a running sum of matrix elements
M2ν

GT −1 and M2ν
GT −3 is plotted as a function of the excitation

energy Eex counted from the ground state of the intermediate
nucleus for the 2νββ-decay of 76Ge, 82Se, 96Zr, and 100Mo
(48Ca, 116Cd, 130Te, and 136Xe). The results were obtained
within the QRPA with partial isospin restoration [24]. By
glancing at these figures we see that matrix element M2ν

GT −3
is determined by transitions through the lightest states of the
intermediate nucleus unlike M2ν

GT −1, which depends also on the
transitions through higher-lying states even from the region of
Gamow–Teller resonance and a mutual cancellation among
different contributions.

034315-5



FEDOR ŠIMKOVIC et al. PHYSICAL REVIEW C 97, 034315 (2018)

0.0

1.0

2.0

3.0

4.0

5.0

M
2ν G

T-
I

I=1
I=3

0 5 10 15 20
Eex [MeV]

0.0

1.0

2.0

3.0

4.0

M
2ν G

T-
I

0 5 10 15 20 25
Eex [MeV]

48Ca 116Cd

136Xe130Te

FIG. 1. Running sum of the 2νββ-decay NMEs M2ν
GT −1 and

M2ν
GT −3 [see Eq. (17)] for 48Ca, 116Cd, 130Te, and 136Xe (normalized

to unity) as a function of the excitation energy Eex counted from the
ground state of intermediate nucleus. Calculations were performed
within the proton-neutron QRPA with isospin restoration [24]. Results
are obtained with Argonne V18 potential and for unquenched axial-
vector coupling constant gA = 1.269.

The convergence of the Taylor expansion of the 2νββ-decay
rate [see Eqs. (12)–(17)] depends on values of the original
M2ν

GT −1 and the new M2ν
GT −3,5 nuclear matrix elements. Recall

that the powers of εK,L are included in the generalized phase-
space factors G2ν

0,2,22,4 and the denominators are included in
the new nuclear matrix elements M2ν

GT −3,5. The leading first-
P 2ν

0 , second- P 2ν
2 , and third-order P 2ν

4 term contributions to
the 2νββ-decay rate in the Taylor expansion normalized to the
full decay rate are defined as

P 2ν
I = 	2ν

I

	2ν
, (33)

with I = 0, 2, and 4. Their values calculated with help of the
2νββ-decay NMEs evaluated within the QRPA with partial
restoration of isospin symmetry [24] are shown in Table II. We
notice a good convergence of contributions to the 2νββ-decay
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FIG. 2. The same as Fig. 1 but for the 2νββ-decay of 76Ge, 82Se,
96Zr, and 100Mo.

rate due to the Taylor expansion. The size of these corrections
depends on a given isotope. The largest value of about 25% is
found by using 100Mo.

In Table II the calculated 0νββ-decay nuclear matrix el-
ements are presented as well. They were obtained under the
common assumption that the same geff

A governs both modes of
double-beta decay [3,24]. The modification of the 2νββ-decay
rate due to the Taylor expansion has only negligible effect on
the calculation of the 0νββ-decay NMEs M ′0ν

1,3 in the context
of adjusting the particle-particle interaction strength.

By glancing at Table II we see that the value of ξ 0ν
31 is

very small; namely, significantly smaller as ξ 2ν
31 , as the average

momentum of neutrino entering the energy denominator in
Eq. (24) is about two orders of magnitude larger when com-
pared with the maximal value ε, which is Q/2. Clearly, in the
case of 0νββ-decay the convergence of the Taylor expansion
of the decay rate is fast and the standard approach given by the
leading term in the Taylor expansion is well justified.

C. Energy distributions of emitted electrons

The NEMO3 experiment, which ran for seven years before
it stopped taking data in 2010, measured the 2νββ-decay
of 100Mo with very high statistics of about 1 million events
[16]. Due to high statistics of about tens of thousands of
events, the currently running EXO [18], KamLAND-Zen [19]
(136Xe), and GERDA (76Ge) [15] experiments allow precise
determination of the 2νββ-decay energy distributions as well.
A similar statistics is expected to be achieved also by the
CUORE (130Te) experiment, which has started taking data
recently. New perspectives for analysis of 2νββ-decay differ-
ential characteristics will be opened by the next generation
of double-beta decay experiments like SuperNEMO, nEXO,
and Legend, which will contain significantly larger amount of
double-beta decay radioactive source [3,27].

By considering the leading first- and second-order terms
in the Taylor expansion for the single and summed electron
differential decay rate normalized to the full decay rate we get

1

	2ν

d	2ν

dTe

� 1

	2ν

(
d	2ν

0

dTe

+ d	2ν
2

dTe

)
(34)

= 1(
G2ν

0 + ξ 2ν
31 G2ν

2

)
(

dG0

dTe

+ ξ 2ν
31

dG2

dTe

)
,

1

	2ν

d	2ν

dTee

� 1

	2ν

(
d	2ν

0

dTee

+ d	2ν
2

dTee

)
(35)

= 1(
G2ν

0 + ξ 2ν
31 G2ν

2

)
(

dG0

dTee

+ ξ 2ν
31

dG2

dTee

)
,

where

dG2ν
N

dTe1

= c2ν

m11
e

F0(Zf ,Ee1 )pe1Ee1

×
∫ Q−Te1

0
F0(Zf ,Ee2 )pe2Ee2IN (Te1 ,Te2 )dTe2 ,

dG2ν
N

dTee

= c2ν

m11
e

Tee

Q

∫ Q

0
F0(Zf ,Ee1 )pe1Ee1

×F0(Zf ,Ee2 )pe2Ee2IN (Te1 ,Te2 )dV (36)
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FIG. 3. Partial differential decay rates (1/	0)d	0/dTe,
(1/	2)d	2/dTe, and (1/	4)d	4/dTe normalized to corresponding
partial decay rate vs kinetic energy of a single electron Te (in units
of Q value) (left panels) and the partial differential decay rates
(1/	0)d	0/dTee, (1/	2)d	2/dTee, and (1/	4)d	4/dTee normalized
to corresponding partial decay rate vs the sum of kinetic energies
of emitted electrons Tee (in units of Q value) (right panels) for
the 2νββ-decay of 82Se and 100Mo to the ground state of the final
nucleus. The energy distributions are normalized to unity to see how
their shapes differ.

(N = 0, 2), with

IN (Te1 ,Te2 ) =
∫ Q−Te1 −Te2

0
E2

ν1
E2

ν2
A2ν

N dEν1 , (37)

and

Tee = Te1 + Te2 , V = Q
Te2

Te1 + Te2

. (38)

Here, Eν2 = Ei − Ef − Ee1 − Ee1 − Eν1 is determined by
energy conservation. Tee is a sum of kinetic energies of both
electrons (Te1 and Te2 ), and Te represents the kinetic energy of
any of two emitted electrons.

The single and summed electron differential decay rates
normalized to the full width in Eqs. (34) and (35) contain one
unknown parameter; namely, the ratio ξ 2ν

31 . We note that partial
contributions to the full differential decay rate in Eq. (34)
[Eq. (35)] exhibit different behavior as a function of Te (Tee).
This fact is displayed in Fig. 3, where single and summed
electron partial differential decay rates normalized to the
partial width (i.e., all energy distributions are normalized to
unity and do not depend on any NME) are presented for the
2νββ-decay of 82Se and 100Mo. The difference in distributions
corresponding to the leading- and first-order terms in the
Taylor expansion is apparent especially in the case of single-
electron energy distribution. Due to this phenomenon there is
a possibility to deduce ratio ξ 2ν

31 from the measured energy
distributions.

For the pnQRPA value of the parameter ξ 2ν
31 (see Table II)

the full differential decay rate (1/	2ν)d	2ν/dTe and partial
differential decay rates (1/	2ν)d	2ν

0 /dTe, (1/	2ν)d	2ν
2 /dTe
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FIG. 4. The full differential decay rate (1/	)d	/dTe and partial
differential decay rates (1/	)d	0/dTe and (1/	)d	2/dTe normal-
ized by the full decay rate vs the kinetic energy of a single electron
Te (in units of Q value) for the 2νββ-decay of 48Ca, 116Cd, 130Te, and
136Xe.

normalized by the full decay rate are presented as function
of the kinetic energy of a single electron Te [sum of kinetic
energy of both electrons Tee for the eight 2νββ-decay isotopes
in Figs. 4 and 5 (6 and 7)]. We see that the largest contribution
from the additional term due to Taylor expansion to the
full differential decay rate is found by the 2νββ-decay of
100Mo, 96Zr, 48Ca, 116Cd, and 136Xe. These isotopes are good
candidates to measure ξ 2ν

31 in double-beta-decay experiments.
By assuming ξ 2ν

13 = 0.0, 0.4, and 0.8. the single-electron
energy distribution and summed electron energy spectrum
normalized by the full decay rate for 2νββ-decay of 82Se
and 100Mo are presented in Fig. 8. We see that corresponding
curves are close to each other and that high statistics of the
2νββ-decay experiment is needed to deduce information about
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FIG. 5. The same as Fig. 4 but for the 2νββ-decay of 76Ge, 82Se,
96Zr, and 100Mo.
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FIG. 6. The full differential decay rate (1/	)d	/dTe and partial
differential decay rates (1/	)d	0/dTe and (1/	)d	2/dTe normal-
ized by the full decay rate vs the sum of kinetic energies of emitted
electrons Tee (in units of Q value) for the 2νββ-decay of 48Ca, 116Cd,
130Te, and 136Xe.

the ratio of nuclear matrix elements ξ 2ν
13 from the data. The

study performed within the NEMO3 experiment [28] with
respect to the SSD versus the HSD hypothesis [13,14] has
shown that it is feasible. It might be that the high statistics
achieved by the GERDA [15], CUORE [17], EXO (136Xe), and
KamLAND-Zen (136Xe) experiments is sufficient to conclude
about the value of ξ 2ν

13 for the measured 2νββ-decay transition.
For some of future double-beta decay experiments the

2νββ-decay is considered as important background for the
signal of the 0νββ-decay, e.g., in the case of the SuperNEMO
experiment. In Fig. 9 the endpoint of the spectrum of the
differential decay rate normalized by the full decay rate
(1/	)d	/dT as a function of the sum of kinetic energy of
emitted electrons T = (Ee1 + Ee2 − 2me) is presented for the

0.0

0.5

1.0

1.5

2.0

2.5

(1
/Γ

) d
Γ N

/d
(T

ee
/Q

)

0.0 0.2 0.4 0.6 0.8
Tee/Q

0.0

0.5

1.0

1.5

2.0

(1
/Γ

) d
Γ N

/d
(T

ee
/Q

) full
N=0
N=2

0.0 0.2 0.4 0.6 0.8 1.0
Tee/Q

76Ge

96Zr 100Mo

82Se

FIG. 7. The same as Fig. 6 for the 2νββ-decay of 76Ge, 82Se, 96Zr,
and 100Mo.
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FIG. 8. Differential decay rates (1/	)d	/d(Te/Q) (upper pan-
els) and (1/	)d	/d(Tee/Q) (lower panels) normalized by the full
decay rate 	 vs kinetic energy of a single electron T = Te and the
sum of kinetic energies of emitted electrons T = Tee (in units of Q

value), respectively. Results are presented for the 2νββ-decay of 82Se
(left panels) and 100Mo (right panels) by assuming ξ 2ν

13 = 0.0, 0.40,
and 0.8.

2νββ-decay of 82Se and 100Mo. The results were obtained
with the common and improved theoretical expressions for
the 2νββ-decay rate. We see that, by considering the revised
formula, the number of the 2νββ-decay events close to the end
of spectra is slightly suppressed in comparison with previous
expectations, which is apparent especially in the case of the
2νββ-decay of 100Mo.
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FIG. 9. The endpoint of the spectrum of the differential decay rate
normalized to the full decay rate (1/	)d	/dT vs the sum of kinetic
energy of emitted electrons T = (Ee1 + Ee2 − 2me) for the 2νββ-
decay of 82Se and 100Mo. The calculation with the standard (leading
term in Taylor expansion) and improved (present work) theoretical
description of the 2νββ-decay rate. The considered ratios ξ 2ν

31 and ξ 2ν
51

are those calculated within the QRPA with isospin restoration (see
Table II).
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TABLE III. The nuclear matrix elements M2ν
GT−1 and M2ν

GT−3 calculated from measured GT ± strengths in charge-exchange reaction (ChER)
under the assumption of a equal phases for each individual contribution [29–32] and their product with squared effective axial-vector coupling
constant geff

A , which is determined within the single-state dominance hypothesis (SSD hypothesis) [13,14].

SSD ChER

Nucleus (geff
A )2M2ν

GT−1 (geff
A )2M2ν

GT−3 (geff
A )2M2ν

GT−5 ξ 2ν
31 ξ 2ν

51 M2ν
GT−1 M2ν

GT−3 M2ν
GT−5 ξ 2ν

31 ξ 2ν
51

48Ca 4.25 × 10−2 2.31 × 10−3 1.26 × 10−4 0.054 0.003
76Ge 8.61 × 10−2 2.20 × 10−2 5.61 × 10−3 0.255 0.065
100Mo 1.71 × 10−1 6.29 × 10−2 2.31 × 10−2 0.368 0.135
116Cd 1.53 × 10−1 4.57 × 10−2 1.36 × 10−2 0.298 0.089 5.88 × 10−2 1.75 × 10−2 5.22 × 10−3 0.298 0.089
128Te 1.60 × 10−2 5.87 × 10−3 2.16 × 10−3 0.367 0.135

D. Evaluation of effective axial-vector coupling constant

The calculation of M2ν
GT −3 can be more reliable than that of

M2ν
GT −1 because M2ν

GT −3 is saturated by contributions through
the lightest states of the intermediate nucleus. Thus, we rewrite
the 2νββ-decay rate as follows:

[
T

2νββ
1/2

]−1
� (

geff
A

)4∣∣M2ν
GT −3

∣∣2 1∣∣ξ 2ν
31

∣∣2

(
G2ν

0 + ξ 2ν
31 G2ν

2

)
, (39)

i.e., without explicit dependence on the matrix element M2ν
GT −1.

For the sake of simplicity it is assumed that values of involved
nuclear matrix elements are real. From Eq. (39) it follows
that, if ξ 2ν

31 is deduced from the measured 2νββ-decay energy
distribution and M2ν

GT −3 is reliably calculated by nuclear
structure theory, the value of the effective axial-vector coupling
constant geff

A can be determined from the measured 2νββ-decay
half-life.

Let us discuss the value of ξ 2ν
31 within different approaches

before it will be measured by the double-beta-decay exper-
iment. Within the SSD hypothesis [13,14,21] it is supposed
that the 2νββ-decay NME is governed by the two virtual
transitions: the first one going from the initial 0+ ground state
to the 1+ ground state of the intermediate nucleus and second
one from this 1+ state to the final 0+ ground state. Within this
assumption we obtain

(
geff

A

)2
M2ν

GT −k � mk
e

(
geff

A

)2
M1(

E1 − (Ei−Ef )
2

)k

= 3D√
f tβf tEC

mk
e(

E1 − (Ei−Ef )
2

)k
, (40)

with k = 1 and 3. Here, D = [3π3 ln (2)]/(G2
βm5

e) is the beta-
decay constant. The main advantage of the SSD approach is
that the product (geff

A )2M1 can be evaluated from the measured
log f t values associated with the electron capture and single-
β-decay of the ground state of intermediate nucleus with Jπ =
1+. There are three double-beta systems with A = 100, 116,
and 128, which allow it. The corresponding SSD predictions
for (geff

A )2M2ν
GT −k (k = 1 and 3) and ξ 2ν

31 are listed in Table III.
The Gamow–Teller strengths to excited states of interme-

diate nucleus from initial and final ground states entering
the double-beta-decay transition are measured with help of
charge-exchange reactions (ChER) [29–32], i.e., via strong

interaction due to spin-isospin Majorana force. For 48Ca, 76Ge,
and 116Cd the calculated matrix elements M2ν

GT −1, M2ν
GT −3, and

ξ 2ν
31 under the assumption of equal phases for each individual

contribution are presented in Table III. The CheR allow us to
measure with a reasonable resolution of about tens of keV the
Gamow–Teller strengths only up to about 5 MeV, i.e., below
the region of the Gamow–Teller resonance, which might be
considered as a drawback. We note that some questions arise
also about the normalization of the Gamow–Teller strengths
by the experiment.

The pnQRPA, SSD, and CheR predictions for parameter
ξ 2ν

31 for various isotopes are displayed in Fig. 10. We see that a
best agreement among different results occurs by 116Cd. In the
case of 48Ca and 76Ge there is a significant difference between
the pnQRPA and CheR results. We note that, within the HSD
hypothesis [13,14], the value of ξ 2ν

31 is equal to zero.
By considering the SSD values for ξ 2ν

31 (see Table III) we
obtain

geff
A (100Mo) = 0.251√

M2ν
GT −3

, geff
A (116Cd) = 0.214√

M2ν
GT −3

. (41)
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ξ2ν 31

QRPA (gA=1.27)
QRPA (gA=1.00)
QRPA (gA=0.80)
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CheR

48Ca 76Ge 82Se 96Zr 100Mo 116Cd 130Te 136Xe

FIG. 10. The ratio ξ 2ν
31 of nuclear matrix elements M2ν

GT −3 and
M2ν

GT −1 calculated within the pnQRPA with partial restoration of
isospin symmetry [24] by assuming geff

A = 0.80, 1.00, 1nd 1.269,
the single-state dominance hypothesis (SSD) [13,14], and by using
the Gamow–Teller strengths measured in charge-exchange reactions
(CheR) [29–32] under the assumption of equal phases of all contri-
butions to the matrix element.
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FIG. 11. The effective axial-vector coupling constant geff
A as

function of the matrix element M2ν
GT −3 for 2νββ-decay of 100Mo and

116Cd. The SSD values are assumed for ξ 2ν
31 (see Table III).

The corresponding curves are plotted in Fig. 11. It is apparent
that, if the value of M2ν

GT −3 were calculated reliably, e.g.,
within the interacting shell model, which is known to describe
very well the lowest excited states of parent and daughter
nuclei participating in a double-beta-decay process, one could
conclude about the value of the effective axial-vector coupling
constant geff

A for a given nuclear system. However, we note
that the correct value of geff

A can be determined only if ξ 2ν
31

deduced from the measured 2νββ-decay energy distribution is
considered. In that case the constant on the right-hand side of
Eq. (41) might be different.

IV. SUMMARY AND CONCLUSIONS

In summary, improved formulas for the 2νββ- and 0νββ-
decay half-lives are presented by taking advantage of the Taylor
expansion over the parameters containing the lepton energies
of energy denominators. The additional terms due to Taylor
expansion in the decay rate have been found to be significant
in the case of the 2νββ-decay and practically of no importance
in the case of the 0νββ-decay.

Up to first order in the Taylor expansion the 2νββ-decay rate
includes two nuclear matrix elements M2ν

GT −1 and M2ν
GT −3 with

energy denominators in the first and third power, respectively.
It was shown that the ratio of these matrix elements ξ 2ν

31 =
M2ν

GT −3/M
2ν
GT −1 might be determined experimentally from the

shape of the single and sum electron energy distributions, if
the statistics of a considered double-beta-decay experiment
allows it. A study of the SSD and HSD hypotheses in the case
of the 2νββ-decay of 100Mo by the NEMO3 experiment has
manifested that it is feasible [28].

A measured value of ξ 2ν
31 is expected to constitute important

information about virtual transitions through the states of
intermediate nucleus. The calculation of the running sum
of M2ν

GT −1 and M2ν
GT −3 performed within the pnQRPA with

partial restoration of isospin symmetry showed that M2ν
GT −3

is determined by contributions through the low-lying states
of the intermediate nucleus unlike M2ν

GT −1, which is affected
significantly also by contributions through transitions over
intermediate nucleus from the region of the Gamow–Teller
resonance.

Furthermore, the 2νββ-decay rate was expressed with
M2ν

GT −3 and ξ 2ν
31 , i.e., without the explicit dependence on the

commonly studied nuclear matrix element M2ν
GT −1. It was

suggested that one can get information about the axial-vector
coupling constant in nuclear medium geff

A once ξ 2ν
31 is deduced

from the measured electron energy distribution and M2ν
GT −3 is

calculated reliably, e.g., within the ISM.
It goes without saying that an improved formula for the

2νββ-decay half-life will play an important role in the accurate
analysis of the Majoron mode of the 0νββ-decay and in the
study of Lorentz-invariance violation, bosonic admixture of
neutrinos, and other effects.
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