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Background: A fairly rich amount of experimental spectroscopic data have disclosed intriguing properties of
the nuclei in the region of neutron rich oxygen isotopes up to the neutron dripline. They, therefore, represent a
unique laboratory for studying the evolution of nuclear structure away from the stability line.
Purpose: We intend to give an exhaustive microscopic description of low and high energy spectra, dipole response,
weak, and electromagnetic properties of the even 22O and the odd 23O and 23F.
Method: An equation of motion phonon method generates an orthonormal basis of correlated n-phonon states
(n = 0,1,2, . . . ) built of constituent Tamm-Dancoff phonons. This basis is adopted to solve the full eigenvalue
equations in even nuclei and to construct an orthonormal particle-core basis for the eigenvalue problem in odd
nuclei. No approximations are involved and the Pauli principle is taken into full account. The method is adopted
to perform self-consistent, parameter free, calculations using an optimized chiral nucleon-nucleon interaction in
a space encompassing up to two-phonon basis states.
Results: The computed spectra in 22O and 23O and the dipole cross section in 22O are in overall agreement with
the experimental data. The calculation describes poorly the spectrum of 23F.
Conclusions: The two-phonon configurations play a crucial role in the description of spectra and transitions.
The large discrepancies concerning the spectra of 23F are ultimately traced back to the large separation between
the Hartree-Fock levels belonging to different major shells. We suggest that a more compact single particle
spectrum is needed and can be generated by a new chiral potential which includes explicitly the contribution of
the three-body forces.
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I. INTRODUCTION

The region of the neutron rich oxygen isotopes has been
explored extensively in several experimental and theoretical
investigations. Intriguing properties have emerged from these
studies.

Several experiments have produced a fairly rich amount of
spectroscopic data which have provided evidence for the new
magic numbers N = 14 and N = 16 and traced out the neutron
dripline [1–15].

Radioactive beam experiments [16–18] have detected in the
queue of the giant dipole resonance (GDR) bunches of peaks in
20O and 22O, exhausting 8%–10% of the energy weighted sum
rule, in qualitative agreement with a shell model calculation
[19], and tentatively associated to the pygmy dipole resonance
(PDR). An analysis and a fairly complete list of references can
be found in [20].

Several theoretical investigations have been devoted to this
region. A shell model calculation used an empirical interaction
and included the continuum [21], another stressed the impor-
tant role of the three-body potential [22] in enforcing the N =
16 shell closure. Three-body forces were employed also within
a self-consistent Green’s function theory approach [23,24] and
in a many-body perturbation theory calculation [25].

Several studies adopted the coupled cluster (CC) method.
They were focused on bulk properties and low-energy levels

[26–32]. Most of the CC numerical applications used NN +
3N chiral forces derived from an effective field theory. One,
in particular, studied the effect of the continuum and the three-
body forces [31]. The CC method was also combined with a
Lorentz integral transform to study the electric dipole response
in this region [33].

Here, an exhaustive study of the spectroscopic properties of
the even 22O and the adjoining odd 23O and 23F is carried out
within the equation of motion phonon method (EMPM).

The method was first formulated for even-even nuclei in
the particle-hole (p-h) scheme [34–36] and, then, in terms of
Hartree-Fock-Bogoliubov (HFB) quasiparticles (qp) [37]. It
derives a set of equations yielding a basis of orthonormal mul-
tiphonon states, built of phonons obtained in Tamm-Dancoff
approximation (TDA), and, then, solves the full eigenvalue
problem in the space spanned by such a basis.

It was implemented numerically to describe the dipole
response in heavy, neutron rich, nuclei [38–40], to study the
full spectrum as well as the dipole response of the neutron rich
20O [37], and to investigate the ground state correlations [41].

More recently, the method was extended to odd nuclei
[42–44]. An orthonormal basis of states composed of a valence
particle coupled to n-phonon states (n = 0,1,2, . . . ), describ-
ing the excitations of a doubly magic core, is produced by a set
of equations of motion and, then, employed for the solution of
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the full eigenvalue problem. The method was applied to 17O
and 17F and produced the complete level and decay schemes
as well as the PDR and GDR cross sections.

In odd nuclei, the EMPM can be considered a generalization
of the particle-vibration coupling (PVC) model [45] widely
exploited in studies using the random-phase-approximation
(RPA) and its extensions [46–55]. Many investigations ex-
ploited energy density functionals (EDF) derived from Skyrme
forces [56–62] or based on the theory of finite Fermi systems
[63], or deduced from relativistic meson-nucleon Lagrangians
[64–67].

With respect to the mentioned approaches, the EMPM takes
the Pauli principle into full account and does not rely on any
approximation. It has, in fact, the same accuracy of shell model.

In our numerical implementation, we generate a HF basis
from the chiral NN potential NNLOopt determined in Ref. [68]
by fixing the coupling constants at next-to-next leading order
through a new optimization method in the analysis of the phase
shifts, which minimizes the effects of the three-nucleon force.

This potential, while producing too much attraction in
medium and heavy mass nuclei, reproduces well the experi-
mental binding energies of light nuclei and oxygen isotopes.
Thus, we will not add any corrective term as we did for heavy
nuclei [40].

We then solve the eigenvalue problem for 22O, considered as
doubly magic, in a space encompassing up two-phonon states.
The same n-phonon (n = 0,1,2) states are then coupled to the
odd particle of the adjacent odd nuclei 23O and 23F to generate
an orthonormal basis and solve the full eigenvalue problem.
Complete level schemes as well as transition strengths and
cross sections are produced and compared with the available
experimental data. An analysis of the phonon composition of
the states is performed in order to gain insights into the nature
of levels and resonances.

II. EMPM FOR EVEN-EVEN NUCLEI

A. The eigenvalue problem

The method has been described in a previous paper [36]. Its
primary goal is to generate an orthonormal basis of n-phonon
correlated states

|αn〉 =
∑
λαn−1

C
αn

λαn−1
|(λ × αn−1)αn〉 (1)

of energy Eαn
, where

|(λ × αn−1)αn〉 = {O†
λ × |αn−1〉}αn (2)

and

O
†
λ =

∑
ph

cλ
ph(a†

p × bh)λ (3)

is the p-h TDA phonon operator of energy Eλ acting on the
(n − 1)-phonon basis states |αn−1〉, assumed to be known.
The operators a

†
p = a

†
xpjpmp

and bh = (−)jh+mhaxhjh−mh
create

a particle and a hole of energies εp and −εh, respectively.
As illustrated in Ref. [36], we start with the equations of

motion

〈αn‖[H,O
†
λ]‖αn−1〉 = (Eαn

− Eαn−1 )Xαn

λαn−1
, (4)

where

X
αn

λαn−1
= 〈αn‖O†

λ‖αn−1〉
= [αn]1/2

∑
λ′α′

n−1

Dαn

λαn−1λ′α′
n−1

C
αn

λ′α′
n−1

. (5)

Here, [αn] = 2Jαn
+ 1, a notation which will be used through-

out the paper, and

Dαn

λαn−1λ′α′
n−1

= 〈(λ × αn−1)β |(λ′ × α′
n−1)β〉 (6)

is the overlap or metric matrix which reintroduces the exchange
terms among different phonons and, therefore, re-establishes
the Pauli principle.

After expanding the commutator, expressing the p-h oper-
ators in terms of the phonon operators O

†
λ upon inversion of

Eq. (3), and exploiting Eq. (5), we obtain∑
λ1α1λ′α′

(
(Eλ + Eα − Eαn

)δλλ1δαα1 + Vαn

λαλ1α1

)

×Dαn

λ1α1λ′α′C
αn

λ′α′ = 0, (7)

whereα,α1, andα′ label (n − 1)-phonon states. The expression
of the D matrix and of the phonon-phonon potential Vαn

λαλ1α1

can be found in [36].
This is a generalized eigenvalue equation in the over-

complete basis |(λ × αn−1)αn〉. Following the procedure out-
lined in Refs. [34,35], based on the Cholesky decomposition
method, it is possible to extract a basis of linearly indepen-
dent states spanning the physical subspace and obtain a non
singular eigenvalue equation whose solution yields a basis of
orthonormal correlated n-phonon states of the form (1).

Since recursive formulas hold for all quantities, it is possible
to solve the eigenvalue equations iteratively starting from n =
1 (TDA phonons) and, thereby, generate a set of orthonormal
multiphonon states {|0〉,|α1〉(= |λ〉), . . . |αn〉 . . . }.

The basis {|αn〉} is adopted to solve the eigenvalue equations
in the multiphonon space∑

n′βn′

[(Eαn
− Eν)δnn′δαnβn′ + Vαnβn′ ]C(ν)

βn′ = 0, (8)

where the potential couples only n-phonon states belonging to
subspaces differing by one or two phonons (n′ = n ± 1 and
n′ = n ± 2).

The solution of Eq. (8) yields the final eigenvalues Eν and
the corresponding eigenfunctions

|�ν〉 =
∑
nαn

C(ν)
αn

|αn〉. (9)

The entire procedure leading to these eigenstates does not rely
on any approximation. Our approach, in fact, is equivalent to
a large scale shell model in a space spanned by many p-h
configurations.

Our method, however, offers an important advantage with
respect to shell model. Since each n-phonon basis state spans
the full np-nh subspace, it is possible to take into account the
effect of high energy many p-h configurations even in a severely
truncated multiphonon space. In shell model, instead, any cut
of the basis implies the exclusion of some configurations.
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|�ν〉 can be written as a linear combination of products of
n TDA phonons (n = 0,1,2,3, . . . ). If the sum is truncated at
n = 2, it assumes the form of a SRPA wave function [69–72]
in its phonon version [73].

Thus, in a space encompassing up to two phonons, our
formalism can be considered as the TDA counterpart of SRPA
which incorporates effectively the ground state correlations.
The underlying quasiboson approximation, however, produces
uncontrollable uncertainties which induce instabilities [71,72].

B. Transition amplitudes

In the coupled scheme, the multipole operator has the
structure

M(λμ) = 1

[λ]1/2

∑
rs

〈r‖Mλ‖s〉(a†
r × bs)

λ
μ. (10)

The reduced transition amplitudes are given by

〈�ν ′ ‖M(λ)‖�ν〉 =
∑

(nαn)(n′βn′ )

C(ν)
αn

C
(ν ′)
βn′ 〈βn′ ‖M(λ)‖αn〉.

(11)

The matrix elements of M(λ) between multiphonon states are

〈βn′ ‖M(λ)‖αn〉

= [λ]−1/2

[
δn′nM(n)

αβ (λ) +
∑

x

M(0 → xλ)
(
δn′(n+1)X

βn+1
(xλ)αn

+(−)v
′−vδn′(n−1)X

αn

(xλ)βn−1

)]
, (12)

where

M(0 → xλ) = 〈xλ‖M(λ)‖0〉
=

∑
ph

c
(xλ)
ph 〈p‖M(λ)‖h〉 (13)

is the TDA transition amplitude and

M(n)
αβ (λ) =

∑
rs

〈r‖M(λ)‖s〉ρ(n)
αβ ([r × s]λ) (14)

the scattering term between states with the same number of
phonons (n′ = n). Here,

ρ
(n)
αβ ([r × s]σ ) = 〈βn‖(a†

r × bs)
σ‖αn〉 (15)

is the density matrix and (rs) run over identical particles (rs) =
(pp′) and holes (rs) = (hh′).

III. EIGENVALUE PROBLEM IN THE ODD NUCLEI

A. Generation of the basis

For a particle external to a doubly magic core we intend to
generate the basis states of spin v

|νn〉 =
∑
pαn

Cνn
pαn

|(p × αn)v〉 =
∑
pαn

Cνn
pαn

(a†
p × |αn〉)v, (16)

where |αn〉 are the n-phonon core states (1).

In close analogy with the even nuclei we start with

〈αn‖[bp,H ]p‖νn〉 = (Eν − Eαn
)X(νn)

pαn
, (17)

where

X(νn)
pαn

= 〈αn‖bp‖νn〉. (18)

We will omit the subscript n when acting within a n-phonon
subspace.

After expanding the commutator and inserting in X the
expression (16) of |ν〉, we obtain∑

p′α′p1α1

{
(εp + Eα − Eν)δpp′δαα′ + V (v)

pαp′α′
}

×D(v)
p′α′p1α1

Cν
p1α1

= 0. (19)

The particle-phonon interaction is

V (v)
pαp′α′ =

∑
σ

[σ ]1/2W (ασvp′; α′p)Fσ
pαp′α′ (20)

and

Fσ
pαp′α′ =

∑
tq

F σ
pp′tqρα′α([t × q]σ ). (21)

The overlap matrix is given by

D(v)
pαp′α′ = 〈(p′ × α′)v|(p × α)v〉

= δpp′δαα′ − (−)p−v+α
∑

σ

[σ ]1/2W (p′pα′α; σv)

× ραα′ ([p × p′]σ ). (22)

It reintroduces, through the density matrix ρ, the exchange
terms among the odd particle and the n-phonon states and,
therefore, re-establishes the Pauli principle.

Following the same Cholesky procedure adopted for the
even-even nuclei we extract in each n subspace a basis of
linearly independent states from the over-complete set |(p ×
αn)v〉 and obtain a nonsingular eigenvalue equation. Its iterative
solution generates the particle-core correlated states |νn〉 (16)
of energies Eνn

for n = 1,2, . . . which, together with the single
particle states |ν0〉, form an orthonormal basis.

B. Eigenvalue equations in the multiphonon basis

The basis {|ν0〉,|ν1〉, . . . |νn〉 . . . } is employed to derive the
eigenvalue equations∑

ν ′
n′

{
(Eνn

− Eν)δνnν
′
n′ + V (v)

νnν
′
n′

}C(ν)
ν ′
n′

= 0, (23)

where V (v)
νnν

′
n′

is nonvanishing only for n′ �= n. We have for n′ =
n + 1

V (v)
νnν

′
n+1

= [v]−1/2
∑

(pαn)(p′βn+1)

C(νn)
pαn

V (v)
pαnp′βn+1

X
(ν ′

n+1)
p′βn+1

, (24)

where

V (v)
pαnp′βn+1

= δpp′ 〈αn|H |βn+1〉
+

∑
λ

[λ]1/2W (βn+1λvp; αnp
′)Fλ

pp′X
(βn+1)
λαn

(25)
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and

Fλ
pp′ =

∑
p1h1

Fλ
pp′p1h1

cλ
p1h1

. (26)

For n′ = n + 2 we get

V (v)
νnν

′
n+2

= [v]−1/2
∑

pαβn+2

C(νn)
pαn

〈αn|H |βn+2〉X(ν ′
n+2)

pβn+2
. (27)

Equation (23) yields all the eigenvalues allowed by the space
dimensions. The eigenfunctions have the structure

|�ν〉 =
∑
νn

Cν
νn

|νn〉, (28)

where |νn〉 is given by Eq. (16).

C. Transition amplitudes

Using the wave functions (28), we get the transition ampli-
tudes

〈�ν ′ ‖M(λ)‖�ν〉 =
∑
νnν

′
n′

Cν
νn
Cν ′

ν ′
n′
〈ν ′

n′ ‖M(λ)‖νn〉, (29)

where

〈ν ′
n′ ‖M(λ)‖νn〉 = [v]1/2

∑
pαn

Cνn
pαn

M(νnν
′
n′ )

pαn
(λ). (30)

For n′ = n we have

M(νnν
′
n)

pαn
(λ)

=
∑
p′

W (λp′vαn; pv′)〈p′‖Mλ‖p〉X(ν ′
n)

p′αn

+
∑
α′

n

W (pαnv
′λp; vα′

n)〈α′
n‖M(λ)‖αn〉X(ν ′

n)
pα′

n
. (31)

For n′ = n + 1 we get

M(νnν
′
n+1)

pαn
(λ) =

∑
βn+1

W (λαnv
′p; βn+1v)X

(ν ′
n+1)

pβn+1

×
∑

x

M(0 → [xλ])X(βn+1)
(xλ)αn

. (32)

The transition amplitude for n′ = n − 1 can be deduced from
the one for n′ = n + 1.

IV. NUMERICAL PROCEDURE AND RESULTS

A Hamiltonian composed of an intrinsic kinetic operator
Tint plus the NN potential VNN = NNLOopt was employed to
generate the HF basis in a space encompassing all harmonic
oscillator shells up to Nmax = 15. A fraction (up to N = 7)
of the HF states so obtained was used to determine the TDA
phonon basis. We checked that the inclusion of higher energy
shells does not affect the results.

We used all TDA phonons having dominant 0 − h̄ω and
1 − h̄ω components to generate the two-phonon basis.

The Jπ = 1− TDA phonons are free of spurious admixtures
induced by the center of mass (c.m.) motion. These spurious
components have been removed by a method discussed in

FIG. 1. Theoretical versus experimental [15] spectra of 22O. The
dashed line denotes a level of unknown spin and parity. The dotted
line indicates the neutron decay threshold.

Ref. [74] based on the Gramm-Schmidt orthogonalization of
the p-h basis to the c.m. state.

A. Spectra and phonon composition of the wave functions in 22O

The theoretical spectra are compared to one another and
with experiments [15] in Fig. 1. The inclusion of the two-
phonon states reduces substantially the discrepancies with the
experiments. We obtain a one to one correspondence between
the computed low-lying positive parity levels and the bound
experimental levels. The negative parity states are estimated
to be above the neutron decay threshold consistently with
experiments. In the continuum region the density of computed
levels is very high.

As shown in Table I, the ground state is weakly correlated.
The mixing of the HF vacuum with the two-phonon compo-
nents is very modest. In fact, the two-phonon piece contributes
with a small weight and is composed of a large number of
two-phonon states of different multipolarity all having small
amplitudes.

The excited states have an almost pure n-phonon character.
The lowest 2+

1 and 3+
1 are practically pure TDA phonons

and composed almost entirely of neutron p-h excitations,
which account respectively for ∼99.5% and ∼ 99.8%. More
specifically, they are determined by a single p-h excitation

034311-4



MICROSCOPIC MULTIPHONON APPROACH TO … PHYSICAL REVIEW C 97, 034311 (2018)

TABLE I. Phonon composition of the low-lying states in 22O.

J π Eν |C0|2 |C1|2 |C2|2

0+
1 0.000 0.9142 0.0004 0.0854

2+
1 3.352 0.0000 0.9305 0.0695

3+
1 4.395 0.0000 0.9945 0.0055

0+
2 5.377 0.0223 0.0011 0.9766

2+
2 5.467 0.0000 0.0619 0.9381

4+
1 5.863 0.0000 0.0003 0.9997

2−
1 7.492 0.0000 0.9681 0.0319

3−
1 7.512 0.0000 0.9726 0.0274

4+
2 7.656 0.0000 0.9912 0.0088

2−
2 7.693 0.0000 0.9603 0.0397

1−
1 7.694 0.0000 0.9569 0.0431

4−
1 7.695 0.0000 0.9699 0.0301

3−
2 7.728 0.0000 0.9743 0.0257

4−
2 7.959 0.0000 0.0254 0.9746

3+
2 8.016 0.0000 0.9956 0.0044

2+
3 8.206 0.0000 0.9660 0.0340

3−
3 8.354 0.0000 0.0006 0.9994

1+
1 8.518 0.0000 0.9605 0.0395

2−
3 8.666 0.0000 0.0070 0.9930

3−
4 8.740 0.0000 0.0094 0.9906

3−
5 8.786 0.0000 0.0133 0.9867

1−
2 8.790 0.0000 0.0090 0.9910

1−
3 9.033 0.0000 0.0103 0.9897

2−
4 9.075 0.0000 0.0144 0.9856

1−
4 9.121 0.0000 0.0008 0.9992

within the (sd) shell (Table II). The large energy gap, especially
for protons (∼28 MeV), inhibits the presence of (1p)(0p)−1

configurations in these low-lying positive parity phonons.
The low-lying negative parity states have also a one-phonon

nature and arise mainly from exciting a neutron from 0d5/2 to
1p1/2 or 1p3/2.

TABLE II. Energy ωλ and p-h composition of selected TDA
phonons of multipolarity λ in 22O.

λ ωλ (p(h)−1)π Cπ (p(h)−1)ν Cν

2+
1 1.982 1s1/2(0d5/2)−1 −0.9974

2+
2 6.752 0d3/2(0d5/2)−1 0.9894

3+
1 2.816 1s1/2(0d5/2)−1 −0.9974

1−
1 6.257 0d5/2(0p3/2)−1 0.1118 1p3/2(0d5/2)−1 0.9539

0f7/2(0d5/2)−1 −0.1489
2−

1 5.995 1p3/2(0d5/2)−1 −0.8324
1p1/2(0d5/2)−1 0.5541

2−
2 6.213 1p3/2(0d5/2)−1 0.5529

1p1/2(0d5/2)−1 0.8311
3−

1 5.968 1p3/2(0d5/2)−1 −0.9435
1p1/2(0d5/2)−1 0.3304

3−
2 6.180 1p3/2(0d5/2)−1 0.5529

1p1/2(0d5/2)−1 0.9433

TABLE III. Weights Wλλ′ (%) of the two-phonon components of
selected states in 22O.

J π Eν λ λ′ Wλλ′

0+
1 0.000 1+

1 1+
1 0.46

2+
1 2+

1 1.67
2+

1 2+
2 0.84

2+
2 2+

2 0.55
3+

1 3+
1 0.87

3+
1 3+

2 0.47
3+

2 3+
2 0.75

4+
1 4+

1 0.57
1−

1 1−
1 0.19

0+
2 5.377 2+

1 2+
1 63.98

3+
1 3+

1 32.13
2+

2 5.466 2+
1 2+

1 49.10
2+

1 3+
1 19.50

3+
1 3+

1 24.05
4+

1 5.863 2+
1 2+

1 20.55
2+

1 3+
1 71.81

3+
1 3+

1 6.85

Above the 2+
1 and 3+

1 levels, we observe a {0+
2 ,2+

2 ,4+
1 } two-

phonon triplet. In order to get a better insight into the structure
of these two-phonon states, we have evaluated the weight
of their constituent phonons. Such a weight is obtained by
expanding in terms of n-phonon components the normalization
condition

〈�ν |�ν〉 =
∑
λλ′

Wν
λλ′ = 1 (33)

obtaining

Wν
λλ′ =

∑
α

1

[α]1/2
|Cν

α|2Xα
λλ′ . (34)

As shown in Table III, all the states of the {0+
2 ,2+

2 ,4+
1 } two-

phonon triplet are composed of the low-lying 2+
1 and 3+

1
phonons and therefore have a neutron nature. Their alike
phonon composition suggests that this triplet has in part an
harmonic character.

To further check this conjecture we have computed the
isoscalar (IS) Eλ = E2 reduced transition strengths

BIS(Eλ; Jπ
i → Jπ

f ) = 1

[Ji]
|〈Jπ

f ‖MIS(Eλ)‖Jπ
i 〉|2 (35)

using the isoscalar component of the λ = 2 operator

M(Eλμ) = 1

2
e
∑

i

(1 − τ3(i))rλ
i Yλμ(r̂i), (36)

where τ3 = 1 for neutrons and τ3 = −1 for protons.
We obtain BIS(E2; 2+

1 → 0+
1 ) = 4.07 (e2fm4) and

BIS(E2; Jπ
i → 2+

1 ) = 6.40, 4.22, 8.01 (e2fm4) for Jπ
i =

0+
2 , 2+

2 , 4+
1 , respectively. These values support with good

approximation the harmonic character of the spectrum.
It is to be stressed, however, that the harmonicity predicted

by the calculation seems to be supported only partially by
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the experimental spectrum. While, in fact, the theoretical
{0+

2 ,2+
2 ,4+

1 } levels are close together, the measured 0+
2 level

is quite lower than the other two members of the triplet.
The harmonic character of the computed spectrum can be

easily understood. Since the low-lying TDA phonons arise
almost entirely from the excitations of the 0d5/2 neutrons, the
mixing among the different low-energy n-phonon subspaces is
ruled only by the weak neutron-neutron interaction between a
small fraction of neutrons.

Only if neutron and, especially, proton p-h excitations
involving 0p shells occur with appreciable amplitudes in these
low-lying phonons, the full NN interaction would be active
among all nucleons and would be effective in the coupling
among different n-phonon components thereby enhancing
their mixing.

A larger proton p-h content of the low-lying phonons would
enhance the ground state E2 strength which now is estimated
to be too small. Using, in fact, the full E2 operator (29),
which has bare charges, we obtain B(E2; 0+

1 → 2+
1 ) = 0.28

e2fm4. This value, which comes entirely from protons, is two
orders of magnitude smaller than the experimental strength
Bexp(E2; 0+

1 → 2+
1 ) = 21 ± 8 e2fm4 determined via inelastic

scattering of a 22O radioactive beam from 197Au [1]. The
strength is, instead, fairly well reproduced in two HFB plus
RPA approaches using Skyrme [75] and Gogny [76] forces.
These forces are devised so as to reproduce the bulk properties
at the HF(B) level, which is not our case. In fact, the HF
calculation using the optimized NNLOopt yields only half-
binding energy [41]. The good agreement achieved in the
mentioned RPA approaches suggests that the 2+ state has a
much larger proton content than the one obtained here.

B. Dipole response in 22O

The total dipole cross section is given by

σ (E1) =
∫ ∞

0
σ (E1,ω)dω

= 16π3

9h̄c

∫ ∞

0
ωS(E1,ω)dω, (37)

where S(E1,ω) is the strength function

S(E1,ω) =
∑

ν

Bν(E1) δ(ω − ων) (38)

and Bν(E1) = B(E1; 0+
1 → ν) the reduced strength of the

transition to the νth final state of energy ων = Eν − E0.
The total cross section σ (E1) is proportional to the energy

weighted sum

σ (E1) = 16π3

9h̄c

∑
ν

ωνBν(E1) (39)

and satisfies the Thomas-Reiche-Kuhn (TRK) sum rule if
the Hamiltonian does not contain momentum dependent and
exchange terms.

The reduced strength Bν(E1) is computed using the oper-
ator with bare charges [Eq. (29)]. Moreover, the δ function
is replaced by a Lorentzian with smearing width � in the
calculation of σ (E1,ω).
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0

0.2

0.4

0.6

0.8

B
(E

1)
[e

2 fm
2 ]

5 10 15 20 25 30 35
(MeV)

0

0.2

0.4

0.6

0.8

B
(E
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FIG. 2. TDA (a) and EMPM (b) E1 reduced strength distributions
in 22O.

We have also computed the isoscalar reduced strength
Bν(E1,IS) using the operator

MIS(E1μ) = e

A∑
i=1

(
r3
i − 5

3
〈r2〉ri

)
Y1μ(r̂i), (40)

where the second term in the bracket is meant to remove
partially the contribution of the center of mass. Such a term
does not contribute in our case since our TDA states are free
of center of mass spurious admixtures.

The IS strengths satisfy the energy weighted sum rule∑
ν

ωνBν(E1,IS)

= 3

16π

h̄2

2m
A(11〈r4〉 − 10R2〈r3〉 + 3R4), (41)

where

〈rn〉 = 3

3 + n
Rn (42)

and R = 1.2A1/3 fm.
In both TDA [Fig. 2(a)] and EMPM [Fig. 2(b)], the isovector

E1 strength is distributed in the interval ∼7–35 MeV (Fig. 2)
with a large concentration in the energy interval ∼26–35
MeV where no experimental data are available. The EMPM
spectrum is more fragmented due to the damping action of
the one-phonon to two-phonon coupling. Such a coupling is
practically ineffective at low energy where the states have a
pure one-phonon character.

The cross section is shifted upward by ∼2 MeV by the
phonon coupling but keeps basically its shape (Fig. 3). It
follows qualitatively the trend of the data deduced from electro-
magnetic dissociation cross sections [16] in the energy range
∼7–25 MeV and exhibits the highest peak around 30 MeV.

The summed cross sections up ∼21 MeV and ∼25 MeV
exhaust, respectively, ∼19% and ∼30% of the TRK sum rule.
Both fractions are within the errors of the experimental sums.
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FIG. 3. Theoretical versus experimental [16] E1 cross section in
22O. A Lorentzian of width � = 2 MeV is used.

The largest contribution comes from the strength at higher en-
ergy. In fact, the total sum up to ∼40 MeV accounts for ∼125%.

The upward energy displacement of the theoretical cross
section with respect to the data seems to confirm the suggestion
that the HF proton p-h energy separation is too large. In this
specific case the gap between the proton (sd) and (0p) shells
is ∼22 MeV.

The strength in the interval ∼7–15 MeV is generated by
E1 transitions (Fig. 2) to states having dominant neutron
character (Table III). These states, in fact, are excited by both
the isovector and isoscalar probes (Fig. 4) and, therefore, may
be associated to the PDR.
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FIG. 4. Isoscalar (a) versus isovector (b) E1 transitions.
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FIG. 5. Transition densities for the low-lying 1−
1 state (a) and one

falling in the region of the GDR (b).

Such a conjecture is supported by the trend of the transition
densities. The neutron skin oscillates against the core at low
energy [Fig. 5(a)] while proton and neutron fluids oscillate in
opposition of phases at high energy [Fig. 5(b)].

C. Spectra and wave functions in 23O and 23F

The spectrum of 23O determined experimentally [13] is
composed of two positive parity 5/2+ and 3/2+ levels and
a level at higher energy probably of negative parity (Fig. 6).
All of them are above the neutron decay threshold.

The computed levels are also above such a threshold. Those
of positive parity are close in energy to the corresponding
experimental levels. The calculation yields also negative parity
levels compatible in spin and energy with the experimental one
[13]. The overall agreement with experiments is achieved only
once the phonons are included.

As in 22O, all the states have substantially a single n-phonon
structure (Table IV). The 3/2+

1 as well as the lowest negative
parity states have a single particle nature. The first excited state
5/2+

1 , instead, is basically a particle-phonon state (Table IV)
resulting mainly from coupling the 1/2+

1 particle to the 3+
1

phonon. This component accounts for ∼97% of the total wave
function.

The calculation yields a quintuplet of positive parity
states {1/2+

2 ,3/2+
2 ,5/2+

2 ,7/2+
1 ,9/2+

1 } in the energy interval
∼4.8–6.2 MeV (Fig. 6 and Table IV). They are built by
coupling the 1/2+

1 neutron particle to the low-lying two-
phonon triplet {0+

2 ,2+
2 ,4+

1 } occurring in 22O (Fig. 1).
Thus, the computed 23O level scheme keeps memory of the

harmonic nature of the spectrum predicted, but only partially
confirmed experimentally, for the 22O. Indeed, the particle-
phonon couplingFλ′

pp′ (26) between the valence neutron and the
low-lying phonons entering the matrix elements (24) between
states differing by one-phonon is practically ineffective, given
the neutron nature of these phonons. In fact the neutron-neutron
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FIG. 6. Level schemes of 23O computed in HF and in spaces
including up to Nph = 1 and Nph = 2 phonons. The experimental data
are from [13].

interaction is weak and acts among the few neutrons in excess.
Moreover, the Pauli principle exerts an inhibiting action.

The experimental spectrum of 23F [5,6] is much richer
compared to 23O and cannot be described satisfactorily in

TABLE IV. Phonon composition of the low-lying states in 23O.

J π Eν |C0|2 |C1|2 |C2|2

1/2+
1 0.000 0.9404 0.0594 0.0002

5/2+
1 2.973 0.0003 0.9948 0.0049

3/2+
1 4.244 0.9507 0.0478 0.0015

3/2−
1 4.688 0.9049 0.0905 0.0046

1/2−
1 4.827 0.9686 0.0307 0.0007

3/2+
2 4.880 0.0000 0.0000 1.0000

3/2−
2 4.996 0.0498 0.8645 0.0852

7/2+
1 5.159 0.0000 0.0000 1.0000

1/2+
2 5.181 0.0000 0.0000 1.0000

5/2+
2 5.468 0.0000 0.0000 1.0000

9/2+
1 6.218 0.0000 0.0000 1.0000

7/2−
1 6.452 0.0095 0.9374 0.0531

5/2−
1 6.482 0.0004 0.9924 0.0072

1/2−
2 6.583 0.0011 0.9930 0.0059

3/2−
3 6.633 0.0284 0.9656 0.0060

FIG. 7. Level schemes of 23F computed in HF and in spaces
including up to Nph = 1 and Nph = 2 phonons. The experimental data
are from [5,6].

HF (Fig. 7). As the one-phonon components are included,
several new levels occur at low energy and, up to the neutron
decay threshold, are comparable in number with the levels
detected experimentally. In addition to the low energy 1/2+

1
and 3/2+

1 levels which have an experimental counterpart,
several {3/2+,5/2+,7/2+,9/2+} levels occur in the region
of experimental observation. Levels of the same spins were
predicted also by shell model calculations using phenomeno-
logical two-body forces [5].

The inclusion of two-phonons, while improving the agree-
ment of the 1/2+

1 and 3/2+
1 levels with experiments, enhances

dramatically the level density and pushes some of the high
spin states very low in energy. Thus, the agreement with
the experiments, achieved qualitatively by including only the
one-phonon states, is spoiled.

The too strong proton-phonon coupling Fλ′
pp′ (26) is re-

sponsible for this unwanted effect. Such a coupling not only
admixes strongly particle and particle-phonon states but also
one-phonon and two-phonon particle-core states through the
matrix elements (24) (Table V). Why such a coupling is so
strong can be easily understood. The p-h constituents of the
low-lying phonons arise entirely from the excitations of 0d5/2

neutrons (Table III). The coupling, therefore, is strong since
the proton-neutron interaction is strongly attractive and, also,
because the Pauli principle is ineffective.
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TABLE V. Phonon composition of selected states in 23F.

J π Eν |C0|2 |C1|2 |C2|2

5/2+
1 0.000 0.7188 0.2035 0.0777

7/2+
1 0.707 0.0000 0.7474 0.2526

9/2+
1 0.877 0.0001 0.7614 0.2385

9/2+
2 2.182 0.0003 0.7044 0.2953

5/2+
2 2.303 0.0564 0.7191 0.2245

1/2+
1 2.346 0.6959 0.2531 0.0510

7/2+
2 2.403 0.0000 0.7661 0.2339

7/2−
1 2.825 0.0003 0.3766 0.6231

9/2+
3 2.895 0.0000 0.4137 0.5863

3/2+
1 3.302 0.4608 0.4742 0.0650

7/2−
2 3.437 0.0000 0.3595 0.6405

9/2+
4 3.518 0.0000 0.3248 0.6752

5/2+
3 3.683 0.0055 0.7503 0.2442

9/2+
5 3.685 0.0000 0.3287 0.6713

3/2+
2 4.160 0.0251 0.8320 0.1429

3/2+
3 5.445 0.0013 0.6509 0.3478

3/2+
4 5.776 0.1180 0.6762 0.2058

1/2+
2 6.322 0.0442 0.6402 0.3156

3/2+
5 7.451 0.0281 0.7252 0.2467

1/2+
3 7.454 0.0028 0.2242 0.7730

1/2+
4 8.028 0.0937 0.8387 0.0676

This serious discrepancy with the experiments claims once
again a quenching of the amplitudes of the TDA p-h configu-
rations generated by the 0d5/2 neutron excitations in favor of
components of higher energy.

D. β decay of 23O

The experiments on the β decay of 23O have detected six
allowed decays to excited states of spin 1/2+ or 3/2+ in 23F
[6]. It is therefore useful to perform a theoretical investigation
of the these decays based on our method. We need therefore to
compute the f t value

f t1/2 = κ

B(F ) + B(GT )
, (43)

where κ = 6146 s. The reduced strengths are

B(λ; ν → ν ′) = 1

[ν]
|〈ν ′‖M(λ)‖ν〉|2, (44)

where M(λ) is either MF or MGT and

MF = gV

∑
k

t+(k), (45)

MGT = gA

∑
k

t+(k)
σ (k). (46)

We have introduced the spherical components tμ of the isospin
single particle operator and used the bare weak charges gv = 1
and gA = 1.25.

Since the contribution from the two-phonon components
can be neglected in our case, the transition amplitude (29) can

be written

〈�ν ′ ‖Mλ‖�1/2+
1
〉

� Mνν ′
00 (λ) + Mνν ′

01 (λ) + Mνν ′
10 (λ) + Mνν ′

11 (λ), (47)

where ν ′ denotes all final states of spin and parity v′ = 1/2+
or v′ = 3/2+.

The single particle amplitudes are given by

Mνν ′
00 (λ) =

∑
ik

Cν
vi
Cν ′

v′
k
〈v′

k‖Mλ‖vi〉. (48)

The particle-phonon transition amplitudes are

Mνν ′
01 (λ) =

∑
p′h

〈p′‖Mλ‖h〉Wνν ′
hp′ (λ), (49)

where

Wνν ′
hp′ (λ) = −

∑
iν ′

1

Cν
vi
Cν ′

ν ′
1

×
∑

σ

[σ ]1/2W (p′λσv; hv′)cσ
vih

(π )〈σ‖bp′ ‖ν ′
1〉. (50)

M10(λ) is deduced easily from M01(λ).
The phonon-phonon amplitudes are

Mνν ′
11 (λ) =

∑
pp′

〈p′
ν‖Mλ‖pπ 〉Wνν ′

pp′ (λ), (51)

where

Wνν ′
pp′ (λ) =

∑
ν1ν

′
1σ

Cν
ν1

Cν ′
ν ′

1
(−)v

′+p−λ−σ [σ ]1/2W (v′p′vp; σλ)

×〈 σ‖bp′ ‖ν ′
1〉〈σ‖bp‖ν1〉. (52)

HF yields only two 1/2+ states below ∼11 MeV (Fig. 7).
The number of states populated by the decay increases sub-
stantially once the phonons are included (Table VI). Just six of
them have energies comparable to the six levels populated in
the experiment.

The ft values of several decays are comparable with the ex-
perimental data (Table VI). The strength of the GT transitions
to the states ν ′ of spin 3/2 are comparable with those deduced
from the data or one order of magnitude larger. Such a large
contribution comes from the particle-phonon piece M01(GT )
[Eq. (49)] and is due to the large single particle coefficients of
the initial state 1/2+

1 and to the large amplitudes 〈σ‖bp′ ‖ν ′
1〉

(p′ = 0d5/2 and ν ′
1 = 3/2+

i ) in Eq. (50) since the low-lying
|ν ′

1〉 states are composed dominantly of a 0d5/2 proton coupled
to a single one-phonon core state.

The GT contribution is also dominant in the transitions to the
1/2+

i states with one remarkable exception, the 1/2+
1 → 1/2+

4
transition whose Fermi contribution is overwhelmingly large
[B(F ) = 7.36]. It comes from the particle-phonon transition
M01(F ) [Eq. (49)] and is the result of several combined
effects: i) The large overlap between the proton and neutron
single particle states [〈p′‖MF ‖h〉 = √

6〈(0d5/2)π |(0d5/2)ν〉 in
Eq. (49)], ii) the large amplitude 〈σ‖bp′ ‖ν ′

1〉 (p′ = 0d5/2 and
ν ′

1 = 1/2+
4 ), iii) the dominance of the [1s1/2 × (0d5/2)−1] in

several phonons σ .
A smaller single particle amplitude of the 23O 1/2+

1 in
favor of its one-phonon components would reduce i) the
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TABLE VI. log(ft) values and GT reduced strengths of the ground
state decay of 23O.

Theory

νf ωf log (ft) B(F ) B(GT)

1/2+
1 2.346 3.95 0.03 0.658

3/2+
1 3.302 5.20 0.0 0.038

3/2+
2 4.160 4.67 0.0 0.13

3/2+
3 5.445 3.94 0.0 0.69

3/2+
4 5.776 3.61 0.0 1.48

1/2+
2 6.322 3.51 0.30 1.61

3/2+
5 7.451 8.17 0.0 0.00004

1/2+
3 7.454 4.52 0.03 0.154

1/2+
4 8.028 2.91 7.36 018

3/2+
6 8.127 3.96 0.0 0.67

3/2+
7 8.328 4.46 0.0 0.21

1/2+
5 9.233 5.24 0.03 0.003

1/2+
6 9.413 3.86 0.07 0.77

1/2+
7 10.699 4.80 0.02 0.08

1/2+
8 11.003 4.12 0.03 0.43

Experiments [6]

νf ωf log(ft) B(GT)

1/2+ 2.243 4.27 0.32
(1/2+,3/2+) 3.866 4.33 0.29
3/2+ 4.066 4.24 0.36
(1/2+,3/2+) 4.604 4.82 0.09
(1/2+,3/2+) 5.553 4.68 0.13
(1/2+,3/2+) 5.559 4.28 0.32

strength of the transition between the states having single par-
ticle character, ii) the dominant particle-phonon contribution
M01(GT ; 1/2+

1 → 3/2i) transition, ii) the anomalously large
strength of the Fermi transition to the 1/2+

4 state. Once again,
such a result can be achieved if the amplitudes of the high
energy p-h configurations in the TDA phonons are enhanced
at the expenses of the too dominant low-lying p-h neutron
components.

V. CONCLUDING REMARKS

The analysis of the results has pointed out the strong impact
of the phonon states on spectra, dipole responses and β-decay
transitions. This impact is especially positive in 22O and 23O. In
22O, the two-phonon states are the main ingredients of a triplet
of levels observed experimentally and, through their coupling,
bring the one-phonon level close to the experimental one. In
23O, a satisfactory agreement with the available experimental
levels is reached only once the one and two-phonon states are
included.

The impact on 23F is less positive. In fact, because of the
strong coupling between the odd proton and the phonons,
several multiplets of states, arising from coupling the proton to
the low-lying 2+

1 and 3+
1 phonons, are pushed down in energy

thereby enhancing greatly the level density of the low-energy
region of the spectrum. Moreover, few of these intruders fall
at too low energy.

The origin of such a strong proton-phonon coupling resides
in the dominance of the p-h configurations arising from the
excitations of the 0d5/2 neutrons in all low-lying phonons. One
of the effects of such a neutron dominance is to amplify the
action of the strong proton-neutron interaction. It is therefore
necessary to reduce the weight of the low-lying neutron p-h
configurations in favor of neutron and proton p-h components
of higher energy.

A more moderate dominance of the low-lying neutron p-h
states in favor of protons would improve further the spectra of
22O and 23O by partly breaking their too harmonic character
and would enhance the B(E2) strength in 22O, now badly
underestimated. It would reduce the single particle amplitude
of the 1/2+

1 state of 23O and, therefore, would promote the
quenching of some β-decay transitions. On the other hand,
a larger phonon content of the same 23O 1/2+

1 state would
enhance the strengths of the other transitions which involve
the one-phonon components.

The recipe for achieving such a goal is to generate more
compact HF spectra. The HF levels belonging to the (sd) and
1p shells are very far apart from the 0p levels. For instance,
the proton p-h energy gaps are ∼22 MeV and ∼28 MeV for
states of negative and positive parity, respectively. Such a large
gap explains the practical absence of proton p-h configurations
in the low-energy phonons and also the upward energy shift
of the theoretical dipole strength with respect to the region of
observation.

In order to obtain a smoother HF level scheme it is necessary
to replace the NNLOopt with other versions of chiral potential.
The NNLOsat [77] seems to be a promising candidate. It in-
cludes explicitly the three-body contribution and improves the
description of binding energies and nuclear radii as well [78].
According to our preliminary calculations, such a potential
yields a considerably more compact HF spectrum.
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