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Nonrotational states in isotonic chains of heavy nuclei

G. G. Adamian and L. A. Malov*

Joint Institute for Nuclear Research, 141980 Dubna, Russia

N. V. Antonenko
Joint Institute for Nuclear Research, 141980 Dubna, Russia

and Mathematical Physics Department, Tomsk Polytechnic University, 634050 Tomsk, Russia

R. V. Jolos
Joint Institute for Nuclear Research, 141980 Dubna, Russia

and Dubna State University, 141980 Dubna, Russia

(Received 10 November 2017; revised manuscript received 15 January 2018; published 6 March 2018)

The ground-state deformations of heavy nuclei are explored with the microscopic-macroscopic approach using
the single-particle Woods-Saxon potential of the quasiparticle-phonon model. The calculations of the energies of
low-lying nonrotational states take into account the residual pairing and phonon-quasiparticle interactions. The
spectra of these states are presented for the N = 147–161 isotones. The sensitivity of the calculated results to the
parameters of the model is studied. A rather good description of the available experimental data is demonstrated.
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I. INTRODUCTION

Recent intensive experimental studies of superheavy nuclei
[1–7] resulted in the discovery of new nuclei and obtained
information on single-particle states and nuclear deformations.
The systematic calculations of single-particle spectra of the
heaviest nuclei have been performed in Refs. [8–11]. How-
ever, the interaction of quasiparticles with phonons, which is
determined by the mean-field fluctuations, has not be taken into
account there. As shown within the relativistic quasiparticle-
vibration model [12–14], the inclusion of collective vibrations
and their coupling to quasiparticles improves description of the
experimental spectra.

Besides the self-consistent approach mentioned, the resid-
ual interaction is also considered in the quasiparticle-phonon
model (QPM) [15–19], which allows us to describe well the
structure of deformed rare-earth-metal nuclei and actinides
with A > 228 [20–29]. In this model, the nuclide chart is
divided into a few regions around some Z and A in which
the parameters of the mean field and the residual interaction
are fixed. This corresponds to the choice of some average
deformation and other model parameters for all the nuclei of
each region. The calculations of the equilibrium deformations
of nuclei [10,11,30] mainly confirm the validity of such a rough
approximation for nuclei far from the magic or semimagic
ones. However, it has been experimentally found [31] that
the deformations of some nuclei even with close values of Z
or A can differ. In these cases, one should take into account
the difference of mean fields of these nuclei because some
low-lying states are very sensitive to the deformation and the
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calculation with a fixed deformation would lead to a large
error, within 0.5–1 MeV, in the determination of the state
energy. Therefore, to carry out the correct calculations for each
nucleus, its equilibrium deformation has to be defined. This is
especially important when the calculations are performed for
poorly studied nuclei. It is also important for prediction of
the properties of nuclei that are as of yet uninvestigated. The
calculations should have minimum uncertainties when they are
performed for superheavy nuclei or for nuclei located far from
the β-stability line, neutron-deficient or neutron-rich nuclei,
and isomeric states. Indeed, the experimental study of these
nuclei is time-consuming and requires reliable predictions.

The microscopic methods, which are used to study the
structure of heaviest nuclei, are the self-consistent ap-
proaches (nonrelativistic and relativistic) [32–46] based on
some parametrization of energy-density functional and the
microscopic-macroscopic methods [10,11,30,47–52] in which
the parameters are introduced to write down the single-particle
potential and to find the macroscopic part of potential energy.

In the present work, the excitation energy spectra of tran-
scurie nuclei are calculated with the QPM [16,53–56] for
equilibrium deformations. Our intention is to use the QPM
for describing the ground states and low-lying nonrotational
states in heavy nuclei. As the first step, we incorporate the QPM
Woods-Saxon potential into the microscopic-macroscopic ap-
proach. So, the ground-state deformations are not the param-
eters of the QPM anymore, as before. As demonstrated, this
development of the QPM is reliable and can be the basis for
further work related to the calculation of the total binding
energies, charge, and mass radii. In Sec. II, the main ingredients
of the QPM are presented. The equilibrium deformations are
defined with the microscopic-macroscopic approach in Sec. III.
Because the experimental information for the most of heavy
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nuclei investigated is still rather scarce or nonexistent, there
are difficulties with choosing the parameters of the model.
Therefore, in Sec. IV we analyze the dependence of the results
obtained on the parameters used to choose their optimal values.
The spectra of low-lying nonrotational states in a few isotonic
chains are discussed in Sec. V.

II. MODEL

The QPM Hamiltonian is as follows [15,16]:

H = Hsp + Hpair + HM + HSM. (1)

The mean-field potential Vsp in Hsp contains the central
potential VWS in the Woods-Saxon (WS) form for neutrons
and protons, the spin-orbit part Vso(r), and the Coulomb field
VC(r) for protons:

Vsp(r) = VWS(r) + Vso(r) + VC(r), (2)

where

VWS(r) = −V0{1 + exp[(r − R(θ,ϕ)/a)]}−1. (3)

The depth of the WS potential for the protons and neutrons
is set V0 = 54.25 ± 39.6(N − Z)/A MeV. Here, we assume
axially deformed nuclei with the nuclear surface defined as

R(θ,φ) = R0

[
1 + β0 +

∑
λ=2,4

βλYλ0(θ,ϕ)

]
, (4)

where R0 = r0A
1/3 is the radius of spherical nucleus with

the radius parameter r0, the value of β0 takes into account
the volume conservation, and β2, β4 are the parameters of
quadrupole and hexadecapole deformations, respectively.

In Eq. (1), the term Hpair describes the pair correlations.
The monopole pairing forces are used with the strength
set to reproduce the odd-even difference of experimental
nuclear masses. After Bogoliubov transformation, we obtain
the Hamiltonian in terms of the quasiparticle creation and
annihilation operators. The terms HM and HSM in Eq. (1) take
into account the multipole and spin-multipole interactions be-
tween quasiparticles. To describe the long-range particle-hole
residual interaction, we use the effective separable forces ex-
pressed through the operators of multipole and spin-multipole
moments and write HM and HSM as

HM = −1

2

∑
l,μ

∑
τ,ρ=±1

(
κ

(lμ)
0 + ρκ

(lμ)
1

)
M+

lμ(τ )Mlμ(ρτ ),

HSM =
∑
l,μ

∑
λ=l,l±1

∑
τ,ρ=±1

(
κ

(lλ)
0 + ρκ

(lλ)
1

)
M

(λ)+
lμ (τ )M (λ)

lμ (ρτ ).

(5)
As seen, the HM and HSM generate phonon excitations in
nuclei. Here, τ = N or Z. The isoscalar κ

(lμ)
0 and isovector

κ
(lμ)
1 constants depend on angular momenta and their pro-

jection μ on the symmetry axis. The choice of their values
was justified in Refs. [16,24,29]. The isoscalar constants are
defined from the experimental phonon energies for even-even
nuclei. The isovector constants are defined to describe the
energy of isovector resonances. We have used the parameters
suggested in Ref. [24] for the region of heavy nuclei. In
accordance with Ref. [24], the ratio of isovector and isoscalar
constants has been chosen as −1.5. Because the phonons

with certain projection μ and parity π can be produced by
forces with various angular momenta λ, the correct descrip-
tion requires elimination of spurious states with the same
quantum numbers by using the phonon operator with certain
μ and various multipolarities λ [25–27]. For example, the
phonon with μπ = 2+ contains electric-type components with
λμ = {22,42,62, . . . } and magnetic-type components with
Lλμ = {222,232,442,432,452, . . . }. The radial dependence
of residual interaction is taken here as d

dr
VWS(r). In this paper,

we consider only the nonrotational states of nuclei. Therefore,
the kinetic energy of rotation and the Coriolis interaction are
not included in the Hamiltonian H .

After introduction of the phonon operators, the Hamiltonian
(1) is rewritten in terms of the creation and annihilation
operators for quasiparticles and phonons,

H =
∑

q

εqα
+
q αq+

∑
μπi

ωμπ iQ
+
μπ iQμπ i

+
∑

qq ′μπi

�qq ′μπiα
+
q αq ′ (Q+

μπ i + Qμπi), (6)

where α+
q is the creation operator for quasiparticle in the state

q with energy εq and Q+
μπ i is the creation operator for ith

phonon of energy ωμπ i in the state with certain μ and π . So, in
the random phase approximation the problem is reduced to the
determination of phonon energies in even-even nuclei and the
excitation energies of A-odd nuclei obtained with allowance
for the interaction of quasiparticles and phonons. Note that
the amplitude �qq ′μπi of the quasiparticle-phonon interaction
does not contain free parameters and is uniquely determined
by the matrix elements of the residual interaction, energy, and
other phonon characteristics. The dependence on the phonon
energy is of a pole nature that is decisive for calculating
the spectra of A-odd nuclei. The Hamiltonian for an A-odd
nucleus is diagonalized in the configuration space including
one-quasiparticle states and quasiparticle ⊗ phonon states.

The wave function of an A-odd nucleus in the state with
given Kπ is as follows:

�(Kπ ) =
⎧⎨
⎩

∑
ρ

Cρα
+
ρ +

∑
νμπ ′i

Dνμπ ′
iα

+
ν Q+

μπ ′
i

⎫⎬
⎭�0 (7)

with normalization∑
ρ

(Cρ)2 +
∑
νμπi

(Dνμπ i)
2 = 1. (8)

Here, �0 denotes the vacuum state for quasiparticles and
phonons. The summation is over all single-particle states ρ,
including the states with given Kπ . The Cρ and Dg are the
amplitudes of the corresponding components of the wave
function (7).

Solving the secular equation, we find the energy spectrum
of the nucleus and the wave functions of its ground and excited
states. In this paper we confine ourselves by the three lowest
phonon states (i = 1,2,3) with μ = 0,1,2,3. As shown, the
contribution of higher multipolarities with λ � 4 and phonons
with i � 2 to the states of A-odd nuclei with energies less
than 1.2 MeV is small. The single-particle levels are taken
into account from the bottom of the Woods-Saxon well to the
energy of +5 MeV. Calculating the low-energy vibrational
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FIG. 1. Comparison of the calculated energies of single-particle
levels in 251Es for the Woods-Saxon potential (closed symbols) and
the TCSM potential (open symbols). The results for protons and
neutrons are shown by circles and squares, respectively. The energies
are counted from the corresponding Fermi energies EF .

states, we can also calculate the transitions between them.
For example, in 248Cm the calculated energies Eλπ μ and
corresponding transition probabilities B(Eλ; λπμ → 0+0)
(E2+0 = 1200 keV, B(E2; 2+0 → 0+0) = 1.62 W.u.;
E2+2 = 1300 keV, B(E2; 2+2 → 0+0) = 3.44 W.u.;
E3−0 = 1300 keV, B(E3; 3−0 → 0+0) = 6 W.u.; E3−1 =
1000 keV, B(E3; 3−1 → 0+0) = 8.3 W.u.; E3−2 = 900
keV, B(E3; 3−2 → 0+0) = 9 W.u.; E3−3 = 1400 keV,
B(E3; 3−3 → 0+0) = 5.1 W.u.) are in a rather good
agreement with available experimental data [57] (E2+2 = 1049
keV, B(E2; 2+2 → 0+0) = 3.89 W.u.; E3−0 = 1094 keV,
B(E3; 3−0 → 0+0) = 16 W.u.; E3−3 = 1235 keV,
B(E3; 3−3 → 0+0) = 5.87 W.u.). So, our model can
reproduce the low-energy vibrations with inaccuracy of
100–300 keV and transition probabilities within factor of 2–3
that is quite satisfactory.

III. CALCULATION OF GROUND-STATE DEFORMATIONS

The calculation of equilibrium deformations is carried out
using the basis of the microscopic-macroscopic two-center
shell model (TCSM) [47,50,51], taking into account the pairing
and Strutinsky shell corrections [58,59]. Because the mean
field of the Woods-Saxon form is used in the QPM [55],
the single-particle states of the lower part of the TCSM
spectrum for each deformation β2 and β4 are replaced by the
corresponding states of the WS potential. With good accuracy,
the energy spectra in these potentials almost coincide (Fig. 1)
[56]. The single-particle energies En (n is the state number)
for each spectrum are counted from the corresponding Fermi
energies EF of the proton and neutron systems. Note that
the single-particle levels of the same energy in two potentials
could have different asymptotic Nilsson numbers. However,
the parameters can be adjusted to eliminate this problem at least
for the levels near the Fermi surfaces. So, the similar results
can be obtained with two different single-particle potentials.

FIG. 2. Contour plot of the potential energy of 253Fm as a function
of β2 and β4. The energies are counted from the potential energy
of spherical nucleus. The potential minimum is at β2 = 0.277 and
β4 = 0.037.

The equilibrium deformation of the nucleus corresponds to
the position of the minimum on the potential energy surface. To
find it in the microscopic-macroscopic approach, one should
minimize the deformation energy

Edef = ELD + Esh + Epair − E0
LD, (9)

where ELD , Esh, and Epair are the liquid-drop energy, the
shell correction, and pairing correction, respectively. The
deformation energy is counted from the liquid-drop energy
E0

LD of spherical nucleus.
In Figs. 2–4, the contour plots of Edef (β2,β4) near the

ground states are shown for 253Fm, 251No, and 286Fl. The

FIG. 3. Contour plot of the potential energy of 251No as a function
of β2 and β4. The energies are counted from the potential energy
of spherical nucleus. The potential minimum is at β2 = 0.266 and
β4 = 0.033.

034308-3



ADAMIAN, MALOV, ANTONENKO, AND JOLOS PHYSICAL REVIEW C 97, 034308 (2018)

FIG. 4. Contour plot of the potential energy of 286Fl as a function
of β2 and β4. The energies are counted from the potential energy of
spherical nucleus. There are two potential minimum at β2 = −0.136,
β4 = 0.009 and β2 = 0.161, β4 = −0.074.

relationship between the coordinate of the TCSM and param-
eters β2 and β4 in Eq. (4) is established from the equality of
the corresponding calculated multipole moments. Figures 2–4
clearly show the ground-state potential minimum correspond-
ing to the equilibrium deformations of these nuclei. In some
cases, there exist less pronounced additional local potential
minima that can be interpreted as possible shape isomeric states
of the nuclei. For example, in Fig. 4 for 286Fl there are two
minima which differ in energy by approximately 0.9 MeV and
have opposite signs of deformations. The nuclear shapes in
these two potential minima are presented in Fig. 5.

FIG. 5. Nuclear shapes R(θ ) of 286Fl in two potential minima
shown in Fig. 4. The nuclear shapes for positive and negative values
of β2 are shown by solid and dashed lines, respectively. The nuclear
shape shown by solid line is transformed into that shown by dotted
line at β4 = 0. The shape of spherical nucleus is shown by thin red
line.

TABLE I. Calculated equilibrium deformations of nuclei indicated.

Nucleus β2 β4 Nucleus β2 β4

243Cm 0.272 0.041 251No 0.261 0.037
245Cm 0.272 0.041 253No 0.263 0.035
247Cm 0.275 0.039 255No 0.257 0.027
249Cm 0.272 0.041 257No 0.253 0.016
251Cm 0.272 0.041 259No 0.256 0.002
245Cf 0.275 0.039 255Rf 0.253 0.002
247Cf 0.275 0.039 257Rf 0.262 0.023
249Cf 0.275 0.039 259Rf 0.251 − 0.010
251Cf 0.279 0.035 261Rf 0.246 0.020
253Cf 0.266 0.033 259Sg 0.262 − 0.006
255Cf 0.279 0.035 261Sg 0.266 − 0.008
249Fm 0.275 0.039 263Sg 0.259 − 0.031
251Fm 0.279 0.035 265Sg 0.262 − 0.037
253Fm 0.277 0.037 263Hs 0.263 − 0.034
255Fm 0.277 0.037 265Hs 0.246 0.049
257Fm 0.273 0.013 267Hs 0.269 − 0.054
259Fm 0.247 0.007 269Hs 0.254 − 0.055

The ground-state equilibrium deformations calculated for
indicated N -odd heavy nuclei with 96 � Z � 108 are listed
in Table I. The single-particle spectra of the WS potential are
used to calculate Edef . As found, the single-particle spectra
of the TCSM potentials result in close values of deformation
parameters at the ground state. For β2, the difference does not
exceed 10%.

IV. DEPENDENCE OF CALCULATED RESULTS
ON THE QPM PARAMETERS

Based on the large number of calculations of one-
quasiparticle spectra of heavy nuclei, the “basic” set of the
WS parameters and spin-orbit strength were suggested in
Table II. These parameters together with the quasiparticle-
phonon strength were adjusted to have a good description of the
spectra and transitions in them for well-studied heavy nuclei.
The depth of the spin-orbit potential is assumed to be equal
to the depth of the mean field. In Ref. [24], the parameters
of the WS potential were suggested for each region of nuclide
map. Here, we use one parameter set for heavy and superheavy
nuclei. The parameters of pairing interaction are from the
difference of the mass of neighboring nuclei (experimental,
if known, or extrapolated). In Fig. 6, for 249Cm the calculated
energies of the lowest nonrotational states are presented and
compared with the experimental values. The calculations are
performed with the basic set of the WS parameters as well as
with other sets to demonstrate the sensitivity of the results to

TABLE II. Basic parameters of the WS potential and spin-orbit
strengths κ adjusted for neutrons and protons of heavy nuclei.

r0 (fm) a (fm) κ (fm)2

Neutrons 1.26 0.80 0.450
Protons 1.24 0.65 0.320
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FIG. 6. The spectra of low-lying nonrotational states in 249Cm.
The calculated results are obtained with various parameters of the
WS potential and compared with the experimental data (exp) [57].
The second column presents the results obtained with the parameters
from Table II. In other columns, the results are obtained with
indicated parameter for neutrons different from those given in Table II.
The depth of the WS potential is taken to be V0 = 54.25 ± 39.6
(N − Z)/A.

the variation of the WS parameters. As seen, the reasonable
variations of radius parameter and diffuseness do not cause
large changes in the energy spectrum. The largest changes are
caused by the variation of the spin-orbit strength. However,
even in this case the deviation of the calculated energies from
the experimental ones does not exceed 300 keV, which is still
acceptable. So, 10% deviation from the parameters presented
in Table II does not destroy a rather good agreement with the
experimental data.

The basic set of parameters of the Woods-Saxon potential,
presented in Table II, is used further in the present work for
calculating the spectra of nonrotational states. The multipole
interaction constants are established for phonons with μ � 3.
The results obtained with inclusion of 3 < μ � 7 change
very little in comparison to those obtained with μ � 3. The
calculated phonon energies are seemed to be close to the known
experimental values for the even-even core. If we would vary
these energies to see the sensitivity of the calculated spectra,
the energies of the levels with relatively large admixture of
phonon component change. However, these levels are usually
located at energies larger than 400 keV. These levels are
also the most sensitive to the variation of the multipole
constants. So, the quasiparticle-phonon interaction can cru-
cially influence the nonrotational state if its energy is larger
than 400 keV.

V. NONROTATIONAL STATES IN ISOTONIC CHAINS

Using the basic parameters of the WS potential
(Table II) [15,16], we calculate the ground-state values of β2

and β4 (Table I) with the microscopic-macroscopic approach
described. The single-particle spectra lying near the Fermi
surface are used to calculate the nonrotational spectra and their
quasiparticle-phonon structures with the QPM. The isotones

FIG. 7. Calculated spectra of low-lying states are compared with
the available experimental data [57] for N = 147 isotones. The solid
lines denote the states with one-quasiparticle component contributing
more than 70% of the norm. The dotted lines correspond to the states
with the quasiparticle ⊗ phonon component exceeding 70%. Other
states are denoted by the dashed lines. The value of K in brackets
means the tentative assignment.

with N = 147, 149, 151, 153, 155, 157, 159, and 161 are
considered to trace the dependence of low-lying nonrotational
states on Z.

The comparison of the calculated energy spectra with the
available experimental data [57] is shown in Fig. 7 for two
N = 147 isotones. The calculated structures of low-lying
nonrotational states are presented in the Supplemental Material
[60]. In most cases, the model satisfactory describes the
data taking their uncertainties into account. A rather good
agreement with the experimental data is seen in Figs. 8

FIG. 8. The same as in Fig. 7, but for the N = 149 isotones.
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FIG. 9. The same as in Fig. 7, but for the N = 151 isotones.

and 9, presenting the calculated spectra for N = 149 and
151 isotones. The ground-state characteristics are correctly
reproduced. As in Ref. [50], the energies of the level with the

same Nilsson quantum numbers smoothly change with Z if the
the deformations of isotones are close to each other. In Fig. 9,
the inversion of 1/2+ and 5/2+ levels in the experimental

FIG. 10. The same as in Fig. 7, but for the N = 153 isotones.
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FIG. 11. The same as in Fig. 7, but for the N = 155 isotones.

spectra compared to the calculated ones reduces the lifetime
of 1/2+ state. However, it still about 100 ns [57].

In N = 153 isotones (Fig. 10), the spectra are quite dense
near the ground states. So, the small change of the ground-
state deformation could change the order of levels. Except for

a few cases, the experimental levels are well described. The
sequence of calculated states almost corresponds to that in the
experimental spectrum. Two first states 1/2+ and 7/2+ are
close in energy. So, the low-lying isomeric state is expected in
N = 153 isotones.

FIG. 12. The same as in Fig. 7, but for the N = 157 isotones.
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FIG. 13. The same as in Fig. 7, but for the N = 159 isotones.

The lowest calculated states in the N = 155 isotonic chain
(Fig. 11) have �K � 3. Therefore, the long-living isomeric
state is expected in N = 155 isotones. If the energy of this
isomer is small, its lifetime is long enough and the α decay
could occur from this isomer. As seen, the calculated ground-
sate spin changes in 257No when the value of β4 decreases.
Therefore, the small change of the deformation could cause
the inversion of the levels 1/2+ and 7/2+, which are close in
energy, in the dense spectrum.

In the N = 157 isotonic chain (Fig. 12), the ground-state
hexadecapole deformation decreases with increasing Z. This
changes the ground-state spin and the order of low-lying levels.
The lowest calculated states in 263Sg and 265Hs (Fig. 11) have
�K � 4. So, the first excited states in 263Sg and 265Hs can be
related to the observed isomeric states [57] at 130 and above
300 keV, respectively. The lowest 3/2+ state could be isomeric
in 257Fm, 259No, and 261Rf. In the latter nucleus, the isomeric
state has been found at 234 keV [57].

Because of the change in the ground-state deformation, the
spectrum becomes denser withZ in theN = 159 isotonic chain
(Fig. 13). As in Fig. 12, the lowest 3/2+ state could be the
isomeric one. Indeed, there are experimental indications [57]
for the existence of low-lying isomeric states in the N = 159
isotones.

To find the nuclear binding energy, we still have to adjust
the parameters of macroscopic and maybe microscopic parts
of the potential energy. In Ref. [51], we presented such type
of calculations, but for the two-center oscillator potential. We
would like to leave the calculations of the binding energies
with the Woods-Saxon mean-field for future work. Because
the single-particle wave functions are calculated, the mass
and charge radii can be found as well. There are more
experimental data on α decays. The values of Qα are defined
by the difference of corresponding binding energies and,

FIG. 14. The same as in Fig. 7, but for 269Hs as an example of
nucleus with N = 161.

thus, are less sensitive to the uncertainties of the present
calculation. For nuclei 267Hs, 263Sg, 259Sg, and 255No of
α-decay chain of 267Hs, the calculated preliminary Qα are
9.61, 9.3, 9, and 8.47 MeV, respectively, which are in a good
agreement with the experimental values [57] 9.98, 9.4, 9.13,
and 8.43 MeV, respectively. One can find more examples in
Ref. [52].

As an example of N = 161 nucleus, the calculated spectrum
of 269Hs is shown in Fig. 14. One can see that the low-lying
isomeric states are not expected in the N = 161 isotonic chain.

Let us consider the ground-states spins of isotones. For
N = 149 and 151 isotones, the ground-state values of Kπ are
7/2+ and 9/2−, respectively. The ground-state spin can change
in the isotone chain if the deformation varies due to the cross of
proton shell or subshell. The residual interaction and phonon
coupling could also change the order of the quasiparticle levels
in the case of the dense single-particle spectrum. For example,
in the isotone chain with N = 153 the sequence of the close
quasiparticle states 7/2+[613] and 1/2+[620] changes due to
even small change of the ground-state deformation. In the
N = 155 isotones, the quasiparticle-phonon interaction lowers
the 7/2+ state with respect to the closest 1/2+[620] state. This
corresponds to the experimental data. Table III summarizes the
results of our description of the ground-state spins. In most
cases, our results correspond to the experimental assignments
[57]. In 245Cf and 257No, the calculated ground-state spins
deviate from the experimental assignments. In these nuclei,
the level with the experimental value of spin is close in energy
to the calculated ground-state level, within 200- to 300-keV
inaccuracy of the QPM.

The results of our calculations demonstrate a rather good
description of many low-lying states. However, the energies of
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TABLE III. Calculated and experimental ground-state spins of the indicated nuclei with N = 147–161. The tentative assignments of the
spins are in the brackets.

N Cm Cf Fm No Rf Sg Hs

Exp. Calc. Exp. Calc. Exp. Calc. Exp. Calc. Exp. Calc. Exp. Calc. Calc.
147 5/2+ 5/2+ (1/2+) 5/2+

149 7/2+ 7/2+ (7/2+) 7/2+ (7/2+) 7/2+ (7/2+) 7/2+

151 9/2− 9/2− 9/2− 9/2− (9/2−) 9/2− (9/2−) 9/2− (9/2−) 9/2−

153 1/2+ 1/2+ 1/2+ 1/2+ 1/2+ 1/2+ (1/2+) 1/2+ (1/2+) 1/2+ (1/2+) 1/2+

155 (1/2+) 1/2+ (7/2+) 7/2+ 7/2+ 7/2+ (3/2+) 1/2+ 1/2+ 1/2+ 11/2−

157 (7/2+) 7/2+ (9/2+) 9/2+ (9/2+) 9/2+ 11/2− 11/2− 11/2−

159 9/2+ (9/2+) 9/2+ 9/2+

161 9/2+

some states are underestimated. In N = 151 isotones, we get
two low-lying 7/2+ states. As seen in Table IV, the lowest one
7/2+[624] has the energy 30–100 keV, but in the experiment it
is at 285–385 keV. Similar disagreement is also seen in other
theoretical calculations mentioned in Table IV. If one level is
better described in some approach, one can usually find another
level whose description is worse. In N = 153 isotones, we
underestimate the energy of the 9/2−[734] state in comparison
to the experiment. However, for nuclei beyond Cf only a few
levels are firmly defined in the experiment.

VI. SUMMARY

The systematic calculations of low-lying states were
performed in the N = 147–161 isotones of heavy nuclei. The

QPM was used to take into account the residual paring and
phonon-quasiparticle interactions. This model was improved
by finding out the ground-state deformations for each nucleus
using the microscopic-macroscopic approach. As shown, the
effects beyond the mean-field influence the order of the levels
in quite dense spectra. The phonon-quasiparticle interaction is
mainly important for the states above 400 keV. The energies
of the low-lying states are reproduced within 300 keV, which
seems to be a quite good description. Note that the calculations
for all isotonic chains were performed with the fixed parame-
ters of the Hamiltonian, which seem to be reliable in the wide
region of nuclear chart. If the lowest excited state differs by
�K � 3 with the ground state, one can expect an appearance
of the isomeric state. In heaviest nuclei, the α decay from these
isomeric states could occur. The estimate of isomer lifetime is

TABLE IV. Comparison of calculated (th.) nonrotational spectra in N = 151 isotones with other calculations and the available experimental
data. The tentatively assigned energies are in the brackets.

Nucleus 633↓ 501↓ 631↓ 743↑ 622↑ 624↓ 734↑ 613↑ 620↑ 622↓ 725↑ 615↓ 752↓
247Cm [61,62] (506) 227 (285) 0 (<439) 405 (668) (<687)

th. 1020 930 800 580 30 0 490 330 530 710 830 990
[11] 800 790 380 170 0 640 540 680 920
[8] 590 530 220 0 650 760 1040
[29] 1096 1327 859 818 647 84 0 218 467 677 691 811 1052
[21] 800 570 730 480 50 0 240 210 350 450 1050 870

249Cf [63] (1218) 145 380 0 (443) (417) 1008
th. 1060 930 750 650 40 0 430 350 560 700 810

[11] 800 810 360 170 0 720 590 720 920
[8] 980 490 220 0 790 620 780 1050
[29] 980 850 820 610 50 0 210 450 650 620 800 890

251Fm [64] 392 200 (354) (0) 558
th. 950 870 650 690 40 0 340 340 580 640 860

[11] 900 780 810 330 180 0 880 630 760 950
[8] 440 890 0 210 650 790 1030
[29] 1080 830 800 600 50 0 200 450 530 650 790 1050

253No [64,65] (630) 167 (385) (0) 450
th. 1040 970 710 520 630 40 0 310 350 550 570 610

[11] 690 700 780 320 200 0 660 730
[8] 410 950 0 240 670 800 1000 1500
[29] 1100 800 770 600 200 0 50 400 650 660 700 1050

255Rf [64] (0)
th. 1000 690 550 420 650 100 0 300 390 600 490 870 1100

[11] 580 630 750 320 250 0 920 650 750 820
[8] 400 920 0 290 670 790 890
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a separate complicated problem. As is known, the simple Weis-
skopf estimates strongly overestimate the isomer lifetimes. To
be more precise, one should to take into account the Corriolis
and other effects which influence the width of isomeric
state. Comparing our calculated results with those obtained
earlier without taking the phonon-quasiparticle interaction
into account, one can conclude that some improvement of the
excitation spectra is achieved in the calculations presented. One
way to improve further the description of the experimental data
and increase the predictive power of the model is the extraction
of the single-particle potential for the QPM from the self-

consistent approaches. In this case, one can combine the
advantages of the QPM with the self-consistent microscopic
methods.
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