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approach to double-β decay of 48Ca
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The nuclear matrix elements (NMEs) of the neutrinoless and two-neutrino double-β decays of 48Ca
are calculated by the quasiparticle random-phase approximation (QRPA) with emphasis on the consistency
examinations of this calculation method. The main new examination points are the consistency of two ways
to treat the intermediate-state energies in the two-neutrino double-β NME and comparison with the experimental
charge-exchange strength functions obtained from 48Ca(p,n) and 48Ti(n,p) reactions. No decisive problem
preventing use of the QRPA approach is found. The obtained neutrinoless double-β NME adjusted by the ratio
of the effective and bare axial-vector current couplings is lowest in those calculated by different groups and close
to one of the QRPA values obtained by another group.
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I. INTRODUCTION

If the neutrinoless double-β (0νββ) decay is observed,
one can conclude that the neutrino is a Majorana particle. In
this case, the effective neutrino mass can be determined by
the half-life of the 0νββ decay, expected to be measured by
experiments, the phase-space factor, and the nuclear matrix
element (NME). Recently the study of the 0νββ decay has
obtained a stronger motivation than before by the discovery
of the neutrino oscillation [1–4], proving the existence of the
finite neutrino mass. The phase-space factor and NME are
the quantities that the theory should supply, and the latter
is more difficult than the former because accurate nuclear
many-body wave functions are necessary. As is well known,
the calculated values of the NMEs are distributed in the range
of a factor of 2–3 [5], and this range has not been reduced
in spite of the effort of many theorists. For now there is no
perfect calculation because all of the candidate nuclei for
the 0νββ decay are heavy, so that the exact nuclear wave
functions cannot be obtained. In addition, effective strength of
the spin-isospin transition operators is necessary to reproduce
the related experimental data.

One of the tasks that theorists need to do is to examine the
consistency of their calculations for clarification of reliability.
The purpose of this paper is to examine the consistency of the
QRPA approach to the ββ decays of 48Ca in detail. There are
two main checkpoints not yet investigated. One is the treatment
of the intermediate-state energy in the two-neutrino double-β
(2νββ) decay. The QRPA approach has two sets of intermediate
states defined by the QRPA calculations, based on the initial
and final states. I clarify the validity of using the two sets
of intermediate-state energies in the 2νββ-NME calculation.
Another new checkpoint is the comparison of the Gamow-
Teller (GT) strength function between the experimental data
[6] and the calculation. This checkpoint includes a question of
whether theory can explain the quenching of the experimental
GT strength.

My motivation to investigate 48Ca is based on the fact
that this mother nucleus is not always discussed in papers
of the systematic application of the QRPA to the ββ decays.
I clarify in this paper whether 48Ca → 48Ti is particularly
difficult for the QRPA approach. Several experimental projects
searching for the 0νββ decay of 48Ca are in progress, or
have been finished; see Refs. [7] (TGV), [8] (ELEGANT VI),
[9] (NEMO-3), [10] (SuperNEMO), [11] (CANDLES), [12]
(CARVEL), and [13]. The advantage of 48Ca is the large Q
value (4.7 MeV), and this nucleus is one of the major candidates
for the 0νββ decay. Thus, it is worth investigating theoretically
in detail.

My calculation method is explained in Sec. II specifically
for 48Ca → 48Ti, including the technical aspects. The method
to examine the use of two sets of intermediate-state energies
in the 2νββ NME is described in Sec. III. The results of the
calculations are shown in Sec. IV, and a comparison with the
results of other groups is made. The GT strength function is
discussed in Sec. V, and this study is summarized in Sec. VI.

II. CALCULATION METHOD

A. Hartree-Fock-Bogoliubov calculation
48Ca is not often discussed in the QRPA approach. This may

be because the pairing gaps of the ground state of this nucleus
are not as certain as those of other nuclei. I explain how the
pairing gaps are determined in my calculation. The three-point
formula [14] is used to obtain the experimental pairing gaps
from the experimental nuclear masses [15]. The formula for
the neutron pairing gap is

�̄n = − 1
2 {B(N − 1,Z) − 2B(N,Z) + B(N + 1,Z)}, (1)

where B(N,Z) denotes the binding energy of the nucleus with
the neutron number N and proton number Z, and that for the
protons, �̄p, is obtained analogously. The presumption is that
the odd-even mass staggering in the systematics occurs solely
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due to the pairing correlations. Thus, this method is usually not
used for the magic nuclei. The pairing gaps of 48Ti deduced
from the masses are �̄p = 2.343 MeV and �̄n = 1.742 MeV.
I reproduced approximately these pairing gaps by the Hartree-
Fock-Bogoliubov (HFB) calculation [16–18] using the Skyrme
interaction SkM∗ [19] and the like-particle contact pairing
interactions ∝ δ(r1 − r2) with the strengths adjusted for the
protons and neutrons separately: −258.4 MeV fm3 (protons)
and −224.5 MeV fm3 (neutrons) with the active range of
the pairing interaction being up to 30 MeV of the effective
single-particle energy [16]. The pairing gaps obtained by my
calculation are �p = 2.200 MeV and �n = 1.671 MeV (av-
erage pairing gaps). I also use this pairing interaction for 48Ca
assuming that the pairing-interaction strength does not change
significantly due to the small change in the proton and neutron
numbers. In order to check this assumption, I performed the
HFB calculation for 44Ar and obtained �p = 2.080 MeV and
�n = 1.792 MeV. The corresponding experimental values are
�̄p = 2.285 MeV and �̄n = 1.783 MeV. This result justifies
my procedure to treat the pairing interaction.

Using this pairing interaction, I obtained �p = 1.731 MeV
and �n = 0 MeV for 48Ca. The neutrons have more difficulty
in having the pairing gap than the protons because there are
shell gaps above and below the neutron Fermi surface at the
first f7/2 (1f7/2) orbital. Let us see the low-lying spectra,
to seek possible reflection of the proton pairing gap. The
first experimental excited state of 48Ca is at 3.831 MeV [15]
with Jπ = 2+. Since the proton one-particle–one-hole (1p-1h)
excitation with positive parity needs the so-called 2h̄ω jump,
the main components of the excitation are those of the neutrons
in the QRPA state. The second experimental excited state of
48Ca is at 4.283 MeV (0+). Again the 1p-1h excitations with
the 2h̄ω jump are necessary to have the 0+ excited state in
the QRPA. This condition applies for both the protons and
neutrons, so that the QRPA cannot create that low-lying 0+
state. The third and fourth excited states are at 4.503 MeV
(4+) and 4.506 MeV (3−), respectively, and the corresponding
QRPA excitation energies are 3.956 MeV (4+) and 5.550 MeV
(3−). No clear indication is obtained for the proton pairing
gap from the corresponding energies. If enhancement of the
two-proton transfer is seen experimentally, it would be an
encouraging indication. However, there is no experiment of
that reaction for 48Ca currently. Below I use the HFB solutions
with the finite proton pairing gap but no neutron one. The
uncertainty of the pairing gaps of 48Ca is minimized by the
self-consistent calculation of the HFB approximation.

B. QRPA calculation and technical parameters

The calculation scheme of the QRPA is the same as that used
in Refs. [20,21]. Here I note some technical parameters related
to the accuracy of the calculation. The single-particle basis for
calculating the QRPA Hamiltonian matrix is constructed by
the diagonalization of the one-body density matrix obtained
from the HFB solutions (the canonical basis [22]) with axial
and parity symmetries (the symmetry axis is z). This basis is
identical to the HF basis, if there is no pairing gap. The number
of single-particle states used in the calculations of this paper is
around 1600–1700, including those with both the positive and

negative jz (the z component of the angular momentum) for
each of the protons and neutrons. The maximum jz is 19/2.
That dimension of the single-particle space approximately cor-
responds to 15h̄ω harmonic-oscillator shells. The wave func-
tions are expressed with a B-spline mesh [16–18] in a cylinder
with a radius of 20 fm in the xy plane and 0 � z � 20 fm.
The root-mean-square radius of 48Ca is 3.531 fm in the HFB
solution. The number of mesh points is 42 for the region of
20 fm. The spherical symmetry of the spherical nuclei can be
satisfied accurately with this geometrical preparation. It was
confirmed by the HFB calculation that the ground states of 48Ca
and 48Ti are spherical. Many of the single-particle states are
in the discretized-continuum region. The density matrix and
pairing tensor are calculated using the HFB wave functions in
the active energy range mentioned in the previous section.

The dimension of the two-quasiparticle basis for represent-
ing the QRPA excitation is truncated by the cutoff scheme
used in the previous calculations [20,21]. The cutoff criteria
in those calculations were determined so as to obtain the
convergence of the final NMEs with respect to the dimension
of the two-quasiparticle space and to satisfy the geometrical
symmetries of the Hamiltonian accurately in the calculation.
The same criteria are used for the calculation of 48Ca and 48Ti
of this paper. That dimension decreases as the K quantum
number (total jz of the nucleus) increases; it is approximately
24 000 for Kπ = 0+ and 13 000 for Kπ = 7+.

III. 2νββ NUCLEAR MATRIX ELEMENT

The 2νββ NME, see Eqs. (25)–(28) in Ref. [21], can be
written

M (2ν) = M
(2ν)
GT

μ0
− g2

V

g2
A

M
(2ν)
F

μ0F

, (2)

with the 2νββ GT NME M
(2ν)
GT /μ0, the 2νββ Fermi NME

M
(2ν)
F /μ0F , the vector-current coupling gV , and the axial-

vector current coupling gA. The formulation for the axially
symmetric nuclei is applied to the spherical nuclei 48Ca and
48Ti in the calculation. The initial and final states of the ββ
decay are Jπ = 0+ states. Under these conditions, the 2νββ
GT NME is given by

M
(2ν)
GT

μ0
= 3

∑
aK=0

exa

1

μa

〈Fexa|τ−σK=0

∣∣aK=0
exa

〉

× 〈
aK=0

exa

∣∣τ−σK=0|Iexa〉 (3)

= 3〈Fexa|τ−σK=0
mec

2

H − M̄
τ−σK=0|Iexa〉, (4)

μa = 1

mec2

(
EK=0

a,exa − M̄
)
, (5)

M̄ = 1

2
(MI + MF ). (6)

|Iexa〉, |Fexa〉, and |aK=0
exa 〉 are the exact initial, final, and

intermediate states with K = 0, respectively, and τ− is the
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charge-change operator from a neutron to proton.1 The spin-
Pauli matrix is denoted by σ , and H is the Hamiltonian. MI

and MF are the nuclear masses of the initial and final states,
respectively, and EK=0

a,exa is the energy of the exact intermediate
state. The electron mass is denoted by mec

2. An abbreviation
for the one-body operator

τ−σK=0 =
A∑

i=1

τ−(i)σK=0(i), (7)

is used (i is the nucleon index). The μ0 in the left-hand side of
Eq. (3) is a sign [26] indicating that M (2ν)

GT /μ0 is dimensionless.
In the same manner, the 2νββ Fermi NME is written

M
(2ν)
F

μ0F

=
∑
aK=0

exa

1

μa

〈Fexa|τ−∣∣aK=0
exa

〉〈
aK=0

exa

∣∣τ−|Iexa〉 (8)

= 〈Fexa|τ− mec
2

H − M̄
τ−|Iexa〉. (9)

The NME of the 2νββ decay is sensitive to the energy
denominator μa , thus the closure approximation is not applied.

Let us introduce the QRPA by replacing the nuclear states
|Fexa〉 and |Iexa〉 with the corresponding QRPA states |F 〉 and
|I 〉. The intermediate states are defined two ways: one is by the
QRPA calculation using the initial ground state, and another is
that using the final one. The former (latter) intermediate states
are denoted by |aK=0

I 〉 (|aK=0
F 〉), with which I have two sets of

equations:

M
(2ν)
GT (I )

μ0
= 3

∑
aK=0

I ,aK=0
F

〈F |τ−σK=0

∣∣aK=0
F

〉〈
aK=0

F

∣∣aK=0
I

〉

× 〈
aK=0

I

∣∣ mec
2

H − M̄
τ−σK=0|I 〉, (10)

M
(2ν)
F (I )

μ0F

=
∑

aK=0
I ,aK=0

F

〈F |τ−|aK=0
F

〉〈
aK=0

F

∣∣aK=0
I

〉

× 〈
aK=0

I

∣∣ mec
2

H − M̄
τ−|I 〉, (11)

and

M
(2ν)
GT (F )

μ0
= 3

∑
aK=0

I ,aK=0
F

〈F |τ−σK=0
mec

2

H − M̄

∣∣aK=0
F

〉

× 〈
aK=0

F

∣∣aK=0
I

〉〈
aK=0

I

∣∣τ−σK=0|I 〉, (12)

M
(2ν)
F (F )

μ0F

=
∑

aK=0
I ,aK=0

F

〈F |τ− mec
2

H − M̄

∣∣aK=0
F

〉

× 〈
aK=0

F

∣∣aK=0
I

〉〈
aK=0

I

∣∣τ−|I 〉. (13)

The operator mec
2

H−M̄
includes the higher-order many-

quasiparticle or many-particle–many-hole components beyond

1I have denoted this operator as τ+ previously [20,21,23,24]. In this
paper, I change it to the convention of nuclear physics [25] because
the GT strength functions are discussed below.

the QRPA, thus Eqs. (10) and (12) [Eqs. (11) and (13)]
do not coincide exactly. However, if the QRPA is a good
approximation, the effect of those higher-order components
would be small. Then, the following equations are derived:

M
(2ν)
GT (I )

μ0
� 3

∑
aK=0

I ,aK=0
F

mec
2

EK=0
aI − M̄

〈F |τ−σK=0

∣∣aK=0
F

〉

× 〈
aK=0

F

∣∣aK=0
I

〉〈
aK=0

I

∣∣τ−σK=0|I 〉, (14)

M
(2ν)
F (I )

μ0F

�
∑

aK=0
I ,aK=0

F

mec
2

EK=0
aI − M̄

〈F |τ−∣∣aK=0
F

〉

× 〈
aK=0

F

∣∣aK=0
I

〉〈
aK=0

I

∣∣τ−|I 〉, (15)

M (2ν)(I ) = M
(2ν)
GT (I )

μ0
− g2

V

g2
A

M
(2ν)
F (I )

μ0F

, (16)

M
(2ν)
GT (F )

μ0
� 3

∑
aK=0

I ,aK=0
F

mec
2

EK=0
aF − M̄

〈F |τ−σK=0

∣∣aK=0
F

〉

× 〈
aK=0

F

∣∣aK=0
I

〉〈
aK=0

I

∣∣τ−σK=0|I 〉, (17)

M
(2ν)
F (F )

μ0F

�
∑

aK=0
I ,aK=0

F

mec
2

EK=0
aF − M̄

〈F |τ−∣∣aK=0
F

〉

× 〈
aK=0

F

∣∣aK=0
I

〉〈
aK=0

I

∣∣τ−|I 〉, (18)

M (2ν)(F ) = M
(2ν)
GT (F )

μ0
− g2

V

g2
A

M
(2ν)
F (F )

μ0F

, (19)

M (2ν)(I ) � M (2ν)(F ). (20)

The energy of the intermediate state is calculated using the
proton-neutron (pn) QRPA excitation energies E

pnQRPA
K=0,aI and

E
pnQRPA
K=0,aF as

EK=0
aI = E

pnQRPA
K=0,aI + λp(I ) − λn(I ) + mpc2 − mnc

2 + MI,

(21)

EK=0
aF = E

pnQRPA
K=0,aF + λn(F ) − λp(F ) + mnc

2 − mpc2 + MF ,

(22)

where λp(I ) and λn(I ) are the proton and neutron chemical
potentials of the initial state, and λp(F ) and λn(F ) are those
of the final state; those of the HFB ground states are used, and
mpc2 and mnc

2 are the proton and neutron masses. For MI and
MF the experimental data are used. The accuracy of Eq. (20) is
a consistency checkpoint of the QRPA approach. This is shown
numerically below.

The overlap 〈aK=0
F |aK=0

I 〉 is calculated using the equations
developed in Ref. [24]. However, there is a difference from
the calculation of 150Nd → 150Sm [20,21]. The norm of the
unnormalized QRPA ground state, NI and NF in Eqs. (14)
and (15) in Ref. [24], diverges; therefore, the norm was
renormalized by truncating the contribution of the QRPA

034304-3



J. TERASAKI PHYSICAL REVIEW C 97, 034304 (2018)

FIG. 1. Illustrative example of vanishing component of overlap
of states obtained by charge change from (Z + 2,N − 2) and (Z,N )
nuclei.

solutions so that the semiexperimental correlation energy2 is
reproduced by the QRPA [20]. I used the correlation energy
because this is sensitive to the QRPA correlations, and the
QRPA-correlation energy diverges without the truncation [24].
The unnormalized overlap does not diverge because the bra
and ket states are created by the charge change from the nuclei
with (proton number, neutron number) = (Z + 2,N − 2) and
(Z,N ), and many components of the unnormalized overlap
vanish, which keep the configuration around the Fermi surface
of the HF(B) ground states (see Fig. 1) [20].

Usually the Skyrme interaction (energy density functional)
is constructed so as to reproduce experimental physical quan-
tities, including the binding energies of the doubly-magic
nuclei by the HF ground states (Kohn-Sham states). Therefore,
the HF(B) ground state replaces the (Q)RPA ground state of
48Ca in the overlap calculation, and the HFB ground state is
also used in the same manner for the ground state of 48Ti
in the overlap approximately. In the calculation of 150Nd →
150Sm, the product of the norms of the unnormalized QRPA
ground states played a role to decrease the NME through
a factor of 1/NFNI , and because of this the 2νββ NME
close to the semiempirical value was obtained without very
strong pn pairing interaction causing the near instability of the
QRPA solutions. Therefore it is a checkpoint of my QRPA
approach to see whether the very strong pn pairing interaction
is unnecessary for 48Ca → 48Ti.

IV. CALCULATION RESULT

The strength of the isovector pn [(T ,Tz) = (1,0)] pair-
ing interaction g

pair
(T ,Tz)=(1,0) is determined to be the average

of the proton-proton [(T ,Tz) = (1,−1)] and neutron-neutron
[(T ,Tz)) = (1,1)] pairing interactions to satisfy approximately
the isospin invariance of the T = 1 pairing interaction. T
denotes the isospin, and Tz is its z component. Two QRPA
calculations are performed for the 0νββ NME; one is the
pnQRPA, and another is the like-particle (lp) QRPA [20,21].
The latter can be used under the closure approximation. The
calculation by the lpQRPA corresponds to the virtual decay
path via the two-particle transfer. The Hamiltonian used for
the HFB calculation is used for the two QRPA calculations.
However, the important interaction components are different

2This is obtained from the experimental binding energy and the HFB
ground-state energy.

TABLE I. Calculated values of 2νββ NMEs and T
(2ν)

1/2 for 48Ca →
48Ti and gA.

Equations gA M (2ν) M
(2ν)
GT

μ0

M
(2ν)
F

μ0F
T

(2ν)
1/2 (1019 yr)

(14)–(16) 0.48 0.138 0.124 −0.0033 6.339
(17)–(19) 0.49 0.133 0.112 −0.0052 6.274

for the two QRPA calculations. Thus, the equivalence of the
two paths is a theoretical constraint on the effective interactions
used in the QRPA. The strength of theT = 0 pairing interaction
g

pair
T =0 is determined so as to have the 0νββ GT NMEs obtained

by the two methods be equal because other interactions are
established. Note that the pn pairing interactions have no
contribution to the lpQRPA.

In this paper I introduce a practical modification to my
method used in Ref. [21]: the Fermi component of the 0νββ
NME is not used for the constraint on the effective interaction.
The fundamental reason is that the effective interaction Skyrme
SkM∗ plus the Coulomb interaction does not have the isospin
invariance. The Fermi NME is sensitive to the (T ,Tz) =
(1,0) pairing interaction. Thus, if the equality of the Fermi
NME is required between the two different-path calculations,
g

pair
(T ,Tz)=(1,0) can be determined. However, then, the T = 1

pairing interaction does not satisfy the isospin invariance. The
value of gA is determined so as to reproduce the experimental
half-life of the 2νββ decay. Those three parameters g

pair
(T ,Tz)=(1,0),

g
pair
T =0, and gA can be determined separately in this order. I also

use this gA to the NME calculation of 0νββ decay because
the very large single-particle space is used. If this space is not
enough large, different gA’s would be necessary for the two
decays because the neutrino potential of the 0νββ decay has a
divergence. The value of gV is always 1 throughout this paper.

The value of g
pair
(T ,Tz)=(1,0) is −241.43 MeV fm3, and g

pair
T =0

was found to be −180.0 MeV fm3 according to the above
method. The experimental half-life of the 2νββ decay of 48Ca
is T

(2ν)exp
1/2 = (6.4 ± 1.2) × 1019 yr [27]. The corresponding

theoretical half-life is calculated by [28]

T
(2ν)th

1/2 = (
G

(0)
2ν g4

A

)−1|M (2ν)|−2, (23)

with the phase-space factor G
(0)
2ν = 15550 × 10−21 yr−1 [28].

T
(2ν)exp

1/2 was reproduced by gA = 0.48 with M (2ν)(I ) = 0.138
and gA = 0.49 with M (2ν)(F ) = 0.133. The relative difference
of M (2ν)(I ) and M (2ν)(F ) is �4%, thus the consistency of the
QRPA approach discussed above is approximately satisfied.
The GT and Fermi NMEs are shown in Table I. The absolute
value of M

(2ν)
F /μ0F is less than 5% of M

(2ν)
GT /μ0, thus the

isospin invariance of M (2ν) is also approximately satisfied.
By using the result of Ref. [20] for 150Nd, it turns out that

gA = 0.84 reproduces T
(2ν)exp

1/2 = 8.2 × 1018 yr [29] of that
nucleus. The gA value of 48Ca is 58% of that of 150Nd. One of
the causes for this difference is apparently the normalization
factors of the QRPA ground states. The product of the two
normalization factors of 150Nd and 150Sm is 1.860 [20], but
the corresponding product of 48Ca and 48Ti is 1.0; see the
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previous section. If the product of the normalization factors of
1.860 is applied artificially to the 48Ca calculation, the T

(2ν)exp
1/2

is reproduced by gA = 0.68. This value is larger than 0.49
as expected, although still smaller than 0.84 of 150Nd. Other
reasons may be the differences in the nuclear structures of those
nuclei; however, they are not obvious. The gA of my calculation
is consistent with a recent tendency to accept gA < 1.0, even
gA ≈ 0.5 (not for 48Ca); see, e.g., [30]. For the 0νββ decays
of 48Ca, the bare value of 1.25 or 1.27 is usually used by other
groups; see the comparison below.

I performed a reference calculation using a usual method;
g

pair
T =0 was determined so as to reproduce the T

(2ν)exp
1/2 . For gA, an

effective value of 1.0 was used, and I used g
pair
(T ,Tz)=(1,0) already

determined. The g
pair
T =0 dependence of T

(2ν)
1/2 is shown in Fig. 2.

The difference in input for the two sets of results is whether
EK=0

aF ’s are used (connected by solid line) or EK=0
aI ’s are used

(connected by dotted line). The mean value of the two results
at g

pair
T =0 = −300.0 MeV fm3 (the rightmost points) is close to

the experimental value of (6.4 ± 1.2) × 1019 yr. However, the
discrepancy of the two points is too large, therefore the QRPA
is not a good approximation. This method to determine g

pair
T =0

cannot be used. Generally, the instability of the mean field or
HFB ground state occurs in relation to the symmetry breaking,
if the strength of attractive interaction increases significantly.
The QRPA is usually not used near this instability.

Subsequently, I calculated the 0νββ NME M (0ν) (for the
equation, see Ref. [20]) using gA = 0.49, and M (0ν) = 3.054
was obtained. My effective gA is much smaller than the usual

0

2

4

6

8
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 12

 14

 120  160  200  240  280

T
(2

v)
1/

2
(1

019
yr

)

−gT=0
pair (MeV fm3)

E K=0
aF

E K=0
aI

FIG. 2. Calculated half-life of 48Ca to 2νββ decay as functions
of −g

pair
T =0. The points connected by solid (dotted) lines were obtained

using EK=0
aF ’s (EK=0

aI ’s). The parameters gA = 1.0 and g
pair
(T ,Tz)=(1,0) =

−241.43 MeV fm3 were used.

ones ∼1.0. In Table II, M (0ν), M
(0ν)
GT (Gamow-Teller 0νββ

NME), M
(0ν)
F (Fermi 0νββ NME), M

(0ν)
T (0νββ NME of

the tensor transition operator, shown if used), and gA of the
different groups are shown. For comparison of the results with
different gA’s, I also show in the table the reduced half-life

R
(0ν)
1/2 = (

G0νg
4
A

)−1
(mec

2)2|M (0ν)|−2, (24)

TABLE II. M
(0ν)
GT , M

(0ν)
F , M

(0ν)
T , M (0ν), gA, R

(0ν)
1/2 , and M (0ν)′ of the 0νββ decay of 48Ca calculated by different groups. The first column

indicates the group. Calculation 2 is my calculation. Calculations 1 and 3–10 indicate the results of Refs. [31] (Argonne V18), [32], [33], [34],
[35], [36], [37], [38], and [39], respectively. Three results are shown in Calculation 1. The upper two rows show the results with no pairing
gap of the 48Ca ground state, and two values of gA are used: 1.0 for the first row and 1.27 for the second row. The third row shows the result
with finite pairing gaps of the ground states and gA = 1.27; see Ref. [31] for the pairing gaps. The difference in the two results of Calculation
3 is in the method to modify the neutrino potential in terms of the short-range correlations: the so-called SRC. The two values of Calculation
5 correspond to the minimum and maximum M (0ν) obtained using the two major shells. An effective method of the SRC is used except for
Calculations 2, 8, and 9. For Calculation 10, see Ref. [39]. The mark ∗ indicates that the specified term is included in the calculation; however,
the value is not noted in the paper. The double-∗ mark indicates that the term is not included in the calculation. The definition of the sign of
M

(0ν)
T is the same as that of Ref. [31]. M

(0ν)
T of Calculation 8 is not obvious because of the different theoretical framework. In Calculation 10

[39], (g2
V /g2

A)M (0ν)
F = −0.160 is obtained, but gA is not noted in the paper. See also Ref. [40].

Cal. M
(0ν)
GT M

(0ν)
F M

(0ν)
T M (0ν) gA R

(0ν)
1/2 M (0ν)′

(1012 MeV2 yr)

1

⎧⎨
⎩

0.639 −0.268 −0.161 0.745 1.0 18.95 0.462
0.523 −0.268 −0.149 0.541 1.27 13.82 0.541

∗ ∗ ∗ 0.71 1.27 8.02 0.71
2 1.723 −0.319 ∗∗ 3.054 0.49 19.572 0.454

3

{
0.575 −0.144 −0.057 0.61 1.25 11.585 0.591

∗ ∗ ∗ 0.85 1.25 5.966 0.823
4 0.747 −0.208 −0.079 0.800 1.254 6.650 0.780

5

{
0.852 −0.288 −0.068 0.963 1.27 4.389 0.963
1.045 −0.327 −0.065 1.183 1.27 2.905 1.183

6 1.73 −0.30 −0.17 1.75 1.269 1.325 1.75
7 1.793 −0.673 ∗∗ 2.229 1.25 0.867 2.16
8 ∗ ∗ 3.66 1.254 0.317 3.57
9 ∗ ∗ ∗ 1.082 ≈1.27 3.455 1.082
10 1.211 ∗ −0.070 1.301 ∗
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where G0ν is the phase-space factor of the 0νββ decay (in my
calculation, G0ν = 0.2481 × 10−13 yr−1 [28]), and the scaled
0νββ NME, e.g. [31],

M (0ν)′ = g2
A(

gbare
A

)2 M (0ν), (25)

where gbare
A is the value of gA not including the many-body

effect or compensation of approximation, and gbare
A = 1.27 is

used; see, e.g., [5]. The methods of Calculations 1 and 2 are
the (Q)RPA (the latter is my calculation), those of 3–5 are
the (interacting) shell model, that of 6 is the interacting-boson
model, and those of 7–9 are the generator-coordinate method;
see the caption for the references. R

(0ν)
1/2 is the quantity used to

derive the effective neutrino mass 〈mν〉 in

〈mν〉2 = R
(0ν)
1/2

T
(0ν)

1/2

, (26)

with the half-life of the 0νββ decay T
(0ν)

1/2 expected to be

available experimentally. T
(0ν)

1/2 and 〈mν〉 are unique; if all

calculations using different approximations are correct, R
(0ν)
1/2

would be identical. Therefore R
(0ν)
1/2 is better than M (0ν) for

comparison of different calculations. R
(0ν)
1/2 of my calculation,

Calculation 2, is close to the largest one of another (Q)RPA
calculation. The QRPA calculations show the largest R

(0ν)
1/2 in

the calculations by the different methods. The T
(0ν)

1/2 predicted
by my calculation is larger than that by the shell model [34]
by a factor of 5.

It is noted that I used the latest value of T
(2ν)exp

1/2 , which
is nearly 50% larger than the previous values [29]. However,
the old value is used in some of the other calculations. If
the old one, 4.4 × 1019 yr, is used for the fitting, my R

(0ν)
1/2

is 16.297 × 1012 MeV2yr [gA = 0.53, Eqs. (14)–(16)] and
15.574 × 1012 MeV2yr [gA = 0.54, Eqs. (17)–(19)]. Thus,
there is no qualitative influence on the comparison.

As seen from Eqs. (24)–(26), M (0ν)′ is also a quantity
used to obtain 〈mν〉. Other necessary inputs for obtaining
〈mν〉 are the experimental data and constants other than gA,
thus M (0ν)′ can also be compared between calculations with
different gA. This NME is less affected by the uncertainty of
gA than R

(0ν)
1/2 because the gA dependence of M (0ν)′ is not higher

order than g2
A. The most significant difference between R

(0ν)
1/2

and M (0ν)′ is seen in Calculations 1–4. The results of these
four calculations seem close in M (0ν)′, but the differences in
R

(0ν)
1/2 are significantly larger. Difference such as this can occur

because of the relation

R
(0ν)
1/2 ∝ (M (0ν)′)−2. (27)

When M (0ν)′’s are �0.5 or smaller, the difference between
them is magnified in R

(0ν)
1/2 . Both R

(0ν)
1/2 and M (0ν)′ are important.

One can concentrate on the nuclear property in discussing
M (0ν)′. On the other hand, the half-life is the physical quantity
measured, and R

(0ν)
1/2 is more directly related to that than M (0ν)′

because of the proportionality.

TABLE III. R
(0ν)
1/2 (gA = 1.0) and M (0ν)′(gA = 1.0) calculated with

gA = 1.0 for Calculations 1–7 without M (0ν)
T . The calculation number

and constituent results correspond to those rows in Table II. The mark
∗ indicates that M

(0ν)
GT and M

(0ν)
F are not available.

Cal. R
(0ν)
1/2 (gA = 1.0) M (0ν)′(gA = 1.0)

(1012 MeV2 yr)

1

⎧⎨
⎩

12.79 0.562
16.82 0.490

∗ ∗
2 2.52 1.266

3

{
20.36 0.446

∗ ∗
4 11.54 0.592

5

{
8.10 0.707
5.52 0.856

6 2.55 1.259
7 1.73 1.529

The bare value of gA is usually used in the 48Ca calculations.
Note, however, that in the larger set of samples of other nuclei
including the single-β decays, the effective value of 1.0 is
historically more usual; see, e.g., [41]. My M

(0ν)
GT and M

(0ν)
F are

close to those of Calculation 6 (the interacting-boson model);
however, M (0ν) are quite different because of the difference
in the used gA. In my calculation, that gA is necessary for
reproducing the T

(2ν)exp
1/2 . It is seen from the comparison of the

first two rows of Calculations 1 and 2 (both are the QRPA
calculations) that M (0ν) and gA are quite different; however,
R

(0ν)
1/2 and M (0ν)′ are close. Both calculations use T

(2ν)exp
1/2 for

determining parameters, but the methods to determine g
pair
T =0

and gA are different. The fluctuation of M
(0ν)
GT seen in Table II

is larger than those of M
(0ν)
F and M

(0ν)
T .

For a reference, I also made a comparison under conditions
as unified as possible: R

(0ν)
1/2 (gA = 1.0) and M (0ν)′(gA = 1.0)

calculated with the same gA = 1.0 and without M (0ν)
T are shown

in Table III for those calculations in which M
(0ν)
GT and M

(0ν)
F

are available. The method dependence of M (0ν)′(gA = 1.0) is
similar to that of M

(0ν)
GT , as seen from the comparison of my

result and the others in Tables II and III. An analogous tendency
(but inverted method dependence) is seen for R

(0ν)
1/2 (gA = 1.0).

My values of M (0ν)′ and R
(0ν)
1/2 change much more than those

of other groups between the two tables because my value of
gA = 0.49 is much smaller than those used by other groups.

A possible difference between the QRPA calculation of
Ref. [31] and mine is the T = 0 pairing-interaction strength,
because my original method is used to determine that strength.
Since different operators are used to define that interaction,
the interaction strength can only be compared in terms of the
position on the curve of the NME versus g

pair
T =0 (this information

of Ref. [31] is not available). I show in Fig. 3 the plots of
M (0ν), M

(0ν)
GT , and −M

(0ν)
F versus −g

pair
T =0 of my calculation.

The adopted value of g
pair
T =0 is −180.0 MeV fm3, as mentioned

above, thus it is seen that my calculation is in the safe region
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FIG. 3. Dependence of M (0ν), M
(0ν)
GT , and −M

(0ν)
F on g

pair
T =0.

of the QRPA. This is reasonable because g
pair
T =0 is determined

referring to M
(0ν)
GT obtained by the lpQRPA [21], for which the

HFB ground state is stable. The specialty of the overlap of
48Ca discussed in Sec. III does not cause very large T = 0
pn-pairing strength.

V. GAMOW-TELLER STRENGTH FUNCTION

A. Brief review

The GT strength function is calculated using the GT tran-
sition matrix, of which transition density is also an ingredient
of the NMEs of the ββ decay. Naturally the GT strength
function obtained from the experiments of the (p,n) and (n,p)
reactions is important information for checking a part of the
calculated ββ NMEs. This strength function and the half-life of
the 2νββ decay are the most direct experimental data helping
the calculation of the 0νββ NME because the β decay of 48Ca
is suppressed by the very small Q value of 279 keV [15], and
48Ti does not have the β+ decay or electron capture.

The above charge exchange occurs in the hadron knock-on
reaction, therefore the mechanism is independent of gA. Thus,
the charge-exchange reaction seems to be a quite adequate
method for checking the GT transition matrix elements. How-
ever, the extraction of the GT strength function from the
experimental cross section is not straightforward; in addition,
there was a historical problem of the quenching of the measured
GT strength. I briefly review those discussions.

The excitation by the spin-isospin operator of στ is effec-
tively induced by the (p,n) and (n,p) reactions with an incident
energy of 200 MeV or larger at the forward angles. The basic
equation for extracting the GT transition strength B(GT) from
the cross section σGT(q,ω) is

σGT(q,ω) = σ̂GTF (q,ω)B(GT), (28)

where σ̂GT is the unit cross section determined experimentally,
and F (q,ω) is a function depending on the momentum transfer
q and energy loss ω (variables); see, e.g., Ref. [42] for these
factors. For the derivation of Eq. (28), sometimes called the
proportionality relation, see, e.g., Ref. [43]. The limit of
q → 0 is used for extracting B(GT) from the exeprimental
cross section [42,43]. The presumption for Eq. (28) is that

the reaction is induced by a one-body field (the impulse
approximation) [44,45] and a single-step reaction [46]. There
is also another method for determining B(GT) by Eq. (28) and
the experimental data of the β decay for pairs of mirror nuclei
[47] (not applied to 48Ca and 48Ti).

The quenching factor of the sum of the experimental charge-
exchange strengths corresponding to the GT sum rule (Ikeda
sum rule) [48] is defined by

Q = Sexp
β− − Sexp

β+

3(N − Z)
, (29)

whereSexp
β− andSexp

β+ are the sums of the experimental transition
strengths of β− and β+ decay type, respectively. In the early
days, this Q was 0.40–0.65 systematically in a broad mass
region [43]. This problem stimulated the discussion on the
contribution of the �-isobar nucleon hole; for this see the
references in, e.g., Ref. [43]. Below is the history of the studies
on the basis of the nucleon degrees of freedom.

The cross sections and deduced strength functions are
reported by several experiments for mother nuclei 90Zr [42,49–
51] and 208Pb [50–52]. The strength function of 90Zr(p,n)
[49] consists of a sharp peak around E = 1 MeV, the giant
resonance in E = 5–20 MeV, and a broad and low strength dis-
tribution in E � 20 MeV. The transition strength of 90Zr(n,p)
is much smaller, as anticipated for the neutron-excess nucleus,
but has a non-negligible broad distribution. That of 208Pb(p,n)
has structure similar to that of the giant resonance and broad
distribution.

It was found [50] that the broad and low distribution in
the high-energy region was seen with an incident energy of
795 MeV but not seen with 200 MeV. The authors of that
paper argue that the projectile with the higher energy can
be absorbed more efficiently than that with the lower energy,
thus the high-energy broad distribution is due to the isovector
spin monopole excitation. That is a compression mode and
is induced by the transition operator r2στ . Theoretically, this
possibility was discussed in, e.g., Ref. [53].

The authors of Refs. [54,55] showed independently that the
distribution of the transition strength was shifted substantially
to the high-energy side by the two-particle–two-hole (2p-2h)
correlations of the nuclear states. It is noted that the charge-
exchange transition strengths due to the above two mechanisms
have similar high-energy broad distributions if scaled to the
same height. It has been pointed out [56] that r2στ induces
not only the compression mode but also the GT transition, and
a method to separate these two components was suggested.

The experimental GT strengths in which the isovector spin
monopole component has been subtracted were derived [49]
for 90Zr(n,p) and 90Zr(p,n) reactions up to E = 70 MeV, and
the quenching factor was found to be Q = 0.88 ± 0.06. This
is a value much closer to unity compared to those in the early
days. Summarizing the status of the 90Zr studies, the quenching
problem of the experimental GT strength seems solvable by
extending the measured energy region. The high-energy (E �
20 MeV) broad and low distribution of the strength in the
original data contains both the 2p-2h and the isovector spin
monopole excitations (that is, 1p-1h excitations).
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FIG. 4. Strength functions of the GT transition from 48Ca to 48Sc
measured (isolated points with error bars) and calculated by the
QRPA (solid line). The origin of the excitation energy E is at the
ground state of 48Sc. The measured one [6] is obtained using Eq. (28)
[dB(GT )/dE]. The inset is a magnification of the high-energy region.

B. Gamow-Teller strength functions of 48Ca and 48Ti

Now I examine my transition strengths of 48Ca and 48Ti. I
obtained the calculated value of the GT sum rule of

SQRPA
β− − SQRPA

β+ = 24.638 − 0.633 = 24.005 (48Ca),

SQRPA
β− − SQRPA

β+ = 15.257 − 3.268 = 11.989 (48Ti).

SQRPA
β− and SQRPA

β+ are the GT strength sums calculated by the
QRPA corresponding to Sexp

β− and Sexp
β+ , respectively. The exact

sum-rule values are 24 (48Ca) and 12 (48Ti). Thus the QRPA
calculation satisfies the sum rule accurately; this is a technical
check of the QRPA calculation.

The experiments of 48Ca(p,n)48Sc and 48Ti(n,p)48Sc re-
actions have been performed [6], and the charge-exchange
strength functions have been obtained. Figure 4 shows the
measured and calculated GT strength functions for 48Ca →
48Sc. These results have two common structures: one is the
low-energy peak (E � 2.5 MeV in the experiment and 1.3
MeV in the calculation) and the other is the giant resonance in
E = 8–13 MeV. There is no major structure above this energy
region in the calculated result, but the tail of the experimental
data is higher than the calculated one (see the inset). The width
parameters of 0.2 and 1.0 MeV are used in the Lorentzian fold-
ing for the states below ∼8 MeV and above this energy, respec-
tively, for simulating the discrete and continuum states. The
overall feature of the experimental data is reproduced. Figure 5
illustrates the strength function for r2στ . The same structure
as that of the GT strength function is seen; in addition, a broad
low distribution of the strength is seen in E = 15–40 MeV.
It can be speculated from the common feature of the two
figures that the strength function for r2στ also includes the GT
strength, although the dimension is different. This speculation
can be confirmed by Fig. 6, in which the transition operator
(r2 − 〈r2〉n1f 7/2)στ is used [56]. The 〈r2〉n1f 7/2 is the mean
square radius of one of the excess neutrons in 1f7/2. The
GT structure is almost removed, thus the effectiveness of the
separation method of Ref. [56] is confirmed. On the basis of this
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FIG. 5. The same as the solid line in Fig. 4 but for the transition
operator r2στ .

physical interpretation, the strength function of Fig. 5 and that
of Fig. 6 are denoted as S̄IVSM−+GT−(E) and S̄IVSM−(E), respec-
tively. Note that S and S̄ have different dimensions. Figures 7–9
are those for 48Ti → 48Sc corresponding to Figs. 4–6. The
calculated lowest-energy peak is lower than the corresponding
experimental peak, and the calculated giant resonance (E =
4–8 MeV) has more strength than the lowest-energy peak
has. The corresponding experimental giant resonance around
6 MeV seems to be a shoulder. The operator of r2στ yields
the broad strength distribution in E � 15 MeV corresponding
to that for 48Ca → 48Sc.

There are two problems in 48Ca. It has been pointed out
[6] that the shell-model calculation [57] does not have the
high-energy broad distribution of the GT transition strength,
although it has been argued by other groups that in 90Zr (see
the above brief review) the 2p-2h configurations create the
corresponding strength distribution. The 2h̄ω-shell calculation
of 48Ca [58] does not show the broad strength distribution in
the high-energy region either. See also Refs. [59,60], which
use the second Tamm-Dancoff approximation, and Ref. [61].
It is pointed out [54,59] that the tensor force has an effect
to enhance the low and broad distribution of the GT transition
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FIG. 6. The same as Fig. 5 but for the transition operator
(r2 − 〈r2〉n1f 7/2)στ .
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FIG. 7. The same as Fig. 4 but for 48Ti → 48Sc. The width
parameter of 1.0 MeV is used for excitation energies larger than 4
MeV to simulate the experimental width.

strength in the high-energy region. Moreover, the reportedSexp
β−

is 15.3 ± 2.2 (E � 30 MeV), which is 64 ± 9% of the GT sum
rule. That is, the quenching problem exists in 48Ca.

I discuss these problems by introducing two hypotheses.
The authors of Ref. [6] state that their data contains the
contribution of the isovector spin-monopole mode. From this
information and the results of the calculations including the 2p-
2h components mentioned above, I assume that the observed
high-energy broad distribution of the strength is entirely due
to the isovector spin-monopole mode for simplicity (the first
hypothesis). The GT operator στ does not induce the transition
strength of the isovector spin-monopole mode as shown by
Figs. 4 and 7. The tail of the calculated strength function in E �
20 MeV of Fig. 4 is the effect of the width parameter. A linear
combination of στ and r2στ is necessary for the transition
operator, causing both the GT and isovector spin-monopole
components in the strength functions. Thus, I assume that the
transition operator is

Omix = (1 + αr2)στ, (30)

where α is a constant having the dimension of the squared
inverse length (the second hypothesis). An r-dependent ex-
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FIG. 8. The same as Fig. 5 but for 48Ti → 48Sc.
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FIG. 9. The same as Fig. 6 but for 48Ti → 48Sc (〈r2〉 of a 1f7/2

proton is used).

tension of the transition operator is also studied in Ref. [59].
Because of the first hypothesis, this α can be determined
phenomenologically using the QRPA wave functions. Since
there is no GT strength in the calculations for E � 15 MeV
(48Ca → 48Sc) and E � 10 MeV (48Ti → 48Sc), α can be
determined so as to have the height of the experimental strength
in those high-energy regions. Figures 10 and 11 show the
results of this fitting. The negative α’s (see the captions)
are chosen because apparently those give the results close to
the experimental data. The sum of the calculated strengths
up to E = 30 MeV is 12.524 (48Ca → 48Sc) and 2.243
(48Ti → 48Sc), and the corresponding experimental values are
15.3 ± 2.2 and 2.8 ± 0.3, respectively. Both the calculated
values are ∼20% smaller than the experimental values. The
partial sums calculated with only the GT operator up to
that energy (close to the saturated value) are larger than the
corresponding experimental values by ∼60% (48Ca) and 14%
(48Ti). Thus, the problem of 48Ca is reduced significantly by
the partial cancellation of the GT strength. For 48Ti, the result
of calculation in Fig. 11 is much closer to the experimental
data than that in Fig. 7. It is an open problem why 48Ca and
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FIG. 10. Strength functions measured (isolated points with error
bars) and calculated using Omix [Eq.(30)] for 48Ca → 48Sc with
α = −0.03 fm−2 (solid lines). The inset is a magnification.
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FIG. 11. The same as Fig. 10 but for 48Ti → 48Sc with α =
−0.0253 fm−2.

90Zr are different in terms of the mechanism of the GT strength
function.

In Ref. [47], it is an implicit assumption that the isovector
spin monopole component is not included in their charge-
exchange data.

I also performed a reference calculation according to the
usual phenomenology to multiply a quenching factor to the
GT operator στ ; see, e.g, [62–64]. The results with

√
0.5στ

(48Ca) and
√

0.38στ (48Ti) are shown in Figs. 12 and 13,
respectively. These quenching factors are chosen so as to
reproduce approximately the sum of the experimental strengths
up to 13 MeV (48Ca) and 10 MeV (48Ti). Using these quenched
GT operators with gbare

A = 1.27 is equivalent to using effective
gA = 0.554 in the calculation of T

(2ν)
1/2 ; this gA is 15% larger

than that of my calculation. The T
(2ν)th

1/2 with this gA and g
pair
T =0 =

−180.0 MeV fm3 is found to be 3.76 × 1019 yr [Eqs. (14)–
(16)] and 4.12 × 1019 yr [Eqs. (17)–(19)]; these values are
in the same order as that of the experimental data. Note the
problems, however, that the isovector spin monopole strength
in the high-energy region is ignored, and the GT sum rule is
not satisfied, as I mentioned.
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FIG. 12. The same as Fig. 4 but for the quenched GT transition
operator

√
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FIG. 13. The same as Fig. 7 but for the quenched GT transition
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VI. SUMMARY

The ββ NMEs of 48Ca → 48Ti were calculated within
the QRPA approach using the method developed recently
[20,21,24], and the consistency checks of my calculation have
been made carefully. These checkpoints are

(1) The consistency of two sets of the intermediate-state
energies obtained using the initial and final HFB states.
This is a check for the 2νββ NME, and very close results
were obtained.

(2) The consistency of the two decay paths of the ββ and
two-like-particle transfer in the 0νββ GT NME under
the closure approximation. This consistency was used
for determining the strength of the T = 0 pn pairing
interaction.

(3) The 2νββ Fermi NME is much smaller than the 2νββ
GT NME, so that the isospin invariance of the T = 1 pn
pairing interaction is approximately satisfied. This was
achieved by using the strength of the (T ,Tz) = (1,0)
pairing interaction equal to the average of those of
the (T ,Tz) = (1,1) and (T ,Tz) = (1,−1) pairing inter-
actions.

(4) The stability of the result with respect to the T = 0 pn
pairing interaction has been confirmed.

(5) The GT sum rule is satisfied well.
(6) The consistency with the experimental data of the GT

strength function by the (n,p) and (p,n) reactions. I
proposed a phenomenology explaining the quenched
experimental data.

Checkpoints 1 and 6 are new in the QRPA approach, and
it should be possible to make these checks in the QRPA
calculation generally. Checkpoint 2 is an original test from
my methodology. Checkpoint 4 is related to this original test
because referring to the lpQRPA, which does not use too strong
interactions, has an effect of preventing too strong T = 0 pn
pairing interaction. Checkpoints 3 and 5 are usual in the QRPA
approach. The essence of checkpoint 5 is that enough large
single-particle and two-particle spaces are used.

My motivation to investigate 48Ca is to clarify whether
this nucleus is particularly difficult to model with the QRPA
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approach. The possibility of this difficulty is in the pair-
ing gaps of 48Ca; however, the uncertainty of these pairing
gaps can be minimized by solving the HFB equation self-
consistently.

I used enough large single-particle and two-particle spaces
so that effective operator method for enhancing the short-range
correlations as in the Jastrow-like functions is not used. In
Ref. [20] I showed that the NME was almost saturated with
respect to the increase in the two-particle space, and the same
cutoff parameters were used in the present calculations. The gA

was determined so as to reproduce the experimental half-life
of the 2νββ decay. Because of that large single-particle space,
I can use the same gA for the 0νββ and 2νββ decays. The
only apparent disadvantage of the QRPA is that the low-lying
0+ excited state of 48Ca cannot be constructed. If there are
excited states of 48Sc obtained from that 0+ state by charge
exchange, these states would not be included in the ββ NME
of the QRPA approach. The qualitative reproduction of the
experimental GT strength functions of 48Ca and 48Ti implies
that this nuclear-structural problem does not affect the Jπ =
1+ component of the GT NME. It is concluded that there is
no clear problem in the QRPA approach to the ββ NMEs of
48Ca → 48Ti.

The comparison of my result with those of other groups
was made in terms of R

(0ν)
1/2 and M (0ν)′. My result has the

highest R(0ν)
1/2 and the lowest M (0ν)′ among the compared results

and is close to one of other QRPA calculations. The QRPA
approach usually has larger M (0ν)′ than the shell model in many
decay instances; however, exceptionally for 48Ca the QRPA has
smaller values than the shell-model calculations. I obtained this
result for 48Ca with a small gA in the present calculation.
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