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Three-neutron resonance study using transition operators
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Background: Existing bound-state-type calculations of three-neutron resonances yield contradicting results.
Purpose: A direct study of the three-neutron continuum using rigorous scattering equations with realistic
potentials and search for possible resonances is aimed.
Methods: Faddeev-type integral equations for three-neutron transition operators are solved in the momentum-
space partial-wave framework. The evolution of resonances is studied by enhancing the strength of the two-neutron
interaction in partial waves with nonzero orbital momentum.
Results: Calculated three-neutron transition operators exhibit resonant behavior for sufficiently large enhance-
ment factors; pole trajectories in the complex energy plain are extracted from their energy dependence. However,
the resonant behavior completely disappears for the physical interaction strength.
Conclusions: There are no physically observable three-neutron resonant states consistent with presently accepted
interaction models.
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I. INTRODUCTION

After a possible experimental observation of the four-
neutron (4n) resonance [1], a number of theoretical studies
of multineutron systems emerged [2–5]. Their conclusions
are, however, quite contradicting, even for the simplest three-
neutron (3n) system. While earlier studies [6,7] based on the
complex-scaled Faddeev equation found no 3n resonances that
could be physically observable, a recent work [4] predicted a
3n resonance about 1 MeV above the threshold that should
be potentially measurable. However, the latter studies relied
on bound-state-type calculations with extrapolation to the
continuum. To shed more light on the possible existence
and observability of the 3n resonance, a direct study of the
3n continuum using rigorous scattering equations is the aim
of the present work. The integral equation formulation of
the scattering theory for transition operators realized in the
momentum-space partial-wave framework will be used. An
important advantage of the direct continuum approach is its
ability to estimate not only the resonance position but also
its effect on scattering amplitudes that lead to observables in
collision processes.

Section II describes three-particle scattering equations and
some details of calculations whereas Sec. III reports results for
a number of interaction models. The conclusions are presented
in Sec. IV.

II. THEORY

Faddeev equations for three-particle transition operators
in the version proposed by Alt, Grassberger, and Sandhas
(AGS) [8] have been extensively used for the description of the
nucleon-deuteron scattering [9–11]. Using the odd-man-out
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notation, the multichannel transition operators Uβα satisfy the
integral equations

Uβα = δ̄βαG−1
0 +

∑

γ

δ̄βγ tγ G0 Uγα (1a)

or, equivalently,

Uβα = δ̄βαG−1
0 +

∑

γ

Uβγ G0 tγ δ̄γ α. (1b)

Here δ̄βα = 1 − δβα , G0 = (E + i0 − H0)−1 is the free
resolvent at the available three-particle energy E in the center-
of-mass (c.m.) frame, H0 is the free Hamiltonian for the relative
motion, and

tγ = vγ + vγ G0tγ (2)

is the two-particle transition for the pair γ with vγ being the
corresponding potential. The sums over the spectator (pair)
label γ in Eqs. (1) run from 1 to 3, thereby coupling only
components corresponding to spectator+pair partitions. In the
3n system there are no bound pairs, the only possible reaction
is the elastic scattering of three free particles (3 → 3 process)
whose operator can be obtained from Uβα with α,β = 1,2,3
via the quadrature

U00 =
∑

α

tα +
∑

βα

tβ G0 Uβα G0 tα. (3)

For identical particles the system (1a) reduces to a single
equation for the symmetrized transition operator

U = PG−1
0 + P t G0 U (4)

with the two-particle transition operator t for the representative
pair 1 and P = P12 P23 + P13 P23, Pβα being the permutation
operator of particles α and β; the basis states must be anti-
symmetric only under the exchange of the neutrons within the
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pair. It is convenient to introduce an auxiliary Faddeev operator
T = tG0UG0t obeying the integral equation

T = tG0P t + tG0PT (5)

since it is more directly related to the 3 → 3 transition operator

U00 = (1 + P )t(1 + P ) + (1 + P )T (1 + P ). (6)

The first term describes the two-neutron (nn) scattering with
the remaining one being a spectator and therefore does not
correspond to a genuine three-particle process. Thus, for the
investigation of the 3n dynamics and possible resonances one
should study the behavior of operators U or T , not U00.

The AGS equations (4) and (5) are solved in the momentum
space. After the partial-wave decomposition they become a
system of integral equations with two continuous variables,
the magnitudes of the Jacobi momenta for the pair p = (k2 −
k3)/2 and for the spectator q = (2k1 − k2 − k3)/3 where kα

are the individual momenta. The associated orbital angular
momenta L and l together with neutron spins sα = 1

2 , through
intermediate angular momenta s, j , and Sq , are coupled to
the total angular momentum J with the projection M , result-
ing in the basis states |pqν〉 = |pq(l{[L(s2s3)s]j s1}Sq) JM〉
with the total parity � = (−1)L+l where ν abbreviates all
discrete quantum numbers. Due to the antisymmetry condition
only even (L + s) states are considered. The results are well
converged by including two-neutron states with total angular
momentum j < 3, i.e., 1S0, 3P 0, 3P 1, 3P 2, 3F 2, and 1D2 in the
usual spectroscopic 2s+1Lj notation.

The numerical solution technique, including also the treat-
ment of kernel singularities, is taken over from Ref. [12].
However, when studying the resonant behavior of transition
operators one has to avoid special kinematic situations where
already the on-shell driving term 〈p′q ′ν ′|tG0P t |pqν〉 in
Eq. (5) becomes singular due to kinematic reasons and leads
to divergences in 〈p′q ′ν ′|T |pqν〉 for particular combinations
of initial and final momenta, i.e., for p′2 + 3q ′2/4 = p2 +
3q2/4 = mE and q ′2 + q2 ± qq ′ = mE, with m being the
neutron mass. In fact, such a situation corresponds to a
free (on-shell) scattering of two neutrons followed by a free
scattering of two neutrons within another pair, and therefore
may be considered as a nongenuine three-particle reaction. In
contrast, the 3n resonance, corresponding to the pole of T and
U in the complex-energy plane, manifests itself in all matrix
elements of these transition operators, also fully off shell. In
the vicinity of the pole Er − i�/2 the transition operator in the
corresponding J� state can be expanded in series

TJ� =
∞∑

n=−1

T̃
(n)
J� (E − Er + i�/2)n (7)

and well approximated by few lowest terms while higher-order
terms yield negligible contribution.

Such a resonant behavior (or its absence) will be demon-
strated using three types of initial and final states differing in
their momentum distributions:

(i) q state: on-shell state with p = 0 and q = qm =√
4mE/3; vanishing momentum p implies 1S0 state

for the pair while l takes one of J ± 1
2 values consistent

with total parity;

(ii) p state: on-shell state with p = pm = √
mE and q =

0; the second condition implies l = 0 for the spectator;
(iii) off-shell state: Gaussian momentum distribution of

1 fm−1 width for the pair and momentum q =√
4m(E + εoff )/3 for the spectator.

These state types in the following will be indicated by
superscripts “q”, “p”, and “off”, respectively, e.g., the state
with p = 0, q = qm, L = s = j = 0 will be abbreviated by
1S

q
0 .

III. RESULTS

A number of force models are used for the present study of
the 3n system:

(i) A realistic high-precision charge-dependent Bonn (CD
Bonn) potential [13] that was not applied to the 3n
system so far.

(ii) A realistic Reid93 potential [14] already used in
Ref. [7] where no physically observable 3n resonance
was found.

(iii) Chiral effective field theory (χEFT) potential at next-
to-leading order (NLO) [15], an improved version of
the local NLO potential used in Ref. [4] that predicts
a 3n resonance about 1 MeV above threshold. The
central value for the regulator R = 1.0 fm is taken.
The three-nucleon force (3NF) appears only at higher
order but its contribution in multineutron systems is
insignificant [4].

(iv) A realistic Argonne V18 potential [16] whose low-
and high-momentum components are partially decou-
pled by the similarity renormalization group (SRG)
transformation [17,18]. Taking the flow parameter
λ = 1.8 fm−1, this model, without an explicit 3NF,
reproduces quite well not only the 3H binding energy
but also the cross section for n-3H scattering in the
energy regime with pronounced four-nucleon reso-
nances [19]. Thus, this particular SRG potential yields
a better description of the 3n+proton system and may
be expected to provide more solid conclusions about
the 3n resonances as compared to other force models.

3n transition matrix elements calculated with the above
interactions show no indications of resonances. A common
procedure is to vary the strength of the potential to generate
an artificial resonance (or even a bound state) and to follow
its evolution toward physical strength [4–7]. However, this
way one may create also bound dineutron states, thereby intro-
ducing additional thresholds in the 3n system that complicate
the analysis. In fact, a bound 1S0 dineutron appears already
for the enhancement factor below 1.1 [7]. For this reason
and since the 1S0 features are known quite well, the original
potential is kept in the 1S0 partial wave while enhancing the
potential strength in all higher waves by the same factor f , i.e.,

〈p′L′sj |v|pLsj 〉 = 〈p′L′sj |vnn|pLsj 〉(δL′0δL0+f δ̄L′0δ̄L0),

(8)

where vnn is the physical two-neutron potential. Bound
dineutron appears in 3P 2-3F 2 (3P 0) partial wave at f = 7.24
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(f = 7.97) when using the SRG model but at f = 4.0
(f = 5.95) when using the Reid93 model, the latter values
being fully consistent with Ref. [7]. Although critical
enhancement factors depend quite strongly on the potential
model, the quantitative behavior of dineutron resonances,
i.e., their trajectories in the complex energy plane, are quite
similar: reducing f they acquire large width and for f = 1
move deeply into the third quadrant becoming physically
unobservable [7]. Such a behavior of dineutron resonances is
fully consistent with Ref. [7] and is therefore not shown here.

I start a detailed 3n system study with theJ� = 3
2

−
state that

was predicted in Ref. [4] to exhibit a resonance and in Ref. [7]
to be the most favorable for the existence of bound trineutron
when enhancing the nn interaction in the single 3P 2-3F 2 partial
wave. In present work, unless explicitly stated otherwise, the
nn interaction is enhanced in all partial waves with L � 1 as
given by Eq. (8). The SRG model produces a bound trineutron
when f = 6.42. For lower f values a resonant behavior of
T and U operators can be seen as demonstrated in Fig. 1
for several choices of initial and final channels of all three
types described in previous section. If the two-neutron 1S0

state with vanishing relative momentum p = 0 is interpreted as
an unbound dineutron, the matrix element 〈1S

q
0 |TJ� |1Sq

0〉 can
be interpreted as the amplitude for elastic neutron-dineutron
scattering. When the 3n system energy approaches zero, this
amplitude diverges as the driving term in Eq. (5) does due to
kinematic reasons discussed in the previous section. This is
not a resonance and it is not seen in other matrix elements of
Fig. 1 where 〈3P

p
j |TJ� |1Sq

0〉 can be interpreted as the neutron-
dineutron breakup amplitude in collinear kinematics [10,11].
The off-shell matrix element 〈1Soff

0 |UJ� |1Soff
0 〉 shown in last

panel of Fig. 1 has no direct physics interpretation. The most
important message is that, if a given Hamiltonian supports a
resonance, all matrix elements, despite their differences by
several orders of magnitude or the repulsive character of the
final-state interaction as in the 3P 1 wave, as functions of energy
exhibit resonant behavior corresponding to the same (within
numerical accuracy) valuesEr − i�/2. This is most evident for
f = 6.2 where the corresponding resonance at (1.41 − 0.22i)
MeV is most pronounced. Decreasing f the pole moves to
higher energy and away from the real axis; as a consequence, at
f = 5.6 with Er − i�/2 = (4.36 − 2.24i) MeV the resonant
behavior is far less pronounced. For the physical interaction
strength f = 1 also shown in Fig. 1 by solid curves the resonant
behavior can not be seen, and the magnitude of matrix elements
is significantly smaller.

Transition strengths (probabilities) are proportional to
squares of amplitudes; an example is shown in Fig. 2 for
breakup transitions for the potential enhancement factor f
ranging from 6.2 to 1. As expected, with decreasing f resonant
peaks move to higher energy and become wider, disappearing
around f = 4.0, i.e., well above the physical interaction
strength f = 1. This fact strongly suggests the absence of
physically observable 3n resonance in the J� = 3

2
−

state,
confirming the conclusions of Refs. [6,7].

Further support for the above conclusion comes from the
Fig. 3 where the extracted J� = 3

2
−

transition operator pole
trajectories in the complex energy plane are shown not only for
SRG but also for CD Bonn, NLO, and Reid93 potentials. In
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1S0
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FIG. 1. Energy dependence of real and imaginary parts of selected
J � = 3

2

−
three-neutron transition matrix elements calculated using

SRG potential with higher wave enhancement factors f = 1.0, 5.6,
and 6.2. For the off-shell state εoff = 9 MeV was chosen. Matrix
elements are given in arbitrary units but preserving the relative scale.

the latter case, for the comparison with Ref. [7], the potential
was enhanced in the 3P 2−3F 2 wave only. The pole trajectory
for Reid93 in Fig. 3 is in good agreement with the results of
Ref. [7]. For soft potentials such as NLO and, especially, SRG,
the evolution withf is slower than for CD Bonn and Reid93. As
a consequence, NLO and SRG need larger f values to exhibit a
3n resonance. Apart from that the trajectories are qualitatively
similar for all potential models: decreasing the enhancement
factor f the pole moves to higher energy and away from the
real axis until the turning point Er − i�/2 ≈ (7 − 10i) MeV
where Er starts to decrease while � is rapidly increasing. Still,
at this point f is around 3 or 4, indicating that the model
system is far from the physical one with f = 1. Decreasing
f below 3 or 4, depending on the potential, the pole moves
too far from the real axis to be seen as a scattering resonance
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FIG. 2. Energy dependence of transition strengths
|〈3P

p
2 |T3/2− |1Sq

0 〉|2 obtained using the SRG potential with
higher-wave enhancement factors f = 6.2, 6.0, 5.6, 5.0, 4.0,
2.0, and 1.0. Transition strengths are given in arbitrary units but
preserving the relative scale.

and its position therefore cannot be reliably extracted from
3n transition operators calculated on the real axis. This fact is
reflected in increased theoretical error bars, estimated from
calculations with different initial and final states and with
different number of terms (typically, n � 2 to 4) in Eq. (7).

For the physical interaction strength f = 1 no resonant
behavior is seen also in other J� states. This is illustrated
in Fig. 4 taking as examples breakup transition strengths
|〈2s+1L

p
j |TJ� |1Sq

0 〉|2 for all J � 5
2 . The results obtained with

SRG, CD Bonn, and NLO potentials show some model depen-
dence but all are consistent with the absence of an observable
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Reid93 [2.8,3.6]

FIG. 3. Three-neutron J � = 3
2

−
resonance trajectories for SRG,

CD Bonn, NLO, and Reid93 potentials obtained varying the higher-
wave (only 3P2−3F2 for Reid93) enhancement factor f in the given
interval with the step of 0.1 (CD Bonn and Reid93) or 0.2 (SRG and
NLO). Lines are for guiding the eye only.
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FIG. 4. Energy dependence of transition strengths
|〈2s+1L

p
j |TJ� |1Sq

0 〉|2 for J � 5
2 states obtained using physical

SRG, CD Bonn, and NLO potentials. Transition strengths are given
in arbitrary units but preserving the relative scale. 3

2

+
and 5

2

+
results

are indistinguishable in the plot.

3n resonance. The strongest transition strength seen in the
J� = 1

2
+

state is mostly due to the final-state nn t matrix that
acts in the 1S0 wave as compared to weaker P or D waves for
other J� states. For vanishing energy this amplitude diverges
as the corresponding driving term in Eq. (5) does, but it is not
really resonant. In fact, in the considered nn interaction en-
hancement scheme the J� = 1

2
±

states are even less favorable

for trineutron resonances than J� = 3
2

±
and J� = 5

2
±

states:
At f = 7.24, with the bound 3P 2-3F 2 dineutron appearing in
the SRG model, J� = 1

2
±

trineutrons are still not bound. In

contrast, trineutrons in J� = 3
2

+
, 5

2
+

, and 5
2

−
states become

bound at f = 6.71, 6.02, and 6.94, respectively. Their pole
trajectories when reducing the enhancement factorf are shown
in Fig. 5. Qualitatively, the behavior is similar to the J� = 3

2
−

case of Fig. 3, but the real part Er reaches higher values,
especially for J� = 5

2
+

. Again, decreasing f below 4, the pole
moves far away from the real axis and does not manifest itself
as a visible scattering resonance.

Of course, resonance trajectories depend on the interaction
enhancement scheme but the physical point f = 1 is the same.
In order to avoid the presence of bound dineutron, a different
nn interaction enhancement scheme is used for the study of
J� = 1

2
±

resonance trajectories: In the originally repulsive 3P 1

partial wave the factor f in Eq. (8) is replaced by (2 − f )
such that f = 1 as before corresponds to the physical strength

034001-4



THREE-NEUTRON RESONANCE STUDY USING … PHYSICAL REVIEW C 97, 034001 (2018)

-10

-5

0

0 5 10 15

-Γ
/2

  (
M

eV
)

Er  (MeV)

3/2+ [4.1,6.5]
5/2- [4.4,6.8]
5/2+ [4.1,5.9]

FIG. 5. Three-neutron J � = 3
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+
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−
, and 5
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+
resonance trajecto-

ries for the SRG potential obtained varying the higher-wave enhance-
ment factor f in the given interval with the step of 0.3. Lines are for
guiding the eye only.

but the 3P 1 potential becomes attractive with increasing f . In
other waves the potential (8) is used. Using the SRG model in
this scheme 3P 1 dineutron becomes bound at f = 6.47 while
J� = 1

2
+

, 1
2

−
, and 3

2
−

trineutrons become bound at f = 5.28,
5.48, and 5.44, respectively. Their resonance trajectories are
shown in Fig. 6. Trajectories for J� = 1

2
+

and 3
2

−
are similar

to those in Figs. 3 and 5 while the 1
2

−
trajectory stays much

closer to the imaginary axis, i.e., the turning point is around
Er − i�/2 ≈ (2.3 − 2.7i) MeV. Thus, the 1

2
−

resonance most
evidently exhibits the trend to move to the Er < 0 region for
f = 1, becoming physically unobservable.
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FIG. 6. Three-neutron J � = 1
2

+
, 1

2

−
, and 3

2

−
resonance trajecto-

ries obtained with the attractive 3P 1 potential as described in the text.
Results are based on the SRG model while the enhancement factor f

is varied in the given interval with the step of 0.1 (0.2) for positive
(negative) parity states.

An alternative approach to generate an artificial 3n bound
state or resonance is by adding an attractive 3NF; only the
total isospin 3

2 component is acting in the 3n system. However,
the contribution of a realistic 3NF, being of short range, is
suppressed by the Pauli repulsion [2,7], and unphysically
strong 3NF is needed to achieve a visible effect. Consistently
with this observation, Ref. [4] found the effect of a realistic
χEFT 3NF in few-neutron systems to be very small. This
suggests that the absence of an explicit 3NF does not affect
conclusions on the absence of the resonant behavior.

IV. CONCLUSIONS

The three-neutron system was studied using exact Faddeev-
type equations for transition operators that were solved numer-
ically in the momentum-space framework. Various on-shell
and off-shell matrix elements were calculated searching for
their poles in the complex energy plain leading to resonant
behavior. An important advantage of the present transition
operator approach as compared to previous bound-state-type
studies is its ability to estimate not only the resonance position
but also its effect on scattering amplitudes that include both
resonant (if present) and nonresonant (also called background)
contributions and their interference in collision observables.
Since 3n elastic scattering experiments are so far technically
impossible, this work restricted itself to few selected transition
strengths related to the 3n collision process; this was sufficient
to draw conclusions on 3n resonances.

All tested physical nn force models, including the SRG
potential successfully reproducing the resonant n-3H cross
section, were found to exclude the possibility of an observable
3n resonance. To generate artificial 3n resonances (or even
bound states) the nn interaction was enhanced in higher nn
partial waves while keeping the original physical strength in
the 1S0 partial wave. For appropriate (state J� and potential-
dependent) enhancement factor values the resonant behavior
was observed in all studied on-shell and off-shell matrix
elements of 3n transition operators. However, the resonant
behavior disappears with the enhancement factor f still having
a value around 3 or 4, i.e., for systems that cannot be considered
as realistic 3n systems. In these situations the resonance pole
is typically more than 10 MeV away from the real axis
while in transition amplitudes and strengths the background
contribution dominates over the resonant one such that no
resonant behavior can be seen. For this reason the transition
operator pole trajectory in the complex energy plane could not
be reliably followed towards the physical limit f = 1, but it can
be expected to be even further away from the real axis thereby
excluding the physical observability of the 3n resonance.
This conclusion is fully consistent with Refs. [2,6,7] but
contradicts Ref. [4]. The latter work, however, employed some
questionable procedures such as the trineutron bound-state
calculation above the dineutron threshold or the extrapolation
of energy into a different sheet of the complex energy plane.

Despite the absence of resonant states, three-neutron transi-
tion amplitudes depend on the available energy and final-state
kinematics; thus, the existence of some peak structures in
the transition strengths can not be excluded. In fact, the nn
final-state interaction kinematics with vanishing two-neutron
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relative energy should correspond to a rather sharp peak due to
the 1S0 virtual state as in the neutron-deuteron breakup [10,11].

Given the controversy in the literature regarding the four-
neutron resonance [2–5], the extension of the present transition
operator study to the 4n system is of high importance and
interest. The work in this direction is underway.
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