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Employing recently proposed metamodeling for the nucleonic matter equation of state, we analyze neutron
star global properties such as masses, radii, momentum of inertia, and others. The impact of the uncertainty on
empirical parameters on these global properties is analyzed in a Bayesian statistical approach. Physical constraints,
such as causality and stability, are imposed on the equation of state and different hypotheses for the direct Urca
(dUrca) process are investigated. In addition, only metamodels with maximum masses above 2M� are selected.
Our main results are the following: the equation of state exhibits a universal behavior against the dUrca hypothesis
under the condition of charge neutrality and β equilibrium; neutron stars, if composed exclusively of nucleons
and leptons, have a radius of 12.7 ± 0.4 km for masses ranging from 1 up to 2M�; a small radius lower than
11 km is very marginally compatible with our present knowledge of the nuclear empirical parameters; and finally,
the most important empirical parameters which are still affected by large uncertainties and play an important role
in determining the radius of neutrons stars are the slope and curvature of the symmetry energy (Lsym and Ksym)
and, to a lower extent, the skewness parameters (Qsat/sym).
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I. INTRODUCTION

Neutron stars (NS) are the most compact stellar objects
known to be lying on the stable branch between white dwarfs
and black holes [1]. Their radii are estimated to be 10–15 km
and their observed masses range between 1.2 and 2M�. As a
consequence, their average density is about 1014–15 g cm−3,
which is comparable to the density of atomic nuclei. The
standard picture for NS composition therefore assumes that
they are composed of neutrons and protons, embedded in a gas
of electrons and muons. NS matter is at β equilibrium and,
for a positive symmetry energy, this implies that neutrons are
more abundant than protons [1].

More refined models for the NS interior composition as-
sume various kinds of phase transitions, from hyperonic matter
to quark matter. The determination of the onset densities of
these phase transitions requires an accurate knowledge of the
interaction among these particles, which is not attained yet.
From the observational viewpoint, there is no clear signal
indicating that NS inner cores contain exotic particles such as
hyperons or deconfined quarks. In this work, we assume that
matter is exclusively composed of neutrons, protons, electrons,
and muons, and we will predict the confidence intervals for
various quantities related to NS properties, such as radii,
masses, moment of inertia, etc.

We employ a metamodeling for the nuclear equation of
state, which we have introduced in Ref. [2]. The advan-
tage of this approach for the NS equation of state is that
all possible predictions for dense and asymmetric nuclear

matter can be explored, provided they are compatible with
nuclear physics knowledge of a few empirical parameters,
like Esat, nsat,Ksat, Esym, Lsym or Ksym (see Ref. [2] for more
details). Another advantage of this metamodeling is that,
at variance with polytropic equation of state (EOS), matter
composition is directly obtained from the β equilibrium, where
the density dependence of the proton fraction could be obtained
as function of the model parameter. In particular, different
scenarios for the proton fraction in NS can be explored which
impact the possibility for direct neutrino emission (dUrca) fast
cooling. A link between the empirical parameters and fast
cooling will therefore be investigated in this work. In addition,
external constraints can be added to the metamodeling in
order to filter out the parametrization exhibiting unphysical
behavior. Examples of such constraints are the requirement
that at least 2M� can be reached by the NS meta-EOS, or that
matter remain causal up to central densities of neutron stars
with 2M�, since the highest observed NS masses with small
uncertainty are 1.667 ± 0.021M� for PSR J1903+0327 [3],
1.928 ± 0.017M� for PSR J1614-2230 [4] (initially mea-
sured to be 1.97 ± 0.04M� [5]), and 2.01 ± 0.04M� for
PSR J0348+0432 [6]. For these reasons, the meta-EOS from
Ref. [2] offers a unique possibility to incorporate in the nuclear
EOS the most recent knowledge from nuclear physics, allowing
us to reduce the number of free parameters and focus on the
most influential ones. By varying these empirical parameters
within reasonable ranges, accurate confidence intervals for the
predictions of NS properties exclusively based on nucleonic
matter can be obtained.
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The present paper is organized as follows: In Sec. II, a short
review of the meta-EOS from Ref. [2] is performed and the
uncertainties on the empirical parameters are recalled. Then
the meta-EOS is implemented for β-equilibrium matter in NS
and a simple perturbation analysis shows the impact of each
empirical parameter within its uncertainty on the mass-radius
relation in Sec. III. In Sec. IV, a more ambitious analysis is
carried out based on Bayesian statistics, where a set of simple
physical constraints are applied, such as causality, stability,
and positiveness of the symmetry energy. In addition, we
analyze consistently three hypothesis for the dUrca process,
which directly depend on the density dependence of the
symmetry energy. The Bayesian analysis allows us to predict
global properties of neutron stars as well as general density
dependence of the EOS and its derivatives. Finally, in Sec. V,
we address the inversion problem: How do measures of the
mass and radius of a neutron star affect the selection of the
EOS, and which empirical parameters are most impacted?
Conclusions and outlook are given in Sec. VI.

II. METAMODELING FOR THE NUCLEAR
EQUATION OF STATE

We briefly recall in this section the main features of the
equation of state metamodeling which we use in this work. We
refer to Ref. [2] for more details.

Nuclear matter composed of neutrons and protons is char-
acterized by the isoscalar (is) n0 = nn + np and isovector
(iv) n1 = nn − np densities, where nn/p is the neutron/proton
density defined as a function of the Fermi momentum kFn/p

as

nn/p = 1

3π2
k3
Fn/p

. (1)

Isospin asymmetric nuclear matter (ANM) can also be defined
in terms of the asymmetry parameter δ = n1/n0, with the two
boundaries δ = 0 and 1 corresponding to symmetric nuclear
matter (SNM) and to pure neutron matter (PNM) respectively.
The saturation density of SNM is defined as the density at
which the nucleonic pressure is zero and it is denoted as nsat.

The general properties of relativistic and nonrelativistic
nuclear interactions are often characterized in terms of the
nuclear empirical parameters, defined as the coefficients of
the following series expansion in the parameter x = (n0 −
nsat)/(3nsat) [7],

eis = Esat + 1

2
Ksatx

2 + 1

3!
Qsatx

3 + 1

4!
Zsatx

4 + · · · , (2)

eiv = Esym + Lsymx + 1

2
Ksymx2 + 1

3!
Qsymx3

+ 1

4!
Zsymx4 + · · · , (3)

where the isoscalar energy eis and the isovector energy eiv enter
into the definition of the energy per particle in nuclear matter,
defined as

e(n0,n1) = eis(n0) + δ2eiv(n0). (4)

The isovector energy eiv is often called the symmetry energy
S(n0) = eiv(n0).

In this work, we consider the metamodeling ELFc intro-
duced in Ref. [2]. In this metamodeling, the energy per particle
is defined as

eN (n0,n1) = tFG∗(n0,n1) + vN (n0,n1), (5)

where the kinetic energy reads

tFG∗
(n0,n1) = tFG

sat

2

(
n0

nsat

)2/3[(
1 + κsat

n0

nsat

)
f1(δ)

+ κsym
n0

nsat
f2(δ)

]
, (6)

and the potential energy is expressed as

vN (n0,n1) =
N∑

α�0

1

α!

(
vis

α + viv
α δ2

)
xαuN

α (x), (7)

where uN
α (x) = 1 − (−3x)N+1−α exp(−bn0/nsat) and b =

10 ln 2 ≈ 6.93. In Eq. (6), the functions f1 and f2 are
defined as

f1(δ) = (1 + δ)5/3 + (1 − δ)5/3, (8)

f2(δ) = δ((1 + δ)5/3 − (1 − δ)5/3). (9)

The parameters κsat/sym can be directly expressed in terms
of the expected Landau effective mass at saturation density,

κsat = m

m∗
sat

− 1 = κs, in SM (δ = 0),

κsym = 1

2

[
m

m∗
n

− m

m∗
p

]
= κs − κv, in NM (δ = 1). (10)

When fixing κsat/sym to the expected values at saturation
density, there is a one-to-one correspondence between the
parameters vis

α and viv
α and the empirical parameters. We have

for the isoscalar parameters

vis
α=0 = Esat − tFG

sat (1 + κsat), (11)

vis
α=1 = −tFG

sat (2 + 5κsat), (12)

vis
α=2 = Ksat − 2tFG

sat (−1 + 5κsat), (13)

vis
α=3 = Qsat − 2tFG

sat (4 − 5κsat), (14)

vis
α=4 = Zsat − 8tFG

sat (−7 + 5κsat), (15)

and the isovector parameters

viv
α=0 = Esym − 5

9 tFG
sat [1 + (κsat + 3κsym)], (16)

viv
α=1 = Lsym − 5

9 tFG
sat [2 + 5(κsat + 3κsym)], (17)

viv
α=2 = Ksym − 10

9 tFG
sat [−1 + 5(κsat + 3κsym)], (18)

viv
α=3 = Qsym − 10

9 tFG
sat [4 − 5(κsat + 3κsym)], (19)

viv
α=4 = Zsym − 40

9 tFG
sat [−7 + 5(κsat + 3κsym)]. (20)
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TABLE I. Characterization of the empirical parameters entering into the definition of the nuclear metamodeling ELFc. See text for more
details.

Pα Esym Lsym Ksat Ksym Qsat Qsym Zsat Zsym

(MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

Pα,1 32 60 230 −100 300 0 −500 −500
Pα,2 2 15 20 100 400 400 1000 1000
Min 26 20 190 −400 −1300 −2000 −4500 −5500
Max 38 90 270 200 1900 2000 3500 4500
step 2 10 20 75 400 400 1000 1000
N 7 8 5 9 9 11 9 11

Thanks to these relations, we can directly explore the impact
of varying a single empirical parameter on the properties
on dense nucleonic matter and on the properties of neutron
stars and supernovae matter. This allows making sensitivity
analysis of the different parameters and avoiding spurious
correlations among them, which might be generated by a
specific functional form. The price to pay for this flexibility
is that almost all correlations are suppressed, whether they
are physical or unphysical. In addition, since a lot of nontrivial
density behavior is allowed, we have to take special care of each
EOS. This is done by applying filters on the model parameters
based on different constraints from general physics and NS
phenomenology. The final gain is that it becomes possible to
control the link between the filters and the induced correlations,
as we will see.

In Ref. [2], we have analyzed the possible domain of
variation for the empirical parameters. The average values
(Pα,1) and their uncertainties (Pα,2) are recalled in Table I.
Pα,1 and Pα,2 can be interpreted as the first (average) and
second moment (standard deviation) of a Gaussian probability
distribution for each of these parameters. For this reason, Pα,2

could be associated to the 1σ uncertainty, and the associated
parameter may be varied in a wider interval. In lines 3 and 4
are written the max and min values associated with the largest
exploration for the empirical parameters which is performed
in the following. The last lines, 5 and 6, give the step units and
the number of steps for our largest exploration.

Let us notice that some empirical parameters are not present
in Table I, such as Esat, nsat, κsat, and κsym. The reason is that
we have evaluated in Ref. [2] that these empirical parameters
are sufficiently well known and/or have a very weak impact on
the dense matter EoS. For the simplicity of the discussion as
well as to keep computing time within a reasonable range, we
have decided to fix the value of these parameters in this work
to be Esat = −15.8 MeV, nsat = 0.155 fm−3, κs = 0.3333, and
κv = 0.4218. This choice leads to the Landau effective mass
in symmetric matter m∗

sat/m = 0.75 and its isospin splitting
�m∗

sat = 0.1; see Ref. [2] for more details.

III. NEUTRON STAR MASSES AND RADII

In this section, we investigate the sensitivity of the NS
masses and radii measurements on the nuclear empirical
parameters defined by Eqs. (2) and (3). To do so, we solve
the hydrostatic equations in general relativity for spherical
and nonrotating stars, also named the Tollman, Oppenheimer,

Volkoff (TOV) equations [1,8,9],

dm(r)

dr
= 4πr2ρ(r),

dP (r)

dr
= −ρc2

(
1 + P

ρc2

)
d
(r)

dr
,

d
(r)

dr
= Gm

c2r2

(
1 + 4πPr3

mc2

)(
1 − 2Gm

rc2

)−1

, (21)

where G is the gravitational constant, P is the pressure,
and m(r) is the enclosed mass at the radius r , defined
within the Schwarzschild metric ds2 = e2
dct2 − e2λdr2 −
r2(dθ2 + sin2 θdφ2). Both 
 and λ are functions of r . 
 is
the gravitational potential and e−2λ = 1 − Gm/(rc2). Let us
remark that ρ in Eqs. (21) is the energy density containing a
contribution from the rest mass and from the energy per particle
e as ρc2 = (mNc2 + e)n0. Numerically, m(r) and P (r) are
solved from 0 toR, fixing the boundary conditionm(0) = 0 and
P (0) = Pc where Pc(ρ = ρc) is arbitrarily fixed. The variation
of the central density ρc generates a family of solutions with
different M and R, where M = m(R), and the radius R is
defined as the radial coordinate for which P (r = R) = 0. Then

(r) is integrated from R down to r = 0, matching with the
external solution 
(r � R) = −λ(r � R).

For a nonrotating NS, the surface gravitational red shift z is
simply defined as [10]

z =
(

1 − 2GM

Rc2

)−1/2

− 1 =
(

1 − Rs

R

M

M�

)−1/2

− 1,

(22)

where Rs is the Schwarzschild radius, Rs = 2.955 km, for
M = M�.

Considering slow and rigid rotation of the neutron star,
the moment of inertia can be estimated from the lowest-order
perturbative approximation [1,11,12]. The slow rotation ap-
proximation implies that centrifugal forces are small compared
to the gravity, R3�2/(GM) � 1, where the angular frequency
� is measured by a distant observer. Notice that for the fastest
observed pulsar PSR J1748-2446ad at 716 Hz (spin period
of 1.396 ms) [13], we get R3�2/(GM) ≈ 0.11, assuming
M = 1.4M� and R = 10 km.
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FIG. 1. Effect of the crust and of the matching between the crust and the core EoS. Left part: mass-radius relationship with different
prescriptions for the choice of the crust EOS and of the matching procedure (see text). Right part: sensitivity analysis of the shift in the
NS radius induced by the different choices given in the legend of the figure (see text also). For instance, the solid black line stands for
�R = R(SLY0) − R(FPS0). The largest impact is found for the modification of the low-density boundary of the matching between the crust
and the core. Even for this extreme case, the uncertainty in the radius definition is less than 0.1 km.

The GR moment of inertia I is given by the following
expression [11,12]:

I = 8π

3

∫ R

0
drr4ρ

(
1 + P

ρc2

)
ω̄

�
eλ−
, (23)

where ω̄ is the local spin frequency, which represent the GR
correction to the asymptotic angular momentum �. ω̄ is usually
a small correction for NS and the local angular momentum
reads ω = � − ω̄. The familiar Newtonian expression for the
moment of inertia can be recovered imposing λ = 
 = 0
and P � ρc2. In practice, we first solve the static TOV
equations (21), and then obtain the moment of inertia from
Eq. (23) fixing ω̄ to be arbitrarily small at the center of the star.

A. The matching of the core and crust EOS

In the core of NS, the dense matter EOS is composed of
neutrons, protons, electrons, and muons at β equilibrium in
the mean field generated by the meta-EOS; see Ref. [2]. Below
saturation density, the core meta-EOS is matched to the EOS
for the crust based on a cubic spline. There is a discussion
concerning the impact of the matching procedure on the NS
radius [14]. The optimal matching should be performed with
EOSs which have been consistently derived in the core and
in the crust. The derivation of the crust EOS by extending our
metafunctional to finite nuclei is currently in progress [15]. For
the present study, we have chosen to perform a logρ-logP cubic
spline which guides the continuous interpolation between the
crust and the core EOS in the transition region. To so do,

we have to reserve a rather large region where the spline can
smoothly connect the crust and the core. We therefore stop the
crust EOS at a density nl

0 = 0.1nsat and start the core meta-EOS
at the density nh

0 = nsat.
We have estimated the accuracy of our prescription against

the change of the crust EOS as well as against the values for
nl

0 and nh
0. For the crust EOS, we have considered two existing

and widely used EOS, hereafter called SLY and FPS. SLY is
based on the Skyrme nuclear interaction SLy4 [16], which has
been applied for the crust EOS considering a compressible
liquid-drop model [17]. FPS is the crust EOS from Ref. [18].
The properties derived from these EOS consistently matched
in the core are discussed in Ref. [19]. We use tables provided by
the IOFFE institute and available online [20]. We now discuss
the results, which are shown in Fig. 1.

In Fig. 1, we discuss the effect of changing the crust
EoS (considering SLY and FPS) and changing the density
parameters nl

0 and nh
0. The core meta-EoS is determined from

the average empirical parameters given in line 1 of Table I.
The pink region in Fig. 1 stands for the observed masses,
e.g., between 1.2 M� and 2.0 M�. Modelings with number
0 represent the reference calculation: the curves SLY0 and
FPS0 are obtained for the standard choice for nl

0 and nh
0: nl

0 =
0.1nsat and nh

0 = nsat. Then we have increased the low-density
boundary, nl

0 = 0.2nsat, for SLY1 and FPS1, or decreased
the high-density boundary, nh

0 = 0.7nsat, for SLY2 and FPS2.
Since the validity of the approach is based on the possibility
to perform a cubic interpolation between nl

0 and nh
0 in the

logρ-logP space, these boundary must be kept well separated.
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We see from Fig. 1 that changing the crust EoS has an impact on
the predicted radius which is less than 20 m, similar to changing
the value of nh

0, and that the largest impact is for changing
nl

0 from 0.1nsat to 0.2nsat. For the latter case, the impact is
estimated to be about 100 m for low-mass NS and about 50 m
for high-mass NS. We conclude that the uncertainties induced
by the crust EoS, in terms of which model to use and the values
of the matching densities nl

0 and nh
0 , induce an uncertainty in

the crust thickness, which is about 100 m for low-mass NS and
50 m for high-mass NS.

For the present discussion, we consider that the present
matching procedure based on logρ-logP cubic spline is suf-
ficiently accurate for quantitative predictions on NS radii,
considering their large observational uncertainty. In the fol-
lowing, we set the crust EOS to be SLY and the reference
core meta-EOS to be given by the average parameters given in
Table I.

B. Sensitivity analysis on the isoscalar
and isovector empirical parameters

The expected uncertainties for the empirical parameters are
given in the second line of Table I. They have been obtained
from the analysis presented in Ref. [2]. In this section, we
discuss the impact of varying the isoscalar and isovector
empirical parameters within these ranges. The advantage of
the meta-EOS is that we can directly measure the impact of
changing only one of the empirical parameters inside its range
of uncertainty, without changing the other parameters. Here we
analyze the impact of these uncertainties on the mass-radius
relationship.

We represent in Fig. 2 the impact of the isoscalar em-
pirical parameters Ksat (incompressibility modulus) and Qsat

(skewness), with the impact of Esat and nsat being extremely

weak. The crosses represent the value of the central density in
units of nsat. It can be observed that as the value of the empirical
parameter Ksat or Qsat increases, the EOS becomes stiffer, and
the NS radius consequently increases. The impact of varying
Ksat on the radius is quite weak: It goes from about 200 m at the
low-mass boundary up to 400 m for the high mass and is about
300 m at the canonical mass. The skewness parameter Qsat is
found to have a larger impact, mostly because the value of this
parameter is yet rather unconstrained. The low value of Qsat

considered here (−100 MeV) is found to produce a very soft
EOS which can reach 2M� for a central density of about 5nsat.
Beyond 2M� this EOS is too soft and predicts (vs/c)2 < 0,
where vs is the sound velocity.

We now discuss the impact of the isovector empirical param-
eters Esym (symmetry energy), Lsym (slope), Ksym (curvature),
and Qsym (skewness) on the mass-radius relationship in Fig. 3.
The impact of Esym is small, as expected, since it does not
impact the pressure and has a weak effect on the energy density.
The uncertainty on this parameter is also rather small compared
to the others (note that we have considered a 2σ variation for
this parameter). The impact of Lsym and Ksym is clearly larger.
We recall that Lsym and Ksym were identified as being the main
source of uncertainty for the nuclear EOS in Ref. [2]. The
uncertainty of Lsym leads to an uncertainty of about 2 km at low
NS mass, 1 km at high NS mass, and about 1.5 km at canonical
mass. The effect of Ksym is also quite large: about 1 km at low
NS mass and 500 m at high NS mass. It is interesting to note that
the largest impact of the uncertainty of Lsym is found to be for
masses below 1.2M� where the densities are between nsat and
2nsat, while the impact of Ksym is found to be biggest at slightly
larger masses. This is a consequence of the Taylor expansion,
which is at the base of our theoretical modeling: The impact
of the higher order empirical parameters is larger at higher
density, while the lower order empirical parameters are more
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FIG. 2. M-R diagram generated with meta-EOS where the isoscalar empirical parameters are varied. See text for more details.
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FIG. 3. Same as Fig. 2 for the variation of isovector empirical parameters.

important around saturation density nsat. Since Lsym and Ksym

are the main source of uncertainties in the nucleon pressure,
see Ref. [2] for instance, our present analysis is compatible
with the empirical RP −1/4 correlation from Ref. [21]; see also
Fig. 14 and the discussion at the end of Sec. IV B.

The impact of Qsym remains small and of the order of the
uncertainty on the incompressibility modulus Ksat. Despite
the very large uncertainties on this parameter, the reason for
its weak impact is that the densities at which this empirical
parameter plays a role are still above the largest densities
considered here.

In conclusion, we observe that the largest impact on the
mass-radius relationship is given by the three empirical pa-
rameters Qsat, Lsym, and Ksym. Better estimations of these
parameters may come from nuclear physics experiments such
as as PREX and CREX [22], as well as very precise measure-
ment of collective modes in nuclei such as the giant dipole
resonance (GDR) and giant quadrupole resonance (GQR);
see Ref. [23] for instance. Detailed discussion on nuclear
experimental investigations can be found in Refs. [24–26].
They may also come from better knowledge of the NS radii,
which are nowadays intensively investigated through various
approaches: x-ray emission from quiescent low-mass x-ray
binaries (qLMXB) [27–32], from observation of photospheric
expansions in x-ray burst (XRB) [33–35], or from the precise
x-ray timing of millisecond pulsars enabled by the upcoming
observations with the NICER mission [36].

IV. CONFRONTING PHYSICAL CONSTRAINTS

The sensitivity analysis presented in the previous section
gives a clear understanding of the parameters which should be
better constrained to improve our understanding of NS, but it

cannot be considered as a quantitative estimation of error bars
on the astrophysical quantities. Indeed, the different empirical
parameters can be correlated, meaning that to estimate the
impact of their uncertainty they have to be varied collectively
in the full parameter space. Moreover, as noticed in Ref. [2],
the parameter space is so large that among all the considered
EOS, some may violate some basic requirements, such as
causality, for instance. The domain of variation of the empirical
parameters may therefore be reduced by imposing some basic
physical requirements. In this section, we apply several filters
to the explored meta-EOS:

(1) stability: the gradient of the pressure and of the energy
density ρ (with mass terms) should be positive at all
densities;

(2) symmetry energy: the symmetry energy S(n0) should
be positive at all densities; and

(3) causality: the speed of sound vs should not exceed the
speed of light (v2

s < c2), and we exclude imaginary
values (v2

s < 0) as well.

These requirements are imposed along the β-equilibrium
path and for a density interval defined between nsat and nmax ,
where nmax is the central density for a NS with M = 2M�. The
density nmax is calculated for each meta-EOS and all the meta-
EOS which do not reach 2M� are also rejected. The sound
velocity is calculated considering n, p, e−, and μ− as

(vs/c)2 = dPtot

dn0
/[mtotc

2 + etot + Ptot/n0], (24)

where mtot = xpmpc2 + xnmnc
2 + xemec

2 + xμmμc2. etot

and Ptot are the total energy per particle and pressure, and
xn, xp, xe and xμ are particle fractions for n, p, e−, and μ−.
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Let us discuss briefly the expected behavior of the symmetry
energy above saturation density. There is a tight link between
the symmetry energy above saturation density and fast cooling
induced by the dUrca process. The dUrca process (direct
neutrino emission) is based on the fact that neutron star in
β equilibrium balances the following reactions:

n → p + e− + ν̄e, p + e− → n + νe. (25)

The second process (electron capture) is Pauli blocked, except
if protons and electrons are sufficiently energetic. This implies
that the proton Fermi momentum, and therefore the proton
density, must be sufficiently high for the electron capture to
occur. If not, β equilibrium is insured by more complex weak
interactions that involve a higher number of particles (modified
Urca), and therefore happen with a much slower rate [37]. The
dUrca process is possible if the proton fraction xp > 1/9 in
n, p, e− matter [37]. In the presence of muons, the dUrca
condition is slightly modified to be [38]

xp > xDU , where xDU = [
1 + (

1 + x1/3
ep

)3]−1
, (26)

and xep = ne/np = ne/(ne + nμ). In the absence of muons,
we have xep = 1 and the limit xDU = 1/9 is recovered [37].
There is therefore a straightforward relation between enhanced
cooling induced by the dUrca process and the symmetry energy
S(n0), which governs the density dependence of the proton
fraction. The neutrino emissivity deduced from the integration
of the cross section over the phase space for dUrca gives a char-
acteristic T 6 temperature dependence, while it is suppressed
as T 8 for mUrca; see Ref. [39] and references therein.

This discussion is somewhat schematic because other com-
plex mechanisms enter in the thermal properties of NS: In
particular, strong superfluidity and superconductivity in the
core in pairing channels which are still poorly known [40], local
magnetic fields in the crust [41], and Fermi surface depletion
due to short-range nuclear correlations [42] are all phenomena
that might have an influence on the fast-cooling scenario. Still,
the relative weight of these mechanisms is not yet completely
clear. Ultimately, a more complete analysis shall put all these
effects together. At present, however, it is still too ambitious,
and we will keep Eq. (26) as the unique condition for the fast
cooling to happen; see Refs. [25,26,43,44] for recent reviews.

From the observational viewpoint, there are different classes
of NS where enhanced cooling might be critical: the cooling of
isolated NS [39], the cooling of magnetars [45], and the thermal
relaxation of transient low-mass x-ray binaries (LMXBs) [46].
Isolated NS are compatible with the so-called minimal cooling
scenario in which the dUrca process is excluded [47,48],
but it should be noticed that enhanced cooling would make
most of isolated NS so cold that they would not be observed.
Indeed, less than half of the supernovae remnants within 5 kpc
have identified central sources [49,50]. The thermal luminosity
of magnetars is systematically higher than that of classical
pulsars, showing again the important role of the magnetic field
in the cooling process. Recent simulations of the cooling of
magnetars have shown that the effect of the magnetic field is
able to screen an eventual fast cooling, keeping the temperature
of the magnetar rather high even if fast cooling is possible [45].
So, firm conclusions concerning the impossibility of enhanced

cooling could not be drawn yet from isolated NS or magnetars.
Concerning qLMXBs, most of them are consistent with having
standard cooling, with two exceptions: SAX J1808.4-3658 [46]
and 1H 1905+00 [51]. These two exceptions are extremely
cold neutron stars for which only the upper limits of the thermal
components of the luminosity are reported. In these cases,
very low core temperatures may be explained by fast cooling.
Finally, NS do not only vary by their magnetic field, but also
by their mass. For low-magnetic NS, the existence or not of the
dUrca process could be explained by their different masses. If
the NS mass is too low, its central density is not high enough to
reach the proton fraction threshold xDU [39]. In this scenario,
only high-mass NS could be quickly cooled; but to date, the
masses of these NS are yet unknown. It is therefore difficult to
estimate the critical mass above which dUrca is switched on.

In summary, the situation is the following: The dUrca
process is certainly not possible for most of the NS, but
some of them may be cooling rapidly. The parameter which
controls the cooling of NS may be the total mass, but we do
not know what is the threshold mass allowing dUrca. Given
these uncertainties, we decide to explore different scenarii
for the dUrca condition threshold and investigate consistently
their implications. The first one (DURCA-0) assumes that
within the range of observed NS (M < 2M�), dUrca is not
possible. The second one (DURCA-1) assumes that only a few
of the more massive observed NS could experience dUrca:
The dUrca threshold is crossed at least once in the range 1.8 <
M/M� < 2. Finally, the last scenario (DURCA-2) assumes a
lower range 1.6 < M/M� < 1.8 for the dUrca threshold to
be satisfied. These scenarios are mutually exclusive of each
others. Neutron stars with more than 2M� are disregarded.
In the following, we will compare the prediction based on
these three hypotheses and check whether the static structure
of NS is influenced by these assumptions, which will be
interesting since it will offer the possibility to check it against
observations. If no modification is seen, this will reveal a
kind of universal behavior independently of the proton fraction
inside the NS.

Let us now detail the selection of the models. Since we
already checked the very weak influence of some empirical
parameters on the equation of state, such as for instance nsat

and Esat, as well as the parameter governing the density and
isospin asymmetry dependence of the effective mass (κsat and
κsym), see Ref. I [2], we decide not to vary them in the present
analysis.

In the following, the eight parameters (Esym, Lsym,
Ksat,Ksym,Qsat,Qsym, Zsat, and Zsym) are varied uniformly
between their minimum and maximum values given in Table I.
Each parameter set defines a different equation of state for
which properties are analyzed. For each parameter set which
satisfies all the physical requirements listed above, a proba-
bility wfilter = 1 is attributed, while if one or more physical
requirements are violated, we set wfilter = 0. Taking advantage
of the Bayesian approach, the probability wfilter is associated
to the likelihood probability plik as

plik({Pα}i) = 1

Nlik
wfilter({Pα}i)

8∏
α=1

gPα,1,Pα,2 (Pα), (27)
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FIG. 4. One-parameter probability distributions p(Pα). See text for more details.

where the functions g are the prior probabilities given by a
Gaussian distribution,

gPα,1,Pα,2 (Pα) = 1√
2πPα,2

exp

[
−1

2

(
Pα − Pα,1

Pα,2

)2]
, (28)

and Pα,1 and Pα,2 are the average and standard deviation of the
prior distribution of the Pα parameters, which are given in the
two first lines of Table I. The normalization Nlik is calculated
by integrating the probability plik over all the parameters Pα:
Nlik = ∫

dP1· · ·
∫

dP8 plik.
The probability distribution plik is focused where it is

expected to be the most relevant. For the parameters where the
uncertainty could be related to nuclear experimental knowl-
edge, the prior distribution is an effective way to include this
knowledge in the present analysis. This is the case, for instance,
for the parameters Esym, Lsym, and Ksat. The other parameters
Ksym,Qsat/sym, and Zsat/sym are not yet very well constrained
by nuclear physics. Their uncertainties have instead been
estimated from the predictions of various modelings; see
Ref. [2]. For this reason, the uncertainties attributed to these
parameters are arbitrary. In consequence, we have considered a
rather large domain of variation for these parameters covering
4σ around the central value. The details of the parameter mesh
are given in Table I: minimum and maximum value as well
as the step unit and number of steps considered. In total, it
is about 25 million EOS which are analyzed. This massive
computational work was made possible using the CC-IN2P3
super-computing facility, which dedicated about 500 CPU for
one month.

From the 25 million initial EOS, there are finally 4
million satisfying the physical requirements as well as the

DURCA-0 hypothesis, about 600 000 for DURCA-1 and
700 000 for DURCA-2.

A. Analysis of plik

Since it is impossible to visualize the probability plik in
the eight-dimensional parameter space, the reduced one- and
two-parameter probabilities are introduced as

p1(Pα) =
⎧⎨
⎩

8∏
β( �=α)=1

∫
dPβ

⎫⎬
⎭ plik({Pβ}), (29)

p2(Pα,Pβ) =
⎧⎨
⎩

8∏
γ ( �=α,β)=1

∫
dPγ

⎫⎬
⎭ plik({Pγ }). (30)

The one-parameter probability p1(Pα) allows us to visualize
where the domain of solutions for each empirical parameter
is located after filtering, while the two-parameter probability
p2(Pα,Pβ) allows recognizing the correlations among the
parameters. We recall that by construction all the empirical
parameters are a priori uncorrelated to each other. This
means that the possible correlations exhibited by p2(Pα,Pβ )
will be physical correlations induced by the astrophysical
requirements.

The one-parameter probabilities p1(Pα) are represented in
Fig. 4 for the three scenarios: DURCA-0 (black), DURCA-
1 (red), and DURCA-2 (blue). For convenience, the prior
distribution is also represented (dashed line). Comparing p1

to the initial prior distribution is instructive: Some parameters
are only weakly modified by the filters and the dUrca scenarii,
like Esym, Lsym, and Ksat, while some other parameters are
modified, like Ksym,Qsat/sym, and Zsat/sym. The two main
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reasons why the parameters Esym, Lsym, and Ksat are very
weakly impacted by the filters are (i) these parameters are
already well constrained by nuclear physics knowledge (their
domain of variation is rather small compared to the others) and
(ii) the filters probe properties much beyond saturation density,
where these low-order empirical parameters are weakly effec-
tive.

It can be observed in Fig. 4 that the probabilities associated
to the parameters Qsat/sym and Zsat/sym are slightly more peaked
and narrow than the prior distribution. There is also a small
but systematical shift between the distributions associated to
DURCA-0 on one side and DURCA-1 and 2 on the other side:
The Qsat and Zsat distributions are slightly shifted to the left,
making symmetric matter softer for DURCA-1 and 2 compared
to DURCA-0. However, the opposite trend is observed for the
isovector parameters Qsym and Zsym, which are systematically
shifted slightly to the right for DURCA-1 and 2 compared
to DURCA-0. This last shift can be understood from the fact
that DURCA-1 and 2 select larger values of the symmetry
energy S(n0) then DURCA-0, since they require a larger proton
fraction above saturation density.

Finally, the largest effect observed in Fig. 4 is for the
empirical parameter Ksym: The probability distribution plik

is narrower than the prior one, and the three hypotheses
DURCA-0, 1, and 2 produce a systematic shift to the right
(increasing values for Ksym). From Fig. 4, we notice that only
Ksym is impacted by all three hypotheses. This can be under-
stood from the fact that Ksym is the most effective parameter
influencing the proton fraction for densities corresponding to
the range of masses between 1.6M� and 2M�. Anticipating
the following results, this mass range corresponds to central
densities between 2 and 3 nsat.

From the one-parameter probability distributions p1, it is
possible to define a centroid (〈Pα〉) and a standard deviation
(σα) as

〈Pα〉 =
∫

dPα Pα p(Pα), (31)

σ 2
α =

∫
dPα [Pα − 〈Pα〉]2p(Pα). (32)

For the eight parameters represented in Fig. 4, the centroids and
the standard deviations deduced from p1 are given in Table II
for the three scenarios DURCA-0, 1, and 2. We recall also the
prior distribution on the first line of Table II. It is interesting to

extract the positions of the central values for some empirical
parameters. For instance, the preferred values for Ksym are
−103 MeV for DURCA-0, −73 MeV for DURCA-1, and
−48 MeV for DURCA-2.

The uncertainties remain, however, quite large for the
parameters for which we expected better constraints after the
selection of physical constraints. In other words, the distri-
bution of empirical parameters is not substantially impacted
by the filtering. This can be understood from the fact that
the impact of taking an empirical parameter away from the
preferred one can be compensated by a change of the other
empirical parameters. Therefore, the effect of the filtering
remains weak for the probability distribution p1. The effect
of the compensation phenomenon can be better appreciated in
the two-parameter probability distribution or in the correlation
matrix, which we now turn to examine.

The two-parameter probability distribution p2(Pα,Pβ ) is
interesting since it shows the correlations among empirical
parameters which are induced by the filtering conditions. We
show in Figs. 5 and 6 some selected two-parameters probabil-
ities where we have removed the influence of the prior distri-
bution by considering a flat prior: All the empirical parameters
are varied evenly between the minimum and maximum values
provided in Table I. In this way, we can check the effects of the
filtering without the influence of the chosen prior probability.

In Fig. 5, we show the probability p2(Qsat,Pα) (without
prior) for all possible empirical parameters Pα . It is inter-
esting to note that the effect of the filtering conditions is to
systematically prefer large and positive values for Qsat. As we
noticed from the analysis of Fig. 2, low values of Qsat around
0 and lower soften substantially the EOS, which can lead to
v2

s < 0, corresponding to an unphysical spinodal instability
at high density. As seen in Fig. 5, the exclusion of such
instability induces a positive preferred value for Qsat. The high
values of Qsat are presently unbounded since we impose only a
lower boundary on the maximal mass, M > 2M�. In a future
analysis, we may explore the impact of assuming an upper
boundary for the maximal mass on the largest values of Qsat.
We can also see that the posterior probabilities are very similar,
independent of the adopted condition for dUrca.

In Fig. 6, we represent the two-parameter probability
distribution p2(Ksym,Qsym) (without prior) for DURCA-0, 1,
and 2. A negative correlation can be observed between Ksym

and Qsym, especially for DURCA-0: the larger Ksym, the lower
Qsym. It illustrates the impact of the condition on the proton

TABLE II. Centroids and standard deviations associated to the one-parameter probability p1(α1) discussed in Sec. IV A and to the distribution
p1,RM discussed in Sec. V and corresponding to the TOV inversion problem.

Esym Lsym Ksat Ksym Qsat Qsym Zsat Zsym

(MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

Prior 32 ± 2 60 ± 15 230 ± 20 −100 ± 100 300 ± 400 0 ± 400 −500 ± 1000 −500 ± 1000
DURCA-0 p1 31.9 ± 2.0 57.6 ± 13.5 232.5 ± 18.0 −103 ± 76 390 ± 313 115 ± 317 −424 ± 883 −720 ± 900

p1,RM 32.1 ± 4.0 50.3 ± 16.8 230.8 ± 28.2 −132.5 ± 168 1056 ± 592 179 ± 1056 −130 ± 2453 −288 ± 3027
DURCA-1 p1 31.6 ± 1.9 56.6 ± 12.7 231.7 ± 18.3 −73 ± 75 267 ± 321 340 ± 316 −650 ± 863 −389 ± 902

p1,RM 31.7 ± 3.9 49.1 ± 16.2 230.3 ± 28.2 −96 ± 163 661 ± 555 960 ± 839 −621 ± 2481 598 ± 2928
DURCA-2 p1 31.7 ± 1.9 58.5 ± 12.4 231.6 ± 18.2 −48 ± 74 256 ± 319 344 ± 322 −634 ± 848 −500 ± 937

p1,RM 31.8 ± 3.8 50.5 ± 16.5 229.9 ± 28.2 −47 ± 162 592 ± 584 985 ± 833 −394 ± 2464 440 ± 3001
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fraction. For DURCA-0, since the proton fraction should
remain small up to a density corresponding to 2M�, a increase
of Ksym which would violate this constraint is compensated
by a decrease of Qsym. For DURCA-1 and DURCA-2, the

correlation is weaker since both Ksym and Qsym can be large
and still satisfy the condition on the proton fraction. However, if
Ksym is too large, it may also induce a supraluminal EOS, which
is forbidden up to a density corresponding to 2M�. These two
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conditions can be viewed in the correlation pattern shown in
Fig. 6.

A more clear and compact way to represent the correlations
is to evaluate the correlation matrix. In addition, the correlation
matrix provides a quantitative measure of the strength of the
correlation. The correlation matrix is defined as

corr(Pα,Pβ ) = cov(Pα,Pβ )

σασβ

, (33)

where the covariance matrix is defined as

cov(Pα,Pβ) =
∫

dPα

∫
dPβ [Pα − 〈Pα〉][Pβ − 〈Pβ〉]

×p(Pα,Pβ ). (34)

The correlation matrices corr(Pα,Pβ ) for the eight empirical
parameters and for the three scenarios DURCA-0, 1, and 2 are
shown in Fig. 7. We mention that the prior distribution is diago-
nal in the empirical parameters, and therefore it cannot generate
nondiagonal matrix elements in the correlation matrix. The
nondiagonal matrix elements can only be generated from the
physical conditions. This is at variance with popular EOS
modelings, such as Skyrme functionals, where the functional
form of the energy density is such that it may generate a priori
correlations among the empirical parameters which might have
no physical meaning.

The correlation matrix takes values close to zero if the
(linear) correlations between the parameters Pα and Pβ are
very weak; it approaches 1 for strong correlations and −1 for
strong anticorrelation. As a rule of thumb, |c| < 0.5 denotes
a negligible correlation, and one cannot speak of a strong
correlation unless |c| > 0.8.

We first remark from Fig. 7 that the matrix correlation ex-
hibits weak correlations in general. It is interesting to compare
such matrix correlation to similar ones generated from Skyrme
density functional [52–54]. Other approaches comparing a
large variety of different methods, see Refs. [38,55], for
instance, have also concluded that filtering among physical
EOS considerably reduces the number of EOS. Performing
such a comparison is not straightforward since the physical
filters are not exactly the same in our present work and in
these papers. In our case, our selection filter is much less
constraining than in the other works. However, the flexibility
of the EOS considered in these other works is lower than in our
present study. This flexibility is clearly an advantage which is
at the origin of our approach, suppressing spurious correlations
among empirical parameters; see Ref. [2]. This flexibility,
i.e., the absence of a priori correlations among the empirical
parameters, is the reason why the width of p1 remains large
after applying the physical requirements, and the correlation
matrix presents weak off-diagonal matrix elements.

Some matrix elements shown in Fig. 7 depart from zero and
even if they remain weak, they are large enough to be noticed.
They indicate the existence of correlations among empirical
parameters induced by the physical constraints. These corre-
lations are of two kinds: There are correlations between only
two parameters, and there are block correlations. The block
correlations reveal the existence of complex multiparameter
correlations. We shall also notice that some are correla-
tions (positive matrix elements) and some are anticorrelations
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FIG. 7. Correlation matrix for the eight empirical parameters and
the three scenarios DURCA-0, 1, and 2. The color index goes from
0 (white) to 1 in absolute value (green) in a linear scale as shown on
the right bars in each graphs. See text for discussion.
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(negative matrix elements). Let us now describe these correla-
tions in more detail.

We notice a large block of weak correlations among the
isovector empirical parameters. They are induced by the
hypothesis made for the dUrca process and do not vary much
in strength between one hypothesis to another. A slight shift
toward lower order empirical parameters, however, can be
noticed as one compares DURCA-0, 1, and 2. This is not
surprising since the hypothesis DURCA-2 is the one which
give the strongest constraint at low density (or mass) while
DURCA-0 constrains higher densities (or masses). In addi-
tion, these correlations are negative, indicating compensation
effects between these empirical parameters.

It is interesting to note some weak single parameters cor-
relations. The first one is a very slight anticorrelation between
Qsat and Zsat which is related to the causality constraint. The
second ones are weak positive correlations between Qsat and
Ksym which appear only for the DURCA-1 and 2 hypothesis.
They are absent for DURCA-0 and reveal positive correlations
between IS and IV channels induced by the dUrca condition.
It shows a tendency for the EOS satisfying DURCA-1 and 2 to
be slightly more repulsive than the ones satisfying DURCA-0.
This tendency is weak but could be observed, as we will see
in the following. These correlations reveal a weak, but still
understandable, correlation between the dUrca hypothesis on
the empirical parameters.

In conclusion, the correlation matrix reveals interesting but
weak multiparameter correlations generated by the causality
condition and the hypothesis for the dUrca process. These
correlations remain, however, extremely weak. This is an in-
teresting observation, showing that general constraints related
to causality and dUrca process are not very influential on the
correlation among the empirical parameters. If such constraints
play an important role in a given modeling, this might be more
related to the lack of flexibility of the considered EOS than
to the physical effect of the constraints. This analysis also
shows the interest of the correlation matrix analysis within our
approach, which should be further explored with additional
constraints in the future such as, for instance, the masses and
radii of finite nuclei [15].

B. Impact on the global properties of neutron stars

In this section, we continue with the statistical analysis of
the EOS and analyze the predictions of the global properties
of NS. We consider the same prior and likelihood probabilities
as the ones defined in Sec. IV A; see Eqs. (27) and (28).

To better quantify our results, we generate confidence level
(CL) domains for the different observables. In practice, we
run over the 25 million of meta-EOS and group them based
on their likelihood probability plik; see Eq. (27). The group
for which the probability plik � plik,maxe

−1/2 corresponds to
1σ -CL around the maximum value of the probability, plik,max.
Similarly, the 2σ -CL corresponds to plik � plik,maxe

−2, the 3σ -
CL toplik � plik,maxe

−9/2, and the 4σ -CL toplik � plik,maxe
−8.

For a Gaussian probability distribution, 1σ -CL represents
about 67% of the data around the best probability, 2σ -CL about
95%, 3σ -CL about 99.9%, and 4σ -CL almost 100%.

From the 25 million of initial meta-EOS, we finally find
about 16 meta-EOS in the 1σ -CL group for DURCA-0 hypoth-
esis (10 for DURCA-1 and 5 for DURCA-2), 650 meta-EOS in
the 2σ -CL group for DURCA-0 hypothesis (160 for DURCA-1
and 140 for DURCA-2), and 75 000 meta-EOS in the 4σ -CL
group for DURCA-0 hypothesis (12 000 for DURCA-1 and
14 000 for DURCA-2).

We transform the likelihood probability in terms of the
parameters plik({Pα}inσ

) into a probability distribution function
of the NS global properties, such as its mass and radius,
according to the following transformation,

pnσ
MR(M,R) =

∑
i∈nσ−CL

plik({Pα}i)δ(Mα − M)δ(Rα − R),

(35)

where Mα and Rα run over the solution of the TOV equation
for a given parameter set {Pα}i . In practice, masses (radii)
are grouped into 13 (200) bins according to the following
algorithm,

M(kM ) = Mmin + (kM − 1)�M, (36)

R(kR) = Rmin + (kR − 1)�R, (37)

where Mmin = 0.8M�,�M = 0.1M�, Rmin = 9.5 km, �R =
50 m, and the indexes kM = 1, . . . ,13 and kR = 1, . . . ,200.

Similarly one can define the probabilities pnσ
IR(I,R) between

the moment of inertia I and the mass M , pnσ
zR (z,R) between

the surface red-shift z and the mass, pnσ
xpR(xp,R) between the

proton fraction at the center and the mass, pnσ
�RcrustR

(�Rcrust,R)
between the crust thickness and the mass, and pnσ

ncR
(nc,R)

between the central density and the mass.
All these probabilities are shown in Figs. 8 and 9 for the

different hypotheses DURCA-0, 1, and 2. The inner domain
(in red) is the 1σ -CL, then comes the 2σ -CL (in blue), and
the 4σ -CL (in pink). Let us first comment on Fig. 8, where are
shown some very general properties of NS such as their radii,
the moment of inertia, and their surface red shift. Despite a
rather general agreement among the predictions based on the
three hypothesis DURCA-0, 1, and 2, one can notice some
differences: The upper bound for the radius function of the
mass is rather independent of the hypothesis, but the lower band
shows some small differences. Specifically, the DURCA-0
hypothesis allows smaller radii compared to the two other
hypothesis. More precisely, the smallest radius is about 10.5
km for DURCA-0, while it is about 11 km for DURCA-1
and 2. The average radius is almost independent of the mass
and of the dUrca hypothesis. It is evaluated to be between 12
and 13.5 km for the 1-σ contour. The 2-σ contour is slightly
larger and allows lower radii at high mass for the DURCA-0
hypothesis. More accurate estimation will be given further in
our analysis; see Fig. 11. In addition, the observation of a NS
with a radius between 10 and 11 km NS would be incompatible
with DURCA-1 and 2 hypothesis, but will still be marginally
compatible with the DURCA-0 hypothesis.

In Fig. 9, we analyze internal properties of NS such as
the central proton fraction xp(center), the thickness of the
crust (inner+outer crust) �Rcrust, and the central density nc.
As expected, there is a clear difference in the central proton
fraction predicted by the dUrca hypothesis: DURCA-0 favors
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low values of the proton fraction (below 1/9 in the whole
density domain), DURCA-1 favors values which can be above
about 1/9%, and DURCA-2 favors even slightly larger proton
fractions. There is almost no impact of the different proton
fraction on the crust thickness and central density.

In summary, Figs. 8 and 9 show that global properties of
NS are rather universal and weakly influenced by the dUrca
hypothesis. As already proposed in Ref. [56], there is an
interesting universality of the EOS under the condition of
charge neutrality and β equilibrium. While in Ref. [56] the
authors suggested that the universality behavior holds only for
the EOS which prevent dUrca (corresponding to the DURCA-0
hypothesis in our work), we generalize this universal behavior
to EOS which allow dUrca process for high mass NS (DURCA-
1 and 2).

We show in Fig. 10 the compactness defined as
(M/M�)/(R/km), where R is expressed in km for the three
hypothesis DURCA-0, 1, and 2. The influence of dUrca hy-
pothesis is very weak, and the M dependence of the compact-
ness appear to be universal here also. It is therefore interesting
to note the stability of the relation between the compactness
and the mass (independent of the dUrca hypothesis), especially
for low values of the compactness (<0.12) where it can safely
be assumed that matter is composed of nucleons.

It was recently claimed that the compactness of the isolated
NS RX J0720.4-3125 is 0.105 ± 0.002 [57]. It is interesting to
illustrate the use of the correlation between the compactness
and the mass to infer the mass from this extremely accurate
estimation of the compactness. The value for the compactness

is reported in Fig. 10 and since it appears to be in the domain
where the compactness is quite stable, we can use the 1σ -CL to
estimate the mass of RX J0720.4-3125. The construction lines
are shown in Fig. 10 and we predict that RX J0720.4-3125 has
a mass of 1.33 ± 0.04 M� at the 1σ level. The only hypothesis
we have made concerning the EOS is that it is nucleonic and
respects minimal physical constraints.

From Fig. 9, we deduce that the 1.33M� NS have central
densities less than 2–2.5nsat. Since most of the EOS predicting
phase transition to hyperon or quark matter always predict it
to be above about 3nsat, we can conclude that our hypothesis
of nucleonic matter for RX J0720.4-3125 is rather safe, and
therefore our predicted mass is quite realistic. From Fig. 8, we
can also predict that the radius of RX J0720.4-3125 is 12.7 ±
0.3 km at the 1σ level.

Let us now discuss in more detail the contours shown in
Figs. 8 and 9. In the following, we provide fits to the mass
dependence of some NS global properties, including centroids
and standard deviation. In Fig. 11, the average position of
the radius shown in Fig. 8 (top panels) are represented. This
radius is calculated in different ways: The first and simplest
way is obtained from the mean value between the upper and
the lower bands for the radius determined for each nσ -CL
(n = 1, 2, 4). They are given by the red (1σ ), blue (2σ ),
and pink (4σ ) lines. On the bottom panels, the widths of the
distributions are calculated from the half difference between
the upper and the lower bands for the radius. The widths
are divided by n to estimate how close to a Gaussian the
probability distributions are. With dashed lines, we represent
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the same quantity calculated in a different way: From the
probability pnσ

MR(M,R) the centroid and the standard deviation
are extracted as

〈Rnσ (M)〉2 = 1

NMR

∫
R2pnσ

MR(M,R) d3R, (38)

σR,nσ (M)2 = 1

NMR

∫
[R − 〈Rnσ (M)〉]2pnσ

MR(M,R) d3R,

(39)

0.05

0.10

0.15

0.20

1.0 1.2 1.4 1.6 1.8 2.0

1.29 1.37

C
om

pa
ct

ne
ss

  (
M

o. 
km

-1
)

M / Mo.

DURCA-0

4σ
2σ
1σ

0.05

0.10

0.15

0.20

1.0 1.2 1.4 1.6 1.8 2.0

0.105

1.0 1.2 1.4 1.6 1.8 2.0

1.29 1.37

M / Mo.

DURCA-1

1.0 1.2 1.4 1.6 1.8 2.0

0.105

1.0 1.2 1.4 1.6 1.8 2.0

1.29 1.37

M / Mo.

DURCA-2

1.0 1.2 1.4 1.6 1.8 2.0

0.105

FIG. 10. Compactness (M/M�)/(R/km) as a function of the
mass for the three hypotheses DURCA-0, 1, and 2.

where NMR = ∫
d3R pnσ

MR(M,R). The centroids 〈Rnσ (M)〉
(and standard deviation σR,nσ (M)) are shown in dashed lines
on the top (bottom) part in Fig. 11 considering all the meta-EOS
which are inside the 4σ -CL. Despite some slight differences,
the agreement between the different predictions for the average
M dependence of the NS radius are all compatible, within the
standard deviation band. In addition, the standard deviations
divided by n, where n refers to the order of the CL, are also very
similar, showing that the distribution of probability pnσ

MR(M,R)
is not far from a Gaussian distribution, as far as the first two
moments are concerned. On the bottom part of each panel is
provided a second order in M fit of the centroids and standard
deviations. From Fig. 11, we can conclude that NS, if they are
composed exclusively of nucleons and leptons, have a radius
of 12.7 ± 0.4 km at the 1σ confidence level.

It is interesting to compare our prediction to other analyses.
Combining chiral EFT modeling of neutron matter, piecewise
polytropes, and observed NS masses, NS radii have been
predicted to range from 10.5 to 13.3 km [58]. These boundaries
are defined as the maximum and minimum values for the
radius, while average value and its dispersion have not been
calculated. Large NS radii, such as 15 km for instance, are
excluded as in our analysis. From a sensibly similar approach,
1.4M� NS radius has been predicted to be in the range
9.7–13.9 km with central densities up to 4.4nsat [59]. Still
based on piecewise polytropes but including observations of
both transiently accreting and bursting NS, the radius of a
1.4M� NS was shown to lie between 10.4 and 12.9 km in
Ref. [60] and between 10.1 and 11.1 km in Ref. [61]. These
two analyses assume different hypotheses for the photospheric
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FIG. 11. Centroids and standard deviation of the NS radii function of the mass, with DURCA-0, 1, and 2.

radius expansion mechanism in the analyses of the burst. The
prediction of Ref. [61], if confirmed, is difficult to reconcile
with the hypothesis that matter is only composed of nucleons,
as in our case. The other predictions for the radii are more
compatible with nuclear matter. It is not surprising that our
estimate for the NS radius lies inside all these boundaries
(except those of Ref. [61]) since the considered EOS are more
general than only the nuclear EOS, as in our case. We obtain
smaller uncertainty in our analysis because (i) we consider only
nuclear EOS and (ii) we consider only empirical parameters
compatible with nuclear data analysis. Recently, the radius
of 1.4M� NS was estimated to be in the range 11.09–12.86
km, based on Skyrme EOS [62]. From our analysis, we
(i) confirm that large NS radii (larger than 14 km) are not
compatible with nucleon EOS, (ii) we predict that radii smaller
than 11 km are not either, (iii) we state that this uncertainty
interval should be associated to any purely nucleonic EOS
compatible with empirical constraints, not necessarily Skyrme
EOS, and finally (iv) any progress in reducing the uncertainties
in the critical empirical parameters (Lsym,Ksym,Qsat/sym) will
lead to a reduction of our uncertainty for the NS radius.
If NS radii are ever observed outside our prediction range,
then this would be a strong argument in favor of exotic
matter EOS.

We have performed a similar analysis for the moment of
inertia I in Fig. 12 and and for the central density nc in
Fig. 13. We conclude from these figures and the probability
distributions associated to each of these NS global properties
are not far from Gaussian up to the second moment and we
provide as well a second order in M fit of the centroids and
standard deviations for these properties.

For the crust thickness we obtained the following fit as
function of the mass, where �R and σ�R are expressed
in km:

�R(M) = 4.19 − 2.96M/M� + 0.63(M/M�)2, (40)

σ�R(M) = 0.27 − 0.22M/M� + 0.06(M//M�)2, (41)

for DURCA-0,

�R(M) = 4.23 − 2.98M/M� + 0.63(M/M�)2, (42)

σ�R(M) = 0.22 − 0.16M/M� + 0.05(M//M�)2, (43)

for DURCA-1, and

�R(M) = 4.28 − 3.01M/M� + 0.64(M/M�)2, (44)

σ�R(M) = 0.21 − 0.16M/M� + 0.04(M//M�)2, (45)

for DURCA-2.
Finally, we test the empirical relation between the pressure

and the radius of neutron stars proposed in Ref. [21]. This
empirical relation is shown in Fig. 14 where the pressure is the
pressure of neutron matter (NM) calculated at 1.0nsat, 1.5nsat,
and 2.0nsat. We confirm the results obtained in Ref. [21]: The
spreading among different models is minimized if the pressure
is defined at 1.5nsat or 2.0nsat, in these two cases, the empirical
relation is almost independent of the mass of the NS for masses
below 1.6M�. The values obtained for the empirical relation
are also compatible with the ones in Ref. [21]. It should,
however, be noted that we used the pressure in neutron matter
in our case while it is the pressure of matter at β equilibrium
which was used in Ref. [21].
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FIG. 12. Same as Fig. 11 for the moment of inertia.

C. Impact on the equation of state at β equilibrium

We now carry on a similar statistical analysis, but instead
of focusing on the global properties of NS, we analyze the
distribution of meta-EOS properties, such as its energy density,
pressure, sound velocity, or distribution of proton fraction as

a function of the density n0. It is interesting to convert the
impact of the physical constraints which have been expressed
as a function of the NS mass, into the behavior of the EOS
properties as a function of the density n0. There is indeed a
strong correlation between the mass and the central density, as
shown in Fig. 9, but there is also a non-negligible dispersion
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FIG. 13. Same as Fig. 11 for the central density.

025806-16



EQUATION OF STATE … . II. PREDICTIONS FOR … PHYSICAL REVIEW C 97, 025806 (2018)

5

6

7

8

9

 10

 11

 12

1  1.2  1.4  1.6  1.8 2

R
P

-1
/4

N
M

M / Mo.

DURCA-0

2σ
1σ

5

6

7

8

9

 10

 11

 12

1  1.2  1.4  1.6  1.8 2

1.0nsat

1.5nsat

2.0nsat

1  1.2  1.4  1.6  1.8 2
M / Mo.

DURCA-1

1  1.2  1.4  1.6  1.8 2 1  1.2  1.4  1.6  1.8 2
M / Mo.

DURCA-2

1  1.2  1.4  1.6  1.8 2

FIG. 14. Empirical relation between the pressure (in MeV fm−3) and the radius (in km) function of the mass. The pressure is calculated in
NM and is defined at 1.0nsat, 1.5nsat , or 2.0nsat as indicated in the plots. We used the same units on the y axis as in Ref. [21].

of this correlation, especially for the large masses. As a
consequence, there is no one-to-one correspondence between
the masses of NS and their central density, and it is interesting
to visualize the impact of the DURCA-0, 1, and 2 hypothesis
on the EOS properties.

To do so, we calculate the average value of a set of
observables hereafter named generically A, such as the energy
per particle E/A, the energy density ε, the pressure P , the sym-
metry energy S, and the sound velocity vs/c, all weighted by
the probability plik. The average value and standard deviation
of A are defined as

〈A〉 =
{

8∏
α=1

∫
dPα

}
plik({Pα})A({Pα}), (46)

σ 2
A =

{
8∏

α=1

∫
dPα

}
plik({Pα})[〈A〉 − A({Pα})]2, (47)

and are evaluated as a function of the density n0. In the
following, we limit the range of densities from nsat up to about
4nsat. This is the range of densities which is covered by most
of the EOS.

We show in Fig. 15 the density dependence of the distribu-
tion of proton fraction for the different scenarios DURCA-0,
1, and 2, as well as the distribution associated to the threshold
condition xDURCA

p . The threshold condition indeed slightly
changes with the EOS since it is influenced by the symmetry
energy S(n0). Figure 15 shows that the threshold condition
xDURCA

p has a very narrow distribution and is almost identical
for DURCA-1 and 2. It is, however, a bit more spread for the
DURCA-0 hypothesis. However, the density dependence of

xDURCA
p is rather weak and it is almost independent of the

density for n0 > 0.3 fm−3.
The density dependence of the proton fraction xp is also

interesting to analyze. We can see that the threshold xp value
can be easily overcome for all DURCA hypothesis, at least
at the 2σ level. This means that in the corresponding EOS,
the density domain where xp > xDURCA

p is never met if the
NS mass is below the limiting mass we have supposed for
dUrca. The densities at which xp ≈ xDURCA

p in each panel
correspond approximately to the average central densities
for 2M�, 1.8M�, and 1.6M� NS represented in Fig. 13.
More quantitatively, for the DURCA-0 hypothesis, the proton
fraction remains below the threshold for most of the EOS.
For DURCA-1, the proton fraction reaches the threshold
for densities above 0.45 fm−3. And finally, for DURCA-2,
the proton fraction reach the threshold for densities above
0.35 fm−3.

We represent in Fig. 16 the probability distributions for
the electron fraction xe (top panels) and the muon fraction
xμ (bottom panels) as a function of the density n0, and for
the three dUrca hypotheses. We recall the charge neutrality
imposes xp = xe + xμ, and as a matter of fact, the relation
still holds approximately for the average; compare Figs. 15
and 16. The electron and muon fractions are distributed in a
narrow band for DURCA-1 and 2, while they are more widely
spread for DURCA-0. For DURCA-0, very low values for xe

and xμ at high density are possible, at variance with DURCA-1
and 2.

The density dependence of the symmetry energy as a
function of n0 is shown in Fig. 17 for the three hypotheses.
It is an interesting quantity since it can be shown that the
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symmetry energy S(n0) has a direct impact on the electron
fraction [21,43]. As expected, the symmetry energy is softer for
DURCA-0 compared to DURCA-1 and 2: For DURCA-1 and
2, the symmetry energy is an increasing function of the density
n0 while for DURCA-0 the symmetry energy is less stiff and
in some cases bends down toward zero at high density. Let
us remember that we excluded EOS with negative symmetry

energies. The density dependence of the symmetry energy is
clearly influenced by the dUrca hypothesis, even if a very
large spread at high density is still observed, especially for
the DURCA-0 hypothesis. In particular, it is clear that if we
could observationally conclude that dUrca happens in some
high mass NS, this would very effectively exclude soft and
supersoft behavior for the symmetry energy.
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FIG. 16. Same as Fig. 15 for the electron fraction xe and muon fraction xμ.
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The EOS, i.e., the total pressure as a function of the
total energy density ρ including the rest-mass term, is shown
in Fig. 18. This quantity, including the contribution of the
nucleons and of the leptons (electrons and muons), is used
in the TOV equations, to determine the mass and radius of NS
showed above. Here also, the impact of the dUrca hypothesis is
found to be very weak, despite the fact that the proton fractions
are different. It explains why the global properties of the NS
shown in Figs. 8 and 9 are not very much impacted by these
hypotheses, and reflects the universality of the EOS under the
charge neutrality and β-equilibrium conditions [56].

As a complement to the total pressure shown in Fig. 18, it
is interesting to analyze its slope �(ρ), defined as

�(ρ) = d ln Ptot

d ln ρ

∣∣∣∣
s

. (48)

�(ρ) is shown in Fig. 19 as function of the density n0 and for
the three dUrca hypothesis. The density dependence of � is
also rather universal (independent of the dUrca hypothesis).
The average value of � is between 2 and 4 and it depends
weakly of the density.

The last quantity that we analyze is the nucleon sound
velocity. It is the sound velocity calculated from the nucleon
pressure and energy per particle as

(vs,n/c)2 = dPnuc

dn0
/(mc2 + enuc + Pnuc/n0). (49)

Notice the difference between Eq. (49) for nucleons only
and Eq. (24) for the total system including nucleons and
leptons. The contribution of the leptons increase the sound
velocity by about 10–15%. It is interesting to represent the
quantity (vs,n/c)2 since it can be compared to the sound
velocity usually associated to nucleonic EOS for symmetric

and asymmetric matter, but not necessarily at β equilibrium;
see, for instance, Refs. [63,64]. The nucleon sound velocity
(vs,n/c)2 is represented in Fig. 20 as a function of the density
n0 and for the three dUrca hypotheses. The density dependence
of the sound velocity has recently been discussed with respect
to its expected limit 1/3 at very high density, when matter
is composed of a free gas of noninteracting quarks. It can be
shown in perturbation theory that this limit is reached from
below as the density increases [64]. Since the sound velocity
starts with a positive slope around saturation density, and
becomes larger than 1/3 on average for densities below 2–3nsat ,
the asymptotic limit implies that the sound velocity has to bend
down at least one time. At high density and for soft EOS, the
slope of the sound velocity can bend down in nuclear matter.
So the bending down of the sound velocity at high density
does not necessarily require specific features, such as phase
transition to quark matter, and can be also be obtained for a
simple nucleonic EOS.

In summary of this section, we have analyzed some features
of the meta-EOS and their link with the dUrca hypothesis.
While the dUrca hypothesis influences strongly the particle
fractions, reflecting different density dependence of the sym-
metry energy, the EOS is almost independent of the dUrca
hypothesis. Our analysis confirms the universal behavior of the
EOS discussed in Ref. [56] and generalizes it to cases where
dUrca is allowed for large masses.

V. INVERSION PROBLEM: WHAT IS THE BEST EOS
REPRODUCING A GIVEN MASS-RADIUS RELATION?

In the previous sections, we have deduced the mass-radius
(MR) relation from a set of meta-EOS. In this section, we
illustrate the use of Bayesian analysis to solve the inversion
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FIG. 18. Total pressure function of the energy density ρ (including the rest mass contribution).

problem: Given a MR relation, how should we extract the best
meta-EOS passing through?

First, we need a set of data which is the MR relation to
fit. Let Rdata(MkM

) be the set of MR relations, σdata(MkM
) the

associated error bar in the radius, and NM the number of data

to fit. Then we can define the χ2
MR,i function as

χ2
MR,i = 1

NM

NM∑
kM=1

(
Ri

(
MkM

) − Rdata
(
MkM

)
σdata

(
MkM

)
)2

. (50)
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FIG. 19. Adiabatic index �(ρ) function of the energy density ρ (including the rest mass contribution).
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This quantity evaluates the goodness of a given meta-EOS
(represented by its associated set of parameters i = {Pα}),
where Ri(MkM

) is the MR relation of the EOS i.
The associated likelihood probability is

plik,MR(i) = N−1
lik,MR exp

(− 1
2χ2

MR,i

)
. (51)

Solving the inversion problem consists in analyzing the
distribution of the likelihood probability plik,MR(i) for each
meta-EOS i and extract the more probable parameters, and
their uncertainties. A one-parameter probability p1,MR can be
deduced from the multiparameter probability plik,MR , as

p1,MR(Pα) =
⎧⎨
⎩

8∏
β( �=α)=1

∫
dPβ

⎫⎬
⎭ plik,MR(i), (52)

and the centroid 〈Pα,MR〉 and standard deviation σα,MR of
the one-parameter probability p1,MR , are calculated from the
probability distribution in the standard way:

〈Pα,MR〉 =
∫

dPαPαp1,MR(Pα), (53)

σ 2
α,MR =

∫
dPα

[〈
P R

α

〉 − Pα

]2
p1,MR(Pα),

= 〈
P 2

α

〉 − 〈Pα,R〉2. (54)

From Eqs. (53) and (54), one can deduce the best set of
parameters (and their associated dispersion) which reproduce
the data.

We will illustrate this method in the following subsections:
First we will analyze the most probable MR relations obtained
in Sec. IV B, and second, we will analyze the impact of
shifting the more probable MR to smaller radii on the empirical
parameters.

A. Analysis of the most probable MR relations

In this section, we extract the best meta-EOS which re-
produce the average MR relationships obtained in Sec. IV B.
We therefore run over the 25 million meta-EOS generated in
Sec. IV B and associate to each of them a new probability
plik,MR defined from Eq. (51) where the data are the radius and
its 1σ width given in Fig. 11.

The results based on p1,MR are shown in Table II and can
be compared to the prior distribution and to the distribution of
parameters deduced from the original likelihood probability p1

(containing the physical constraints on the causality, stability,
and symmetry energy). There is a good agreement between
the low-order empirical parameters determined from p1 and
from p1,MR such as Esym, Lsym, and Ksat/sym. For the higher
order empirical parameters, such as Qsat/sym and Zsat/sym, the
centroid are still quite compatible between p1 and p1,MR (con-
sidering the 1σ -CL). The uncertainties associated to Qsat/sym

and Zsat/sym from the probability distribution p1,MR are large,
however, even a bit larger than the original uncertainty defined
previously. It is a sign that these parameters are not well
constrained by the MR relation at 1σ -CL, since they constrain
the high-density domain of the EOS and thus they weakly
impact the MR relation below 2M�.

B. Impact of shifting the more probable
MR relation to smaller radii

In this section, we address another question of importance:
Suppose that the radius of neutron stars is once measured and
found to be smaller than our prediction; which parameters will
be mostly impacted by such a measurement?

In other word, we want to analyze the correlation between
the best parameter set and the average position of the radius.
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FIG. 21. Effect of shifting the average radius by −Rshift on the empirical parameters. The purple 1-σ bands shown for each empirical
parameter are deduced from Table I. See the text for more details.

To do so, we consider that the radius is uniformly shifted
down as Rdata(M) = 〈R(M)〉 − Rshift , where 〈R(M)〉 is taken
from Fig. 11 as well as the width σdata = σR(M), which is not
modified in this example.

We should remark that the hypothesis of constant shift
with no modification of width is not fully realistic. Indeed,
the high-density EOS, explored in the most massive neutron
stars, is more uncertain than the low-density one, meaning
that the radii corresponding to the lighter NS are in principle
better constrained. However, the universal behavior observed
in Figs. 8 and 9 suggests that this schematic example can still
give significant information on the parameters which are the
most influential in a radius determination.

Figure 21 shows the impact on the empirical parameters,
of shifting the average radius down to about 1 km. As
expected from our previous analyzes, the empirical parameters
Esym,Ksat, Zsat, and Zsym are almost insensitive to the shift
of the radius. Esym is weakly impacted because the baryon
pressure is independent of it. Ksat has a weak impact because
it is sufficiently well known and varies only in a small interval.
Zsat and Zsym have weak impact because they influence the
pressure at densities which are higher than the one which
matters here. The more impacted empirical parameters are
Lsym,Ksym,Qsat, and Qsym. As the shift increases (the total
radius decreases), the empirical parameters Lsym and Ksym

decreases. This result is expected since these empirical param-
eters are the more influential on the pressure around saturation
density: The pressure is proportional to Lsym, while Ksym

governs the density dependence of the pressure at the lowest
order. Finally, Qsat and Qsym impact the density dependence
of the pressure at higher density than Ksym (second order).

They are sensitive to the MR relation for high-mass NS. A
lower radius for high-mass NS requires a softening of the EOS,
which implies a decrease of Qsat, as expected from our previous
analysis. The effect of this softening is, however, partially
compensated by Qsym as seen in Fig. 21.

In summary, the empirical parameters which are the most
impacted by the fit to lower radii are mainly Lsym,Ksym,Qsat,
and Qsym.

VI. CONCLUSIONS

In this paper, we have applied the meta-EOS presented
in Ref. [2] to zero-temperature β-equilibrium neutron stars,
assuming they are only composed of nucleons, electrons, and
muons. We have first performed a simple sensitivity analysis,
varying the empirical parameters independently in order to
study their impact on the MR relation. The empirical parame-
ters Lsym,Ksym, and Qsat are found to be the more important
ones. A better determination of these empirical parameter
will reduce the error bars on the MR relation predicted by
nucleonic EOS.

We have also performed a Bayesian analysis, taking as a
given the estimated empirical parameters’ average value and
uncertainty determined in Ref. [2], and filtering the approxi-
mately 25 million generated meta-EOS to find the ones which
satisfy the basic physical requirements of causality, stability,
and positiveness of the symmetry energy in a density interval
corresponding to NS up to 2M�. We also divided the meta-EOS
into three groups according to their prediction for the mass
range where dUrca may occur: no dUrca up to 2M� (DURCA-
0), dUrca for NS with masses between 1.8M� and 2M�
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(DURCA-1), and finally dUrca for NS with threshold masses
between 1.6M� and 1.8M� (DURCA-2). We found that the
final influence of the physical filtering and dUrca process on the
probability distribution of empirical parameters (the posterior)
is rather weak. The most impacted empirical parameters are
Lsym,Ksym, and Qsat/sym and the centroid of Ksym is clearly
increased from DURCA-0 to DURCA-2. The correlation
between the empirical parameters revealed only very weak
correlations, suggesting that most correlations observed in
the literature originate from the lack of flexibility of existing
phenomenological functionals, or additional constraints that
we have not considered here, such as the experimental masses
and charge radii of finite nuclei.

We have also used the probability distribution of parameters
to quantitatively predict the confidence intervals on global
properties of NS, such as their radius, momentum of inertia,
surface red shift, central proton fraction, crust thickness, and
central density as function of the mass and of the dUrca hypoth-
esis. The central proton fraction is substantially impacted by
the dUrca hypothesis, as expected, and the central density can
be larger for DURCA-0 hypothesis compared to DURCA-1
and 2. The EOS is, however, found to exhibit an universal
behavior against the dUrca hypothesis under the condition of
charge neutrality and β equilibrium. If composed exclusively
of nucleons and leptons, our prediction is that neutron stars
have a radius of 12.7 ± 0.4 km for masses between 1 and 2M�.

Assuming low compactness NS are only composed of
nucleons and leptons, we could use our predictions at 1σ -CL
to correlate a measurement of compactness (for instance,
0.105 ± 0.002 M� km−1 proposed for RX J0720.4-3125 [57])
to a prediction of its radius (12.7 ± 0.3 km) and mass (1.33 ±
0.04 M�). These predictions are done without any assumption
on the functional form of the EOS, and with the only require-
ment that the EOS is nucleonic and satisfies basic physical
constraints. As such, the prediction can be qualified as model
independent.

We have discussed in great detail the meta-EOS at β
equilibrium, as predicted by the posterior probability dis-
tribution, and we discussed the differences induced by the
dUrca scenario. The proton, electron, and muon fractions
are clearly impacted by the dUrca scenario. This can be
related to the density dependence of the symmetry energy.
DURCA-0 hypothesis produces a more asy-soft EOS than
DURCA-1 and 2. The EOS, P (ρ), as well as its logarithmic
derivative �(ρ), confirm the universal behavior predicted in

Ref. [56] for EOS without dUrca. We extend this prediction
for EOS where dUrca is allowed for high-mass NSs. Finally,
we represented the probability distribution of nucleon sound
velocity and discussed its expected asymptotic limit.

The last part of this work addresses the question of the in-
verse problem: How can an improved knowledge of the EOS be
obtained from accurate measurements of NS masses and radii?
We have shown that the empirical parameters Lsym,Ksym, and
Qsat/sym are the most impacted by the measurement of the NS
radii.

In conclusion, the empirical parameters encode very im-
portant properties of nuclear matter from which accurate
predictions can be performed. They can include up-to-date
constraints from experimental data as well as ab initio ap-
proaches and probe the accuracy of the predictions for dense
matter EOS based on the present knowledge. In the present
work, we have pointed out the most important empirical
parameters which will require more attention in the future:
Lsym,Ksym, and Qsat/sym. They are mainly responsible for the
uncertainty in the MR relation based on nucleonic EOS. Finite
nuclei may also provide better constraints on some empirical
parameters, such as the lowest order ones. In the future, we
plan to apply the meta-EOS to the description of the global
properties of finite nuclei, such as their masses and radii, from
the density functional approach. We also plan to continue
on our analysis by including some additional constraints on
the density dependence of the energy per particle and of the
symmetry energy. These additional constraints can easily be
included in our selection filter of the likelihood probability.
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