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Equation of state for dense nucleonic matter from metamodeling. I. Foundational aspects
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Metamodeling for the nucleonic equation of state (EOS), inspired from a Taylor expansion around the saturation
density of symmetric nuclear matter, is proposed and parameterized in terms of the empirical parameters. The
present knowledge of nuclear empirical parameters is first reviewed in order to estimate their average values
and associated uncertainties, and thus defining the parameter space of the metamodeling. They are divided into
isoscalar and isovector types, and ordered according to their power in the density expansion. The goodness of the
metamodeling is analyzed against the predictions of the original models. In addition, since no correlation among
the empirical parameters is assumed a priori, all arbitrary density dependences can be explored, which might not
be accessible in existing functionals. Spurious correlations due to the assumed functional form are also removed.
This meta-EOS allows direct relations between the uncertainties on the empirical parameters and the density
dependence of the nuclear equation of state and its derivatives, and the mapping between the two can be done
with standard Bayesian techniques. A sensitivity analysis shows that the more influential empirical parameters are
the isovector parameters Lsym and Ksym, and that laboratory constraints at supersaturation densities are essential
to reduce the present uncertainties. The present metamodeling for the EOS for nuclear matter is proposed for
further applications in neutron stars and supernova matter.
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I. INTRODUCTION

Since the discovery of neutron stars (NS) in 1967 [1–3], the
accurate prediction of the nuclear equation of state (EOS) has
become of great importance, and a lot of effort, both from the
theoretical and the experimental sides, has been devoted to this
aim. The seminal work of Tolman et al. in 1939 had proved that
considering only the kinetic contribution of nucleons to nuclear
matter equation of state provides a limit in the maximum mass
of neutron stars of about 0.7M� [4,5]. This contradicts the
present observations for the canonical NS mass, which is of the
order of 1.44M� [6], as well as the recent observations proving
the existence of about 2M� NS [7,8]. These observational data
clearly demonstrate the importance of the nuclear interaction
for understanding the global properties of neutron stars.

Several ab initio approaches have been developed for the
accurate prediction of NS equation of state; see, for instance,
Refs. [9,10] for recent reviews. More recently, new nuclear
potentials (chiral effective field theory (EFT)) have been de-
veloped, offering the possibility of performing calculations in
perturbation theory [11,12], and they have been implemented
as well in quantum Monte Carlo (QMC) methods [13–15].
These potentials have also been applied to the NS EOS; see,
for instance, Refs. [16,17]. While there is a convergence in the
prediction of these EOS at low density, such method might
fail above the saturation density of nuclear matter because an
expansion in supposedly small parameters is no longer really
valid there. In addition, there are larger deviations between the

different predictions above saturation density, mainly because
of the different treatments of the many-body correlations and
the different nuclear interactions; see, for instance, Ref. [18]
for a detailed comparison of some of these approaches.

With the development of x-ray observations of the thermal
emission from the surface of neutron stars, it was envisioned
that the nuclear EOS may be directly determined from obser-
vational data such as NS radii [19–30]. In all these papers,
the nuclear EOS is expressed in terms of a reduced number of
parameters, such as matching densities of piecewise polytropes
first introduced in Ref. [19]. The use of polytropes, while
extremely simple and not too far from the model predictions,
does not allow a simple connection to the present nuclear
physics knowledge, such as nuclear saturation and empirical
parameters, nor can it bring information concerning matter
composition, such as the proton fraction. It is therefore inter-
esting to extend these ideas toward a more complementary
approach between astrophysical and nuclear experimental
constraints.

Other approaches for the nuclear EOS are derived from
some simple nuclear interaction, such as Skyrme-type con-
tact interactions complemented by a density-dependent term
[16,31]. While extremely useful and simple, the density-
dependent term usually brings correlations among the nuclear
empirical parameters which may be unphysical [32,33]. Non-
relativistic Skyrme-type EOS [34,35] as well as relativistic
ones [36,37] can be selected according to their ability to
reproduce ab initio calculations.
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A third model of the nuclear EOS is based on a Taylor
expansion of the nuclear EOS around saturation density [22]
or a Fermi momentum expansion [38]. This kind of approach
offers a unique possibility to incorporate in the nuclear EOS
the best knowledge issued from nuclear physics, reducing
the number of free parameters. The Taylor expansion allows
the separation of the low-order derivatives, which are better
determined by nuclear experiments, from the high-order ones,
which are best determined by NS observations. Indeed, the
higher order parameters are more sensitive to the EOS at the
highest densities, which are difficult to access from nuclear
laboratory experiments.

In this paper, a metamodel, or a “model of a model” [39], for
the nucleonic EOS is proposed and analyzed. Metamodels are
a practical solution to solving complex and numerical issues
and/or facilitating optimization under uncertainty. They are
therefore often used to provide fast approximations to the
results of more complex problems, and to perform comparative
analysis of different models belonging to the class covered by
the metamodeling. Conceptually, metamodels build a hyper-
surface from a limited amount of input and output data and
approximate the output over a much wider parameter space;
see Refs. [40–42] for an overview of metamodeling techniques.
Metamodels have to be evaluated with respect to the goodness
and there is no proof of existence or of uniqueness in general.
A metamodel is always associated to a given model or class
of models. In the present application, we will consider homo-
geneous nucleonic EOS. In principle, different metamodels
can be introduced to represent different model classes, e.g.,
nucleonic EOS against high-density phase transition EOS. The
goodness of the data adjustment with respect to one of these
classes can, for instance, be analyzed by introducing Bayesian
factors [39]. We introduce the concept of a metamodel for the
nucleonic EOS since it present several interesting advantages:
(i) It provides a unique mapping of very different existing
EOS with many different input parameters, (ii) it provides a
flexible approach that can interpolate continuously between
existing EOS, (iii) as a consequence, it may orientate the
preferred input parameters toward values which are not among
the existing EOS, (iv) it allows the definition of a generic model
where the nuclear physics knowledge acquired from laboratory
experiments can be simply encoded as input parameters,
(v) it includes in its parameter space the results of complex
ab initio models, and can thus be used to extract the constraints
on the EOS imposed by them, (vi) and finally, combined with
the Bayesian framework, it facilitates the estimation of the
experimental and theoretical error bars into confidence levels
for the astrophysics observables. In this paper, we introduce
and analyze the properties of this nucleonic metamodeling,
while the connection with NS observables is performed in a
second paper [43]. Further extensions of this approach to the
description of nonhomogeneous matter and/or of dense matter
phase transitions can easily be developed in the future from the
present framework.

The present paper is organized as follows: In Sec. II,
a review of the experimental information on the nuclear
empirical parameters is performed, and their uncertainties
are estimated. To this aim, predictions from relativistic and
nonrelativistic, phenomenological and ab initio interactions

are compiled and compared, and uncertainties are obtained
from a statistical analysis. The metamodeling is formulated
in Sec. III, presenting different options for the Taylor ex-
pansion. The quality of the different strategies is estimated
by comparing the convergence of predictions with respect
to a reference EOS. Section IV explores the flexibility of
the meta-EOS. We show that this metamodeling can very
accurately reproduce a large number of existing EOS, and at
the same time it can explore density dependences which are
not accessible to usual phenomenological functionals because
of the imposed functional form. In that section, it is also shown
that the huge uncertainty in higher order empirical parameters
can only be reduced if extra empirical information is added
on a second higher density reference point, in addition to
the saturation density. One of the advantages of the present
meta-EOS is the fact that no a priori correlations are imposed
on the empirical parameters. The physical correlations can be
added a posteriori as illustrated in the second paper [43]. We
perform a sensitivity analysis of the meta-EOS to the different
empirical parameters by varying them one by one according to
their uncertainties. This is done in Sec. V, where we show
that the most influential parameters are the isovector ones,
namelyLsym,Ksym, andQsym. This stresses once again the need
for experimental constraints at high density on asymmetric
matter, typically from high-energy heavy-ion collisions with
rare isotopic beams. Finally, conclusions and outlooks are
presented in Sec. VI.

II. EMPIRICAL CHARACTERIZATION OF
THE NUCLEAR EQUATION OF STATE

In the following, we analyze the properties of nuclear matter
composed of neutrons and protons with different isoscalar (is)
density n0 = nn + np and isovector (iv) density n1 = nn − np,
where nn/p is the neutron/proton density defined as

nn/p = 1

3π2
k3
Fn/p

, (1)

where kFn/p
is the neutron/proton Fermi energy. Isospin asym-

metric nuclear matter (ANM) can also be defined in terms of the
asymmetry parameter δ = n1/n0. The two boundaries δ = 0
and 1 correspond to symmetric nuclear matter (SNM) and to
pure neutron matter (PNM). The saturation density of SNM is
defined as the density at which the symmetric matter pressure
is zero and it is denoted as nsat.

The general properties of relativistic and nonrelativistic
nuclear interactions are often characterized in terms of the
nuclear empirical parameters, defined as the coefficients of the
following series expansion in the parameter x = (n0 − nsat)/
(3nsat) [44],

eis = Esat + 1

2
Ksatx

2 + 1

3!
Qsatx

3 + 1

4!
Zsatx

4 + · · · , (2)

eiv = Esym + Lsymx + 1

2
Ksymx2

+ 1

3!
Qsymx3 + 1

4!
Zsymx4 + · · · , (3)

where the isoscalar energy eis and the isovector energy eiv enter
into the definition of the energy per nucleon in nuclear matter,
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defined as

e(n0,n1) = eis(n0) + δ2eiv(n0). (4)

The isovector energy eiv is often called the symmetry energy
S(n0) = eiv(n0). Note that this definition implies a parabolic
approximation for the isospin dependence, while the proper
definition is given by the second derivative with respect to δ
around symmetric matter; see Eq. (12) below.

The empirical parameters entering the series expansion
(2) and (3) are separated into two channels [18,45]: the
isoscalar channel which defines the saturation energy Esat,
the saturation density nsat, the incompressibility modulus Ksat,
the isoscalar skewness Qsat, and the isoscalar kurtosis Zsat;
and the isovector channel which defines the symmetry energy
Esym, the slope Lsym, the isovector incompressibility Ksym,
the isovector skewness Qsym, and the isovector kurtosis Zsym.
There is no unique nomenclature for the empirical parameters,
but in principle, Eqs. (2) and (3) make ours unambiguous. A
very clear synthesis of the various terminologies used in the
literature is discussed in the appendix of Ref. [44].

The energy per nucleon (4) can be expressed in the following
compact form [45,46],

e(n0,n1) =
∑
α�0

1

α!

(
cis
α + civ

α δ2
)
xα, (5)

where the coefficients c
is/iv
α are the empirical parameters

introduced in Eqs. (2) and (3) [44]. Note that the coefficient
cis

1 = 0 is due to the choice of the saturation density nsat as
the reference density in the definition of x. Consequently,
choosing an arbitrary density as reference in the definition
of x would lead to a nonvanishing cis

1 , and nsat would be
determined by the isoscalar empirical parameters. The total
number of free parameters is thus conserved: Considering cis

1
or nsat as isoscalar empirical parameter for α = 1, it is two per
exponent α.

The empirical properties are determined from nuclear
physics experiments such as measurements of nuclear masses,
charge-density profiles, and analysis of collective modes
(ISGMR, IVGDR, etc.). More details of the experimental
determinations of the empirical parameters are presented in
Sec. II A.

The series expansion (5) in the parameter x is in principle
infinite, and it is not guaranteed that this expansion converges.
The convergence property is analyzed in Sec. III, however,
and anticipating the results, it is shown that in a density
range going up to 4nsat an order by order convergence for
the binding energy, the pressure and the sound velocity are
found. This result is tested for a large number of nuclear
interactions in Sec. IV. In this section, we therefore concentrate
on the experimental determination of the first terms in the
expansion (5).

The expansion in the asymmetry parameter δ in Eq. (5) does
not include terms beyond second order in δ. Note, however, that
small corrections may appear, such as those induced by the
T = 0 pairing or quarteting [47,48], which have been con-
sidered in recent works; see, for instance, Refs. [38,49–51].
Ab initio approaches show that the energy per nucleon in
homogeneous asymmetric nuclear matter is mostly quadratic

in δ [52,53], and residual nonquadraticities are mostly related
to the kinetic energy part of the total energy (including the
effective mass splitting) [46]. This is also confirmed by an
analysis of various finite-range nuclear forces [54]. For this
reason, in Sec. III we will replace the global expansion (4) by
an expression where the contribution of the kinetic energy is
expressed separately, and limit the parabolic approximation to
the interaction part.

In the following, we first review the “experimental” deter-
mination of the first parameters in Eq. (5), hereafter called
“low order.” In Sec. II A, we list a large, but certainly not
extensive, amount of referenced analyses where authors have
optimized their models on specific experimental data to extract
some of the empirical parameters. We call these analyses
“experimental” in opposition to the generic determination
which is presented in Sec. II B. In the generic approach,
the parameters are directly deduced from a set of models
known by their ability to reasonably predict a large number
of nuclear properties, such as masses and radii at least. The
generic approach is supposed to provide an upper bound
on the empirical parameters uncertainties. For the low-order
empirical parameters, a good overlap is found between the
“experimental” analysis and the generic one. The advantage of
the generic analysis is that it could also provide an estimation
of the uncertainties associated with the high-order empirical
parameters which are yet quite unknown.

A. Experimental determination of the nuclear
empirical parameters

There is a very important experimental and theoretical
program aiming at a better estimation of the nuclear empirical
parameters. For this reason, some of the empirical quantities
are rather well determined. This concerns essentially the first
terms of the series expansion (5), such as the saturation energy,
the saturation density, the incompressibility modulus, and the
symmetry energy. We have grouped them in the so-called
group A and presented them in Table I. The other empirical
parameters are less well known, and we will show that this
second group of nuclear empirical parameters can be divided
into two subgroups: the one for which we can give a range
of variation compatible with our experimental knowledge, the
so-called group B shown in Table II, and a group of parameters
which are yet quite undetermined and not presently accessible
by nuclear experiments, the so-called group C. In the following,
we review the experimental determination of the empirical
parameters for the groups A and B. Let us, however, notice
that the following review is not exhaustive but more illustrative.
The aim of the subsection is to justify the current estimation
of these empirical parameters.

The values reported in Table I are extracted from exper-
imental analysis and can therefore be considered as closely
related to nuclear data. They are not directly determined from
experimental data since these quantities are not accessible to
experimental probes without the use of a theoretical model. For
instance, the saturation density is extrapolated from fits of finite
nuclei density profiles. An additional difficulty comes from the
fact that the isoscalar density is not directly measurable from
electron scattering in finite nuclei, and the relation between
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TABLE I. Group A: saturation energy Esat , density nsat , incompressibility Ksat , and symmetry energy Esym estimated from various analyses
of experimental data. See text for more details.

Model Ref. Esat (MeV) nsat (fm−3) Ksat (MeV) Esym (MeV)

El. scatt. Wang-99 [55] 0.1607 235
±15

LDM Myers-66 [56] −15.677 0.136a 295 28.06
LDM Royer-08 [57] −15.5704 0.133a 23.45
LSD Pomorski-03 [58] −15.492 0.142a 28.82
DM Myers-77 [59] −15.96 0.145a 240 36.8
FRDM Buchinger-01 [60] 0.157

±0.004
INM Satpathy-99 [61] −16.108 0.1620 288

±20

DF-Skyrme Tondeur-86 [62] 0.158
DF-Skyrme Klupfel-09 [63] −15.91 0.1610 222 30.7

±0.06 ±0.0013 ±8 ±1.4
DF-BSK2 Goriely-02 [64] −15.79 0.1575 234 28.0
DF-BSK24, Goriely-15 [65] −16.045 0.1575 245 30.0
28,29 ±0.005 ±0.0004
DF-Skyrme McDonnell-15 [66] −15.75 0.160 220 29

±0.25 ±0.005 ±20 ±1
DF-NLRMF NL3∗ [67] −16.3 0.15 258 38.7
DF-NLRMF PK [68] −16.27 0.148 283 37.7
DF-DDRMF DDME1,2 [69,70] −16.17 0.152 247 32.7

±0.03 ±0.00 ±3 ±0.4
DF-DDRMF PK [68] 16.27 0.150 262 36.8

Present −15.8 0.155 230 32
Estimation ±0.3 ±0.005 ±20 ±2

aValue determined from r0.

the charge density and the total density is thus performed via
a theoretical model. The neutron density can be determined
in a relatively model-independent way by measurement of
the parity-violating electron scattering asymmetry from 208Pb.
This is the aim of the PREX experiment at Jefferson Labora-
tory [80].

The values for the saturation energy reported in Table I are
remarkably stable in the different analysis. From Table I, the
current value of Esat is estimated to be −15.8 ± 0.3 MeV. Let
us mention a recent estimation of Esat and its uncertainty based
on liquid drop models (LDM) and the frequency-domain boot-
strap method [81]. The obtained value is −15.56 ± 0.17 MeV,
which is slightly lower, but still compatible with our current
estimation.

The saturation density is more difficult to determine from
the analysis presented in Table I. The value estimated from
LDM is lower than the one obtained from density functional
(DF) models, which are supposed to provide the more accurate
determination of the saturation density. This is confirmed by
the fact that the values extracted from the droplet model (DM)
and the finite-range droplet model (FRDM), which are more
realistic than the original LDM [59], are closer to the ones
extracted by DF. We have selected the DF models for which
the value for the saturation density was not assumed a priori in
the fitting protocol to global properties of finite nuclei such as
binding energies and charge radii. The value obtained for the
saturation density could therefore be considered as a prediction

of these models. In summary, we consider the following current
estimation of nsat = 0.155 ± 0.005 fm−3. Note that the error in
the determination of these quantities was larger some decades
ago; see, for instance [82].

The incompressibility modulus Ksat given in Table I varies
from 210 up to 300 MeV, revealing here also the difficulty in
estimating this quantity from experimental data as well as its
model dependence. A more systematical review of the various
theoretical predictions for Ksat is presented in Ref. [83]. The
determination of the incompressibility modulus from the LDM
is usually not very accurate [83,84]. A better determination can
be obtained from a method proposed by Blaizot [84,85], based
on the correlation between the isoscalar giant monopole reso-
nance (ISGMR) energy and the empirical parameter Ksat. This
estimation remains quite model dependent, and for instance,
a lower value Ksat ≈ 210 MeV is obtained for the BCP func-
tional [86] and Gogny interactions [84], while a higher value
Ksat ≈ 250–270 MeV is predicted from relativistic mean field
(RMF) approaches [87–89]. A part of this model dependence
can be understood from the violations of self-consistency in
some early calculations [90]. This model dependence might
also reveal a more complex correlation in terms of several
empirical parameters, instead of the single one proposed by
Blaizot. It was indeed shown that the ISGMR is also sensitive to
symmetry properties, and information on Ksat cannot be easily
deconvoluted from information on Ksym [91]. For a deeper
review, see Ref. [92]. It was also recently shown that higher
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TABLE II. Group B parameters: isoscalar skewness Qsat , slope of
the symmetry energy Lsym, and isovector incompressibility Ksym. The
parameter Kτ is defined as Kτ = Ksym − 6Lsym − QsatLsym/Ksat . See
text for more details.

Model Ref. Qsat Lsym Ksym Kτ

(MeV) (MeV) (MeV) (MeV)

DF-Skyrme Berdichevsky-88 [71] 30 0
DF-Skyrme Farine-97 [72] −700

±500
DF-Skyrme Alam-14 [31] −344 65 −23 −322

±46 ±14 ±73 ±34
DF-Skyrme McDonnell-15 [66] 40

±20
DF-NLRMF NL3∗ [67] 124 123 106 −690
DF-NLRMF PK [68] −25 116 55 −630
DF-DDRMF DDME1,2 [69,70] 400 53 −94 −500

±80 ±3 ±7 ±7
DF-DDRMF PK [68] −119 79.5 −50 −491
Correlation Centelles-09 [73] 70 −425

±40 ±175
DF-RPA Carbone-10 [74] 60

±30
Correlation Danielewicz-14 [75] 53

±20
Correlation Newton-14 [76] 70

±40
Correlation Lattimer-14 [77] 53

±20
GMR Sagawa-07 [78] −500

±50
GMR Patel-14 [79] −550

±100

Present 300 60 −100 −400
Estimation ±400 ±15 ±100 ±100

order isoscalar parameters also play a role, and the correlation
analysis should be performed in terms of several empirical
parameters instead of only one, such as Ksat and Qsat [32,33].
The value of Qsat is yet undetermined, and most of the model
dependence in the determination of Ksat can be attributed
to the uncertainties in Qsat [33]. In other words, a better
estimation of Qsat would refine the estimation of Ksat based
on the correlation with the ISGMR. From a LDM approach
separating the bulk contribution (Ksat) from the surface one
(largely influenced by Qsat), the importance of the surface
properties for the determination of Ksat was pointed out as
well [83]. An estimation of Ksat = 230 ± 40 MeV was given
in Refs. [32,33] where the error bar contains the maximum and
minimum possible values for Ksat. It is therefore larger than a
1σ uncertainty, where 1σ is the error bar accounting for 68%
of the models around the centroid. In summary, the current
estimation of Ksat can be given as 230 ± 20 MeV, where the
error bar corresponds to 1σ uncertainty.

It is interesting to observe the correlations between the
empirical parameters Ksat and Qsat represented in Fig. 1.
This correlation is shown for Skyrme models (purple line),
RMF models (light-green area), RHF models (light-blue area),

FIG. 1. Correlation between the empirical parameters Ksat and
Qsat for different kind of nuclear interactions: Skyrme, Gogny, RMF,
and relativistic Hartree-Fock (RHF). Points from EFT approach are
also plotted. The points are obtained from Tables IX–XII, except for
the Gogny model, which is extracted from Ref. [33], and the colored
bands come from fits of the data including their dispersion considering
67% of the best models.

Gogny models (orange line), and chiral EFT predictions
(yellow line). The correlation bands for each models are shown
for clarity. They are obtained assuming a linear correlation
between the values of Ksat and Qsat, and the width of the
bands are determined from the 1 − σ deviation. The strongest
correlation is found for the Skyrme and Gogny models, already
suggested in Ref. [33], and the origin of this correlation can
be found in the so-called t3 density-dependent terms which
dominate in Ksat and Qsat. It is, however, interesting to remark
that also the relativistic models (RMF and RHF) exhibit a
correlation between these empirical parameters, even if its
origin is less easy to analyze. In addition, the very different
correlations between the various kinds of models shown in
Fig. 1 indicate a strong model dependence of the correlation
that might not reflect a physical property. Since Ksat and
Qsat govern the density dependence of the equation of state
in symmetric matter (SM) and around saturation density, the
correlation shown in Fig. 1 indicates that models do not explore
all possible density dependences.

This is one of the main motivations of the present work: In
the following Sec. V, we propose a metamodeling which can
explore the full parameter space (including Ksat and Qsat), with
no a priori restriction. Physical correlations could be added by
imposing some constraints to the metamodeling, as illustrated
in the second paper [43].

While the binding energies Esat are predicted in a quite
narrow interval for the various models presented in Table I, the
symmetry energy varies substantially among LDM, DM, and
DF models. This might be because the value for the symmetry
energy is very strongly related to the value of the slope of
the symmetry energy Lsym in many models [74,75,93]. The
quantity which matters in the fit to experimental energies
seems to be more closely related to the symmetry energy at
the average density of nuclei, at around (2/3)nsat [94]. In
addition, it has also been observed that RMF models prefer
large values for the symmetry energy, such as 34–36 MeV,
and it has been proposed that the symmetry energy and the
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incompressibility modulus Ksat are correlated in DF models
[91]. Furthermore, a recent analysis of the bulk and surface
contributions of the symmetry energy have shown that the
sign of surface contribution depends strongly on the choice for
the asymmetry parameter: the global asymmetry parameter or
the bulk asymmetry parameter, which contains a correction
from the neutron skin [95]. Considering this large model
dependence, the current estimation of Esym is approximately
32 ± 2 MeV and this is in agreement with other estimations;
see Refs. [96–99].

We now discuss the parameters of group B given in Table II:
Qsat, Lsym, and Ksym. These parameters are not yet very well
determined, but a better accuracy might be reached in the
near future. We first discuss the skewness parameter Qsat.
This parameter is poorly known and there are very few ex-
perimental analyses which propose an estimation. An analysis
of charge and mass radii of tin isotopes concluded that either
Qsat ≈ 30 MeV or Lsym ≈ 0 MeV [71]. Another analysis of
the incompressibility modulus concluded that Qsat ≈ −700 ±
500 MeV [72]. This very large error bar reflects once again the
model dependence of Qsat, induced by its correlation with the
incompressibility modulus, as shown in Fig. 1. It is therefore
very difficult to estimate the value of this parameter and in the
following, we shall explore a large domain.

The parameter Lsym is much discussed nowadays and a
large number of experiments aim at determining its value
[100]. Combining different constraints from neutron skin
thickness, heavy-ion collisions, dipole polarizability, nuclear
masses, giant-dipole resonances, and isobaric analog states,
it was recently concluded that the value of Lsym should be
between 33 and 72 MeV [77,101]. Note that in Ref. [77] the
symmetry energy is comprised between 31 and 36 MeV, which
is consistent with the present estimation given in Table I.
Other analyses predict slightly larger values for Lsym, and
integrating all analyses, we come to the following estimation:
Lsym = 60 ± 15 MeV.

The isospin dependence of the ISGMR is a natural observ-
able to determine the parameter Kτ , defined as Kτ = Ksym −
6Lsym − QsatLsym/Ksat [44]. It represents the isoscalar curva-
ture at the saturation density in asymmetric matter, nsat(δ) ≈
nsat(1 − 3Lsatδ

2/Ksat). The parameter Ksym could, in principle,
be deduced from Kτ if Lsym and Qsat were well determined.
Considering the uncertainties in these parameters, we found a
very naive estimation of the error bar in Ksym, σ ≈ 600 MeV,
which is certainly overestimated. Waiting for better experimen-
tal analysis in the future, the value Ksym = −100 ± 100 MeV
given in Table II is obtained from statistical analysis of various
model predictions; see Sec. II B. It is mainly related to the
expected values from chiral EFT approach and is comparable
with the recent analysis from unitary gas constraint [102]. Let
us mention that this range for Ksym is compatible with the
one from Ref. [103] which is −100 ± 200 MeV. In our case,
we cover the same uncertainty range considering 2σ deviation
from the central value.

We now switch to the discussion of a quantity which is
usually not considered as an empirical parameter, but enters
nevertheless into the important quantities which characterize
nuclear matter properties. The effective mass is a powerful
concept used to characterize the propagation of quasiparticles

TABLE III. Landau effective mass properties in nuclear matter
at saturation density. From the estimated value of m∗

sat/m, we can
deduce κs = 0.43 ± 0.1. See text for more details.

Model Ref. m∗
sat/m κv �m∗

sat/m

DF-Skyrme [104] Lipparini-89 0.2−0.54
DF-Skyrme [105] Reinhard-99 0.8 ± 0.1 0.25 ± 0.5
DF-Skyrme [106] Lesinski-06 0.75 ± 0.05 0.6 0.17
Opt. Pot. [107,108] Perey-62 0.75 ± 0.05
Opt. Pot. [109] Dover-72 0.75 ± 0.03
BHF [110] Hassaneen-04 0.65 ± 0.05 0.1−0.2
DBHF [111] Ma-04 0.66 0.1−0.2
DBHF [112] VanDalen-05 0.78 0.1−0.2

Present 0.75 ± 0.1 0.4 ± 0.2 0.1 ± 0.1
Estimation

inside a strongly interacting medium, such as nuclei or nuclear
matter. It reflects the nonlocality in space and time of the
quasiparticle self-energy. The nonlocality in space, also called
the Landau effective mass or k-effective mass, is related to the
momentum dependence of the nuclear interaction. The Landau
effective mass depends on the isoscalar and isovector densities
and can be different for neutrons and protons, m∗

q(n0,n1) where
q = n, p. In SM, it is generally assumed that m∗

n = m∗
p, while

in AM the neutron and proton Landau effective mass can be
different. The isospin splitting of the Landau effective mass
can then be expressed as

�m∗(n0,n1) = m∗
n(n0,n1) − m∗

p(n0,n1). (6)

Two quantities are usually compared between various nuclear
interactions: the Landau effective mass in SM at saturation m∗

sat
and the isospin splitting taken for n0 = n1 = nsat in neutron
matter (NM), �m∗

sat. A summary of the determination of m∗
sat

and �m∗
sat from nuclear experiments is shown in Table III.

The Landau effective mass can be extracted from the
energy dependence of the optical potential which is used
in phenomenological analyses of nucleon scattering data.
By comparing the energy-dependent term of the real optical
potential in the energy range 10–30 MeV to the equivalent
local potential from the Skyrme interaction, it was deduced
that m∗

sat is approximately (0.75 ± 0.03)m [109]. A similar
damping of the mass was also found by Perey based on phe-
nomenological local and nonlocal potentials giving the same
phase shifts [107,108]. Apparently contradictory information
comes from the measurement of level densities: It was indeed
observed in the 1960s that the experimental level density could
be reproduced only if m∗

sat ≈ m [113]. The solution of this
contradiction was found by recognizing that the mean field is
not static, but it has also a dynamic component [114]: Among
the modes associated with the fluctuations of the field, one
finds vibrations of the nuclear surface [115–117], which is
associated to an energy-dependent effective mass (or ω mass,
to be distinguished from the Landau effective mass). This
nonlocal-in-time property of the effective mass [118–120],
however, goes beyond the scope of the present model. It is
mentioned here only to illustrate the difficulty of accurately
determining the effective mass from experiments.
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TABLE IV. Binding energy Esat , the symmetry energy Esym, saturation density nsat , slope of the symmetry energy Lsym, isoscalar
incompressibility Ksat , isovector incompressibility Ksym, isoscalar skewness Qsat , isovector skewness Qsym, isoscalar kurtosis Zsat , isovector
kurtosis Zsym, the Landau effective mass at saturation m∗

sat , and its isospin splitting �m∗
sat . For the relativistic approaches, the effective mass is

defined to be the Landau mass derived from the equivalent Schrödinger equation; see Ref. [125] and references therein for more details.

Model Der. order Esat Esym nsat Lsym Ksat Ksym Qsat Qsym Zsat Zsym m∗
sat/m �m∗

sat/m κv Kτ

(Nα) (MeV) (MeV) (fm−3) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)
0 0 1 1 2 2 3 3 4 4

Phenomenological approaches

Skyrme Average −15.88 30.25 0.1595 47.8 234 −130 −357 378 1500 −2219 0.73 0.08 0.46 −344
(16) σ 0.15 1.70 0.0011 16.8 10 66 22 110 169 617 0.10 0.24 0.27 25
Skyrme Average −15.87 30.82 0.1596 49.6 237 −132 −349 370 1448 −2175 0.77 0.127 0.44 −354
(35) σ 0.18 1.54 0.0039 21.6 27 89 89 188 510 1069 0.14 0.310 0.37 45
RMF Average −16.24 35.11 0.1494 90.2 268 −5 −2 271 5058 −3672 0.67 −0.09 0.40 −549
(11) σ 0.06 2.63 0.0025 29.6 34 88 393 357 2294 1582 0.02 0.03 0.06 153
RHF Average −15.97 33.97 0.1540 90.0 248 128 389 523 5269 −9956 0.74 −0.03 0.34 −572
(4) σ 0.08 1.37 0.0035 11.1 12 51 350 237 838 4156 0.03 0.01 0.07 169

Total Average −16.03 33.30 0.1543 76.6 251 −3 13 388 3925 −5268 0.72 0.01 0.39 −492
(50) σtot 0.20 2.65 0.0054 29.2 29 132 431 289 2270 4282 0.09 0.20 0.22 166

Min −16.35 26.83 0.1450 9.9 201 −394 −748 −86 −903 −16 916 0.38 −0.47 0.00 −835
Max −15.31 38.71 0.1746 122.7 355 213 950 846 9997 −5 1.11 1.02 2.02 −254

Ab initio approaches
APR Average −16.0 33.12 0.16 50.0 270 −199 −665 923 337 −2053 1.0 0.0 0.0 −376
(1) σ a 0.30 a 1.3 2 13 30 67 94 125 a a a 30
Chiral EFT Average −15.16 32.01 0.171 48.1 214 −172 −139 −164 1306 −2317 −428
Drischler 2016 σtot 1.24 2.09 0.016 3.6 22 40 104 234 214 379 63
(7) Min −16.92 28.53 0.140 43.9 182 −224 −310 −640 901 −2961 −534

Max −13.23 34.57 0.190 53.5 242 −108 24 96 1537 −1750 −334

aThis parameter is fixed.

The Landau effective mass in Skyrme models can be
expressed as [106]

m

m∗
q

= 1 + κs + τ3(κs − κv)δ, (7)

where κs = m/m∗
sat − 1 in symmetric matter and κv is the

enhancement factor entering the Thomas-Reiche-Khun sum
rule in the case of the isovector giant dipole resonance E1
(IVGDR) [104]. There is a direct relation between κs and
the isoscalar giant quadrupolar resonance (ISGQR) [84,105],
while the value of κv depends to a large extent on the energy
region of the resonance energy [104,105].

So far, no experimental data from finite nuclei have allowed
a determination of the effective mass splitting. Microscopic
approaches such as BHF and DBHF have been employed and
predict in a nonambiguous way that m∗

n > m∗
p in neutron-rich

matter [110–112]. The sign of �m∗ is solidly positive, but
its amplitude is not yet clearly determined and is believed to
be around 0.1 to 0.2 m. The neutron and proton Landau ef-
fective masses calculated within the Brueckner diagrammatic
approach [110,112,121–124] are reported in Table III; see lines
BHF (Brueckner-Hartree-Fock) and DBHF (Dirac-Brueckner-
Hartree-Fock).

For small values of the isospin splitting �m∗
sat/m � 1, the

following relation is approximately satisfied:

κv ≈ κs − 1

2

�m∗
sat

m
(1 + κs)

2. (8)

To summarize, the present estimation for these parameters
can be expressed as m∗

sat/m = 0.75 ± 0.1, κv = 0.4 ± 0.2, and
�m∗

sat/m = 0.1 ± 0.1.

B. Generic determination of the empirical parameters

Besides the constraints determined from direct analysis of
experimental data, we performed a complementary analysis
of the predictions for the empirical parameters determined
from various relativistic and nonrelativistic functionals. We
have investigated several types of relativistic and nonrela-
tivistic phenomenological models, namely 35 Skyrme-type
functionals, 11 models based on RMF effective Lagrangians,
four RHF effective Lagrangians, as well as two more ab initio
approaches, APR and chiral EFT. For simplicity, APR and
chiral EFT EOS are grouped together since they are both
based on the NN interaction in vacuum, at variance with the
so-called phenomenological approaches. The interactions on
which they are based are, however, very different in nature,
but this goes beyond the present analysis. Concerning the
phenomenological models, we report in the appendix the
isoscalar and isovector empirical parameters up to the fourth
order, the Landau effective mass at saturation m∗

sat, and its
isospin splitting �m∗

sat; see Tables X, XI, and XII. Details for
ab initio chiral EFT approach are discussed in Sec. IV B.

In Table IV, we present a summary of the detailed results
shown in the appendix and Sec. IV B: The average values for
each type of model (Skyrme, RMF, and RHF) are calculated
as well as the standard deviation σ for each type of model,
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defined as σ 2 = ∑
i[x

2
i − 〈x〉]/Nmodels, where x stands for an

empirical parameter andNmodels is the number of parameter sets
for each type of modeling (Nmodels = Nα) given in Table IV.
Note that for the Skyrme-type models, we present two different
averages, over 16 and 35 models, respectively. Our sampling
of Skyrme forces is more limited than in other analysis; see,
for instance, Ref. [18] and references therein. The 35 Skyrme
forces that we have considered here are among the mostly
used forces. In addition, the reduced sampling of 16 Skyrme
functionals contains the forces which are usually employed for
finite nuclei. Since some groups have produced many different
forces, but with rather similar constraints, we have decided to
consider only a few of these forces in our sample. In doing
so, we limit as much as possible the bias which may come
from the details of the fit and give almost equal weights to
different groups, thus increasing the meaning of the calculated
average and standard deviations. The test of the stability of our
statistical analysis is performed by comparing the small sample
to the wider one. The central values are shown to be rather
independent of the sampling, while the standard deviation σ
increases with the number of models.

Considering the group of phenomenological approaches,
the last lines of this group in Table IV provide the average
values, the standard deviations σtot, and the minimal and max-
imal values found for all empirical parameters. The average
and the standard deviation could be influenced by the number
of models belonging to each type of model. In order to reduce
this influence, the average and standard deviation are weighted
differently for the three different type of models. The mean
value is defined as

∑
α 1/3

∑
i xi/Nα , where α runs over the

three types of models (Skyrme, RMF, and RHF) and i over
the models themselves. This is strictly identical to take the
arithmetic mean of the three first average values given in the
first lines of Table IV. In a similar way, the standard deviation
is defined as σ 2

tot = ∑
α 1/3

∑
i[x

2
i − 〈x〉]/Nα , where Nα is

given in the first column of Table IV and the mean value 〈x〉
is the one of the final average considering the 50 models. By
comparing different types of phenomenological approaches,
we expect that the final central values and central deviations
that we obtained are weakly impacted by the choice of
the samples, provided only models used in finite nuclei are
considered.

For the group of ab initio approaches, the same statistical
quantities are generated from the seven chiral EFT results. For
APR, we have fitted Eq. (5) to the APR symmetric and neutron
matter EOS and we provide in Table IV the best fit and its
associated error bar.

It is clear from Table IV that all the empirical parameters
are model dependent, even the lowest order ones: For instance,
the average saturation energies Esat and densities nsat are
different among Skyrme, RMF, and RHF type of models, and
the differences among these average values are larger than
the standard deviations. The same remark applies also for the
ab initio approaches. This indicates a model dependence for
these quantities. It is particularly interesting to remark on
the big deviations for the empirical parameters Ksym and
Qsat among the Skyrme, RMF, and RHF models. These two
quantities are predicted to be negative for Skyrme interactions,
compatible with zero for RMF, and positive (almost equal in

absolute value to the Skyrme models) for the RHF approaches.
This is an indication that these values are weakly constrained by
their fitting protocol, which is mostly based on nuclear masses
and charge radii. The higher order empirical parameters (Qsym,
Zsat, Zsym) are quite unknown, as shown by the fact that their
standard deviations are comparable to their average values.
Finally, there is also a quite large model dependence for the
effective mass m∗

sat and the isospin splitting �m∗
sat.

It is interesting to note from Table IV that the values
obtained for the empirical parameters Esat, Esym, nsat, Ksat,
Lsym, and Kτ are rather close to the ones extracted from an
analysis of experimental data, as discussed in Sec. II A. This
is also the case for the so-called ab initio approaches, except
for nsat which is slightly too high for the chiral EFT case. This
is, however, a general issue shared by ab initio approaches [9].
Except for the value of Qsym, the average Skyrme and chiral
EFT predictions match in a satisfactory way. The value for Qsat

is systematically lower for Skyrme and chiral EFT than for
the relativistic phenomenological approaches. This makes the
nonrelativistic EOS generally softer than the relativistic ones.
This good match between the low-order empirical parameters
deduced from the statistical average and shown in Table IV
with the experimental data discussed in Sec. II A indicates that
the estimated values provided by Table IV are reasonably well
constrained. It appears therefore reasonable to take the values
of Table IV also for the empirical parameters for which there
are no experimental data.

Some ab initio calculations provide only the neutron matter
(NM) EOS, since it does not present the extra complication
of the spinodal instability at low density. The NM EOS is
obtained in the metamodel by taking the value δ = 1 in Eq. (5).
At each order, the two isoscalar and isovector coefficients
become a single coefficient that we indicate in the following
with index NM. Note that since the pressure of symmetric
matter at saturation density is zero, LNM = Lsym. In Table V,
we show the predictions for the NM empirical parameters of
the same approaches as in Table IV plus a couple of other
ab initio predictions: GCR 2012 [126] and chiral EFT Tews
2013 [11]. Details on how these numbers have been obtained
for GCR 2012 and chiral EFT Tews 2013 are given in Sec. IV B.
It is worth noticing that the different ab initio approaches
give consistent estimation for KNM between 120 and 40 MeV.
Since KNM = Ksat + Ksym and Ksat = 230 ± 20 MeV, we
have approximately Ksym ≈ −100 ± 100 MeV (including also
the preferred values from RMF and RHF approaches). The
Skyrme and ab initio approaches prefer values Ksym ≈
−200,−150 while the relativistic approaches prefer Ksym ≈
0,100 MeV.

Let us mention another phenomenological approach, the
so-called two-loop quantum hadrodynamics, which is based on
RMF with an adjunction of the two-loop exchange diagrams
[127]. For fixed values of Esat, nsat, Ksat, and Esym comparable
with the ones in Table IV, this approach predicts Lsym ≈
83–85 MeV and Ksym ≈ −20 MeV, which is in the range of
values that we explore.

To conclude this analysis, we now discuss the total average
and total standard deviation σtot shown in Table IV. They pro-
vide a global estimation for the empirical parameters including
the systematic error bar induced by the model dependence, as

025805-8



EQUATION OF STATE … . I. FOUNDATIONAL ASPECTS PHYSICAL REVIEW C 97, 025805 (2018)

TABLE V. Neutron matter energy per nucleon ENM, slope of
the symmetry energy Lsym, neutron matter incompressibility KNM,
neutron matter skewness QNM, and neutron matter kurtosis ZNM for
phenomenological and ab initio approaches. See text for more details
as well as Appendix IV B, deduced for GCR 2012 [126] and chiral
EFT up to N3LO [11].

Model ENM Lsym KNM QNM ZNM

(Nα) (MeV) (MeV) (MeV) (MeV) (MeV)

Phenomenological approaches

Skyrme Average 14.95 49.6 106 21 −727
(35) σ 1.72 21.6 116 276 1580
RMF Average 18.86 90.2 263 269 1386
(11) σ 2.69 29.6 121 750 3876
RHF Average 17.99 90.0 376 912 −4686
(4) σ 1.46 11.1 63 587 4994

Ab initio approaches

APR Average 17.27 50.0 71 258 −1716
(1) σ 0.30 1.3 15 97 219
GCR 2012 Average 16.76 45.8 77 80 −131
(7) σ 1.39 9.7 43 29 15
Chiral EFT Average 16.39 56.4 119
Tews 2013 σ 2.97 11.0 101
Chiral EFT Average 16.93 48.3 41 −314 −991
Drischler 2016 (7) σ 0.92 3.5 33 226 349

previously discussed. From these global results, it is possible
to separate the empirical quantities into four groups:

(1) The parameters which are known within a few percent:
Esat and nsat.

(2) The parameters which are known within about 10% :
Esym, Ksat, and m∗

sat.
(3) The parameters which are known within about 50% :

Lsym.
(4) The parameters which are almost unknown: Qsat, Zsat,

Ksym, Qsym, Zsym, and �m∗
sat.

We may hope that the empirical parameters in the three
first groups will be better constrained from nuclear physics
experiments in the future, considering in addition to the masses
and charge radii constraints the ones provided by the neutron
skin radii, the collective modes in neutron-rich nuclei, and
possibly large deformations in the ground state. It is, however,
hard to imagine that the parameters from the last group
will ever be constrained from the properties of finite nuclei
around saturation density. To be better determined, they require
the knowledge of the properties of systems at densities and
asymmetries different from those of finite nuclei. It could be
expected that the Heavy Ion Collision (HIC) will provide some
constraints, as well as the observed properties of compact stars.
This will be further discussed in the following sections.

III. A METAMODELING FOR THE NUCLEAR
EQUATION OF STATE

In this section, we investigate to which extent a series
expansion of the same kind as the one given by Eqs. (2)–(4)

can generate a realistic equation of state (EOS). There are
two questions to answer, which are as follows: (i) Are the
density and isospin dependence rich enough? (ii) What is the
convergence in density and isospin parameter of such series
expansions?

A purely polynomial density expansion as in Eqs. (2)–(4) is
too simple to provide realistic results because it does not catch
the natural density and isospin dependence of the kinetic term
[46]. For this reason, we will separate the kinetic term from
the potential one (2)–(4).

To fully cover the parameter space of both relativistic and
nonrelativistic models, the best treatment of the kinetic term
would be an expansion in powers of the Fermi momentum
kF [128,129]. This would, however, introduce a high number
of extra poorly constrained parameters. We have therefore
chosen to limit ourselves to a nonrelativistic treatment for this
paper, such that the kinetic term can be exactly handled and
the expansion only concerns the Landau effective mass. It is
important to remark that, even if the kinetic energy density
is treated nonrelativistically, the functional is still flexible
enough to satisfactorily reproduce also the density dependence
of relativistic models. This point will be demonstrated in
Sec. IV A.

Let us also mention that an expansion of the energy per
nucleon in terms of the Fermi momentum kF is also possible
[38]. In our present study, we aim at keeping a simple relation
between the empirical parameters and the parameters of the
model. This determines our choice for an expansion in powers
of the density.

The metamodel on which the EOS is based on has therefore
four requirements:

(1) The nuclear potential is quadratic in the isospin asym-
metry parameter δ.

(2) The EOS is analytic in the parameter x, and possible
phase transitions are not accounted for.

(3) The energy per nucleon satisfies the following limit:
limn0→0 e(n0,n1) = 0.

From the functional form of the energy per nucleon
e(n0,n1), it is possible to calculate analytically its first- and
second-order derivatives, which are related to the nucleon
pressure and to the nucleon sound velocity as

Pn(n0,n1) = n2
0

∂e

∂n0
, (9)

(
vs,n

c

)2

= Kis(n0,n1)

9
[
mc2 + e + P (n0,n1)

n0

] , (10)

where the isoscalar compressibility Kis(n0,n1) is defined as

Kis(n0,n1) = 9n2
0
∂2e

∂n2
0

+ 18
P (n0,n1)

n0
. (11)

Note that Kis(nsat,0) = Ksat.
The symmetry energy is defined as

S(n0) = 1

2

∂2e(n0,n1)

∂δ2

∣∣∣∣
n1=0

. (12)
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In the following, we first express the kinetic energy con-
tribution to the total energy, and then we explore various
approximations for the potential energy.

A. The kinetic energy term

For a nonrelativistic free Fermi gas (FG), the kinetic energy
per particle is simply given by

tFG(n0,n1) = tFG
sat

2

(
n0

nsat

)2/3

f1(δ), (13)

where tFG
sat = 3h̄2/(10m)(3π2/2)2/3

n
2/3
sat is the kinetic energy

per nucleons in SM and at saturation, m is the nucleonic mass
taken identical for neutrons and protons (m = (mn + mp)/2 =
938.919 MeV/c2), giving tFG

sat ≈ 22.1 MeV, and the function
f1 is defined as

f1(δ) = (1 + δ)5/3 + (1 − δ)5/3. (14)

The momentum dependence of the nuclear interaction gives
rise to the concept of effective mass: An average effect of the
in-medium nuclear interaction is to modify the inertial mass of
the nucleons. The Landau effective mass can be parameterized
in the following way (τ = n or p),

m

m∗
τ (n0,n1)

= 1 + (κsat + τ3κsymδ)
n0

nsat
, (15)

where τ3 = 1 for neutrons and −1 for protons, and where
the parameters κsat and κsym are functions of m∗

sat and �m∗
sat

previously discussed; see Sec. II A. We have for both κsat/sym

the following expressions taken at n0 = nsat:

κsat = m

m∗
sat

− 1 = κs in SM (δ = 0),

κsym = 1

2

[
m

m∗
n

− m

m∗
p

]
in NM (δ = 1). (16)

Introducing the parameters κs and κv , we have κsat = κs and
κsym = κs − κv [106]. The functional form (15) for the in-
medium effective mass is the simplest form of a density series
expansion. Truncating the expansion at first order as in (15)
allows us to recover the expression used in standard Skyrme
functionals. For simplicity, we do not generalize Eq. (15) with
a more complete polynomial in this work. Anticipating results
presented in Sec. V, it will be shown that the impact of the
effective mass on the equation of state is very weak (at zero
temperature), justifying our present approximation.

Considering the functional form (15) for the nucleonic
effective mass, the new expression for the kinetic energy in
nuclear matter reads

tFG∗
(n0,n1) = tFG

sat

2

(
n0

nsat

)2/3[(
1 + κsat

n0

nsat

)
f1(δ)

+ κsym
n0

nsat
f2(δ)

]
, (17)

where the new function f2 is defined as

f2(δ) = δ((1 + δ)5/3 − (1 − δ)5/3). (18)

In the following, the kinetic energy contribution to the
density functional will be given by Eq. (17), which is the
simplest way to consider the contribution of the momentum
dependence of the nuclear interaction.

This expression gives the exact kinetic energy density
only if we want to reproduce models with nonrelativistic
kinematics. In the case of relativistic EOS models, it would
be more natural to employ a relativistic formulation for the
kinetic energy density and use Dirac masses instead of Landau
masses as nonlocal empirical parameters. This will certainly
be necessary if we want to adress specific observables which
are especially sensitive to the kinetic energy term. We also
expect that isolating a relativistic kinetic energy density term
from the polynomial expansion will improve the convergence
of the series when reproducing relativistic models, and such
an extension toward a relativistic metamodeling is planned for
the future.

Concerning the energy per particle and the pressure of
homogeneous matter, which are our main concerns here, we
will see in Sec. IV that RMF and RHF models are also
satisfactorily reproduced by our metamodeling, even if the
degree of reproduction is less accurate than for nonrelativistic
ones.

We now discuss the functional form for the potential energy.

B. Metamodeling ELFa: The simplest approach

Once the kinetic energy density is sorted out via Eq. (17),
the energy per nucleon can be written as

eN
ELFa(n0,n1) = tFG∗(n0,n1) + vN

ELFa(n0,n1), (19)

where the potential energy is expressed as a series expansion
in the parameter x,

vN
ELFa(n0,n1) =

N∑
α�0

1

α!
vα(δ)xα. (20)

Since Eq. (19) provides an empirical local density functional
(ELF), this metamodeling is called ELFa.

Supposing a quadratic approximation for the potential
energy, as suggested by microscopic Bruckner calculations
[53], we have

vα(δ) = vis
α + viv

α δ2. (21)

Simple relations can be obtained between the model param-
eters vis

α and viv
α and the empirical parameters. We have for the

isoscalar parameters

vis
α=0 = Esat − tFG

sat (1 + κsat), (22)

vis
α=1 = −tFG

sat (2 + 5κsat), (23)

vis
α=2 = Ksat − 2tFG

sat (−1 + 5κsat), (24)

vis
α=3 = Qsat − 2tFG

sat (4 − 5κsat), (25)

vis
α=4 = Zsat − 8tFG

sat (−7 + 5κsat), (26)

and the isovector parameters

viv
α=0 = Esym − 5

9 tFG
sat [1 + (κsat + 3κsym)], (27)

viv
α=1 = Lsym − 5

9 tFG
sat [2 + 5(κsat + 3κsym)], (28)
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viv
α=2 = Ksym − 10

9 tFG
sat [−1 + 5(κsat + 3κsym)], (29)

viv
α=3 = Qsym − 10

9 tFG
sat [4 − 5(κsat + 3κsym)], (30)

viv
α=4 = Zsym − 40

9 tFG
sat [−7 + 5(κsat + 3κsym)]. (31)

The simple one-to-one correspondence between the model
parameters and the empirical parameter is coming from the
expansion of the potential energy in the parameter x. It
is therefore related to the fact that only integer powers of
the density are considered. Another interesting aspect of the
series expansion (20) is that we have a clear control on the
derivative up to which we think we can determine to potential
contribution. For derivative of higher order than the limit N
there is no contribution from the potential energy and only the
kinetic energy contributes.

In the metamodel ELFa, the parameter N (integer) defines
the highest power in x. It can vary from 0 to ∞. As N is larger,
the series expansion becomes better. In order to illustrate the
contribution of the different orders in N , we show in Fig. 2
the energy per nucleon in symmetric matter as function of N
going from 0 to 4 at maximum, and for a range of densities
going from n0 = 0 to 0.6 fm−3. The values for the empirical
parameters are taken from the Skyrme interaction SLy5, and for
comparison the energy per nucleon given by SLy5 is also shown
in Fig. 2. We first remark that the different metamodels ELFa
pass through the saturation point, but only the models with
N � 2 reproduce the saturation properties with a minimum
value for the energy per nucleon at the saturation point. As the
density departs from the saturation density, the models with
largest value in N get closer to the reference model given by
SLy5 (crosses in Fig. 2).

The inset in Fig. 2 shows in more detail the low-density
behavior of the energy per nucleon given by the model ELFa for
various N . The main default of the model is that the potential
energy is not zero at n0 = 0. Since the model is a series
expansion around the saturation density nsat, it is indeed not
given that the energy per nucleon goes to zero when the density
goes to zero. In the following, we propose two modifications
of ELFa, namely ELFb and ELFc, for curing this issue at zero
density.

FIG. 2. Comparison of the energy per nucleon in symmetric
matter between Skyrme SLy5 and ELFa metamodeling, where the
empirical parameters of Skyrme SLy5 has been used as a function
of the order N (lines with different colors). The crosses show the
reference value given by SLy5.

C. Metamodeling ELFb: A correction at zero density

In this section, we still express the energy per nucleon in
the following way:

eN
ELFb(n0,n1) = tFG∗(n0,n1) + vN

ELFb(n0,n1). (32)

A way to ensure that the zero-density limit is verified is
to change the Taylor expansion around nsat from metamodel
ELFa to a polynomial expansion in terms of the density n0, as

vN
ELFb(n0,n1) =

N∑
α�1

(
pis

α + piv
α δ2

)
nα

0 . (33)

The expression (33) has been used in various functionals; see,
for instance, Refs. [130,131]. It can, however, be shown that
this expansion is strictly equivalent to an expansion around the
saturation density,

vN
ELFb(n0,n1) =

N∑
α�0

1

α!

(
vis

α + viv
α δ2

)
xα, (34)

where the parameters vis
N and viv

N are fixed by the zero-density
limit to be

v
is/iv
N = −

N−1∑
α�0

N !

α!
vis/iv

α (−3)N−α, (35)

while the model parameters v
is/iv
α for α < N are still related to

the empirical parameters according to Eqs. (22)–(31).
Combining Eqs. (34) and (35) together, the potential energy

can be rewritten as

vN
ELFb(n0,n1) =

N−1∑
α�0

1

α!

(
vis

α + viv
α δ2

)
xαuN

ELFb,α(x), (36)

where uN
ELFb,α(x) = 1 − (−3x)N−α .

The energy per nucleon deduced from the metamodeling
ELFb is shown in Fig. 3 and can be compared to the previous
Fig. 2 for the metamodel ELFa. The zero-density limit is
now well satisfied, as shown in the inset figure; however,
the convergence ordering with N beyond saturation density is
missing with metamodeling ELFb: There is no improvement
of the convergence by increasing N . This breaking of the
convergence ordering observed with metamodeling ELFb is

FIG. 3. Same as Fig. 2 for ELFb metamodeling.
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not very surprising since the parameters vis
N and viv

N , which
govern the high-density behavior of the energy per nucleon, are
now uniquely determined by the zero-density limit. Figure 3
illustrates that the density dependence of the energy per
nucleon below and above saturation density is not symmetric,
and a condition improving the low-density behavior of the
energy per nucleon can strongly deteriorate the properties of
the EOS above saturation density.

D. Metamodeling ELFc: An improved correction at zero density

Since metamodeling ELFb has shown that the behavior
below and above saturation density of the energy per nucleon
are essentially disconnected, we investigate with metamodel-
ing ELFc an alternative approach which breaks the symmetry
around saturation density. In metamodeling ELFc, a density-
dependent term is added at low density in order to satisfy the
zero-density limit, and this term drops to zero as the density
increases. Since the small correction acts only at very low
density, the properties of ELFa around and above saturation
density are entirely conserved. The small term is determined
such that (i) it decreases quickly with the density, (ii) it does
not modify the relation between the model parameters and the
empirical quantities (22)–(31), and (iii) it is fixed to annihilate
the finite value given by an expansion (20). Considering these
requirements, we consider the following expression for the
potential energy:

vN
ELFc(n0,n1) =

N∑
α�0

1

α!

(
vis

α + viv
α δ2

)
xα − (

ais
N + aiv

Nδ2
)

× xN+1 exp

(
−b

n0

nsat

)
. (37)

The numerical values for the coefficients ais
N and aiv

N are fixed
such that the potential energy in Eq. (37) is zero at zero density.
These parameters are functions of the order N of the expansion
and are defined as

ais
N = −

N∑
α�0

1

α!
vis

α (−3)N+1−α, (38)

aiv
N = −

N∑
α�0

1

α!
viv

α (−3)N+1−α. (39)

In Fig. 4, the N dependence of the coefficients ais
N and

aiv
N is shown for a set of relativistic (bottom panels) and

nonrelativistic (top panels) interactions. It is interesting to
remark that as N increases, the absolute value of ais

N and aiv
N

decreases to a small number. Therefore, as N is larger, the
correction at low density becomes smaller.

The condition at zero density determining the value of
the coefficients ais

N and aiv
N does not fix the parameter b,

which remains free to determine. In the following, it is fixed
such that the correction quickly vanishes at small but finite
density. Imposing that the exponential function in Eq. (37)
is 1/2 at n0 = 0.1nsat, we obtain b = 10 ln 2 ≈ 6.93. Note
that the results shown in this paper are not impacted by the
choice for the constant b since the correction term plays a role
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FIG. 4. Coefficients ais
N/(−3)N+1 (left) and aiv

N/(−3)N+1 (right)
as a function of the order N for various relativistic (bottom panels)
and nonrelativistic (top panels) nuclear interactions.

only at low density and we focus our study above saturation
density.

Finally, the following compact form for the potential energy
can be obtained,

vN
ELFc(n0,n1) =

N∑
α�0

1

α!

(
vis

α + viv
α δ2

)
xαuN

ELFc,α(x), (40)

where uN
ELFc,α(x) = 1 − (−3x)N+1−α exp(−bn0/nsat), and

the energy per particle is defined as

eN
ELFc(n0,n1) = tFG∗(n0,n1) + vN

ELFc(n0,n1). (41)

The energy per nucleon provided by metamodeling ELFc
is shown in Fig. 5 for various orders N . We can see that
the convergence at high density is the same as in the meta-
modeling ELFa (see Fig. 2), while the low-density behavior
is now correct. In the following, we now study in more
detail the convergence of the energy per nucleon above sat-
uration density and we propose a way to fix the high-order
parameters such as to reproduce existing nuclear interaction
predictions.

E. Metamodeling ELFd: A faster convergence at high density

The high-density convergence of the metamodeling ELFc
with N is not entirely satisfying, as illustrated in Fig. 5. First,
it shall be remarked that the empirical parameters increase (in
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FIG. 5. Same as Fig. 2 for ELFc metamodeling.

absolute value) as the order α increases; see Table IV. Second,
the sign of the empirical parameters alternates at each order for
α � 3. These two properties of the empirical parameters make
the convergence lengthy, meaning that an important number of
high-order derivatives are needed to determine the high-density
behavior. Moreover, the impact of the high-order empirical
parameters around saturation is extremely small. This means
that, as we have already discussed, nuclear structure data and
ab initio calculations will hardly be able to provide reliable
values for these parameters. In this respect, the situation might
look hopeless. However, we can observe that the density behav-
ior of a purely nucleonic equation of state above saturation is
rather smooth and does not show any complicated structure in
all existing models; see, for instance, model SLy5 represented
in Fig. 5. This observation implies that the globality of the
high-order parameters would be pretty much under control
if we would fit these high-order parameters directly to the
EOS. Equivalently, we could also impose the value of the
EOS at a single high-density point, in addition to the empirical
information around saturation. We have checked that there is no
major differences between the fit of the high-density behavior
of the EOS and the choice of a single high-density point, except
that the latter allows for analytical expressions.

To give an illustration of this statement, let us suppose
that the energy per nucleon and the pressure are known at
n0 = 4nsat = nhd, where hd means high density. The reference
density nhd is quite arbitrary in this illustration; it could also
have been chosen at a lower density. The advantage of the
present choice is in the simplification of the equations.

Considering N = 3, the parameters Qsat/sym can then
be fixed such that eN

ELFd (n0 = nhd,n1 = 0) = eSM
hd and

eN
ELFd (n0 = nhd,n1 = n0) = eNM

hd , giving

vis
3 = 6

(
eSM

hd − tSM
hd

) − 6vis
0 − 6vis

1 − 3vis
2 ,

viv
3 = −6

(
eSM

hd − eNM
hd − tSM

hd + tNM
hd

) − 6viv
0 − 6viv

1 − 3viv
2 ,

while considering N = 4, the parameters Qsat/sym and Zsat/sym

are given by eN
ELFd (n0 = nhd,n1 = 0) = eSM

hd , eN
ELFd (n0 = nhd,

n1 = n0) = eNM
hd , and pN

ELFd (n0 = nhd,n1 = 0) = pSM
hd ,

pN
ELFd (n0 = nhd,n1 = n0) = pNM

hd , where e
SM/NM
hd and p

SM/NM
hd

are the energy per nucleon and pressure at the known reference
point.

These conditions lead to the following expressions:

vis
3 = 24

[
eSM

hd − tSM
hd

] − 9

8nsat

[
pSM

hd − p
kin,SM
hd

]
− 6

[
4vis

0 + 3vis
1 + vis

2

]
, (42)

viv
3 = −24

[
eSM

hd − eNM
hd − tSM

hd + tNM
hd

]
+ 9

8nsat

[
pSM

hd − pNM
hd − p

kin,SM
hd + p

kin,NM
hd

]
− 6

[
4viv

0 + 3viv
1 + viv

2

]
, (43)

vis
4 = −72

[
eSM

hd − tSM
hd

] + 9

2nsat

[
pSM

hd − p
kin,SM
hd

]
+ 12

[
6vis

0 + 4vis
1 + vis

2

]
, (44)

viv
4 = 72

[
eSM

hd − eNM
hd − tSM

hd + tNM
hd

]
− 9

2nsat

[
pSM

hd − pNM
hd − p

kin,SM
hd + p

kin,NM
hd

]
+ 12

[
6viv

0 + 4viv
1 + viv

2

]
, (45)

where pkin is the kinetic contribution to the pressure.
This high-density reference point hd should ideally be taken

from empirical information, such as might be given in the
future by high-energy heavy-ion collisions with exotic beams.
For the time being, such an empirical reference does not
exist, and we will take for e

SM/NM
hd and p

SM/NM
hd the values

given by a reference model. This introduces again some model
dependence in the EOS, which is exactly what we want to avoid
with the empirical treatment. To circumvent this problem, in
the calculation of nuclear and astrophysical observables we
will consider huge uncertainties for the high-order parameters
from Table VI, such as to cover the whole domain of density
dependence at high density. In this sense, the reference values
for Qsat/sym, Zsat/sym given by Eqs. (42)–(45) should only be
considered as the central values of a large prior distribution
which has to be filtered through constraints from astrophysical
or laboratory observables.

The new metamodeling ELFd is shown in Fig. 6 and
compared to the metamodeling ELFc for N = 3 and 4. We are
using the nonrelativistic Skyrme SLy5 [132] and the RMF PK1
[68] as reference models for this illustration. We can see that the
reference model is very accurately reproduced by ELFd already
for N = 4. A quantitative comparison of the metamodeling
ELFd and other reference models is given in Sec. IV. The
pressure and the sound velocity which account for first and
second derivatives of the EOS are shown in Fig. 7, where
metamodelings ELFc and ELFd are compared to the reference
models for N = 3 and 4. An excellent agreement between
metamodeling ELFd with N = 4 with the reference model can
be remarked. This is also reflected in the standard deviations
between the binding energies predicted by the models and the
ones of the metamodeling, which are shown in Table VI under
the columns σe in SM and NM.

To summarize, we have shown that, in order to better
reproduce the density dependence of the binding energy and
its derivatives up to about 4nsat, it is necessary to readjust the
empirical parameters Qsat/sym and Zsat/sym by explicitly intro-
ducing some EOS information at another reference density.
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TABLE VI. Modification of the empirical parameters, Qsat/sym and Zsat/sym, in the metamodeling ELFd adjusted to reproduce reference
models. The residual difference between the energy per particle given by the EOS and the one given by the associated metamodeling is shown
as σe in SM and NM. This distribution of the residual difference is encoded in terms of an average value and a standard deviation. It is evaluated
between nsat and 4nsat considering 45 densities in total.

Model Der. order Qsat Qsym Qsym Zsat Zsym Zsym σe(SM) σe(NM) σe(NM)
(Nα) (MeV) (MeV) (v4 = 0) (MeV) (MeV) (v4 = 0) (MeV) (MeV) (v4 = 0)

(MeV) (MeV) (MeV)
3 3 3 4 4 4

Skyrme 10 Average −197 283 199 −477 −802 −472 0.23 0.10 0.67
(10) σ 81 95 81 212 289 341 0.07 0.06 0.46

RMF 11 Average 452 −90 16 −2266 −601 −1023 0.79 1.22 1.82
(11) σ 580 392 232 1266 656 12 0.44 1.14 1.09

RHF 4 Average 606 −565 −281 −2553 92 −1043 0.91 0.63 2.59
(4) σ 167 373 185 432 737 15.91 0.49 0.26 1.90

Total 25 Average 287 −124 −22 −1765 −437 −846 0.64 0.65 1.69
σ 352 317 178 782 594 197 0.38 0.67 1.29

Min −369 −1178 −585 −4478 −1369 −1070
Max 1488 400 334 185 1298 167

The introduction of this other reference density nhd stands
for the necessity to complement the information determined
at saturation density, and could potentially be obtained by
different ways, such as for instance HIC or from the properties
of NS. We have decided to take the reference density nhd =
4nsat. It is indeed an arbitrary choice, made only to simplify
equations (42)–(44), but we have checked that the final result
is largely unaffected by the choice of the reference density,
provided it is larger than 2–3nsat.

More systematic comparisons and more quantitative cri-
terion for the comparison between metamodeling ELFd and
reference models shall now be presented.

IV. SYSTEMATICAL COMPARISON OF THE
METAMODELING ELFD WITH EXISTING EOS

Our final proposition for the meta-EOS is ELFd presented
in Sec. III E. We now turn to show the main advantages of
this metamodeling, namely (i) the model is sufficiently flexible
to be able to reproduce most existing phenomenological and
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FIG. 6. Comparison of the ELFc (dashed lines) and ELFd (solid
lines) metamodels against the reference models SLy5 (left panel) and
PK1 (right panel). Only the orders N = 3 and 4 are plotted.

ab initio functionals and (ii) it can also accommodate density
dependences which might correspond to a physical behavior
but are forbidden in the existing phenomenological EOS
because of the assumed functional form.

A. Extracting high-order parameters from the density
behavior of existing analytical models

In this section, the values of the empirical parameters
Qsat/sym and Zsat/sym are calculated from Eqs. (42)–(45) for
a large number of nuclear relativistic and nonrelativistic in-
teractions. We ran over the same models as the one already
considered in the study presented in Table IV, for instance.
Detailed results are given in Table XIII and summarized
in Table VI. In order to evaluate the effect induced by the
highest order term in the series expansion, v4, on the empirical
parameters Qsym and Zsym, we have added a column in Table VI
where these empirical parameters are evaluated, imposing
v4 = 0. The last columns in Table VI stand for the average

0

50

100

150

P
(M

eV
fm

-3
) ELFc N=3

ELFd N=3
ELFc N=4
ELFd N=4

SLy5

PK1

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6

(v
s/

c)
2

n0 (fm-3)

SLy5

0.2 0.4 0.6

n0 (fm-3)

PK1

FIG. 7. Comparison of the pressure (top panels) and sound ve-
locity (bottom panels) for the metamodels ELFc (dashed lines) and
ELFd (solid lines) against the reference models SLy5 (left panels) and
PK1 (right panels). Only the orders N = 3 and 4 are plotted.
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TABLE VII. Synthesis of the expected values for the empirical parameters and their associated uncertainties. They are extracted from
experimental analysis, except for the empirical parameters Qsat/sym and Zsat/sym, which are estimated from Table VI.

Pα Esat Esym nsat Lsym Ksat Ksym Qsat Qsym Zsat Zsym m∗
sat/m �m∗

sat/m

(MeV) (MeV) (fm−3) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

〈Pα〉 −15.8 32 0.155 60 230 −100 300 0 −500 −500 0.75 0.1
σPα ±0.3 ±2 ±0.005 ±15 ±20 ±100 ±400 ±400 ±1000 ±1000 ±0.1 ±0.1

dispersion between the fitted EOS and the original data for
symmetric and neutron matter, considering densities from nsat

up to 4nsat. It is particularly interesting to remark that the
quality of EOS reproduction is very similar for relativistic and
nonrelativistic models, even if we have employed a completely
classical treatment of the kinetic energy density and no Dirac
mass has been introduced.

In the isoscalar channel, it is interesting to remark that the
parameter Qsat is systematically shifted up by about 200 MeV,
and the average value of the parameter Zsat is shifted down by
a large amount. There is therefore a compensation between the
parameters Qsat and Zsat. In absolute value the parameters Zsat

in Table VI are lower than in Table IV, and the issue related to
alternative series is now pushed to densities well above 4nsat,
where our approach is not any more well suited.

In the isovector channel, both Qsym and Zsym are shifted
down and in absolute value the parameters Zsym in Table VI
are lower than in Table IV, in the same way as for Zsat. The
issues induced by alternative series expansion are also reduced
in NM.

The average dispersion in symmetric and neutron matter
given in Table VI shows the excellent reproduction of the
original EOS up to 4nsat. It also shows the important role of
v4 since removing it shifts up the average standard deviation.
In conclusion, Table VI shows that by considering the shifted
value given in Table VI and Eqs. (42)–(44) it is possible to
reproduce very accurately all the tested EOS with the ELFd
metamodeling.

In addition to having proven that all the considered EOS
can be well reproduced by the ELFd metamodel, we can
use the average values given in Table VI to estimate the
average values and uncertainties of the highest order empirical
parameters Qsat/sym and Zsat/sym. In Table VII, we present a
global summary of all empirical parameters and estimated
uncertainties based on our analysis presented in previous
sections. The low-order empirical parameters Esat/sym, Lsym,
and Ksat/sym as well as the effective masses are compatible
with the experimental analysis presented in Sec. II A and
model average predictions in Sec. II B, and synthesized in
Tables IV and V. For the highest order empirical parameters
Qsat/sym and Zsat/sym, we have considered the shifted values
given in Table VI with large estimated uncertainties σPα

. The
large estimated uncertainties are chosen such as to compensate
the fact that the average values taken for these empirical
parameters are only determined from the existing models,
without any empirical information. The average value of Zsat

is taken identical to Zsym for simplicity. In the following, we
consider average values and uncertainties for the empirical
parameters which are summarized in Table VII.

B. Extracting empirical parameters from chiral EFT results

Neutron matter calculations based on modern potentials
have recently been performed up to saturation density; see,
for instance, Refs. [11,12,126]. In these approaches, either
advanced many-body techniques have been employed, such
as auxiliary field diffusion Monte Carlo (AFDMC) with hard-
core potentials [126] or with soft potentials from chiral EFT
[13–15], or many-body perturbation theory based on chiral
EFT [11,12]. The perturbative convergence of the chiral
potential can be studied in detail in this approach and the
equation of state is usually provided within a band representing
the uncertainties in the nuclear interaction as well as in the
convergence in the expansion. In this section, we perform an
analysis of these recent predictions, based either on the fits
provided by the authors or on their numerical results.

Considering the accurate fit for the energy per nucleon in
neutron matter provided in Ref. [126],

e(n0) = a

(
n0

nsat

)α

+ b

(
n0

nsat

)β

, (46)

where the parameters a, α, b, and β are provided in Table I
of Ref. [126] for various prescriptions for the three-body
force (3BF), we have calculated the empirical parameters
in neutron matter at the fixed density nsat = 0.16 fm−3:
ENM = Esat + Esym (energy per nucleon), Lsym (slope of the
symmetry energy), KNM = Ksat + Ksym (curvature), QNM =
Qsat + Qsym (skewness), and ZNM = Zsat + Zsym (kurtosis).
These quantities are given in Table VIII for the seven different
Hamiltonians explored in Ref. [126]. As in previous analyses,
we have also extracted an average value and standard deviation
for these seven Hamiltonians.

We have also analyzed the results for the first complete
N3LO calculation of the neutron matter energy [11]. In this
case, the energy and the pressure in neutron matter are provided
as tabulated numbers with error bars, up to the density n0 =
0.2 fm−3. We have here considered the metamodeling ELFc
with N = 2 since only a small domain of density is provided
(the empirical parameters associated to N = 3 and 4 are
undetermined by the provided data). To extract the empirical
parameters and their error bars from these results, we have as-
sociated to each set of empirical parameters (ENM, Lsym, KNM)
a χ2 defined as

χ2 = 1

2M − 3

M∑
i=1

(
ei − eELFc

(
ni

0

)
εe
i

)2

+
(

pi − pELFc

(
ni

0

)
ε

p
i

)2

, (47)
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TABLE VIII. Neutron matter energy per nucleon ENM, slope
of the symmetry energy Lsym, incompressibility KNM, QNM, and
kurtosis ZNM for the seven Hamiltonians studied in Ref. [126]. These
Hamiltonians are treated within the AFDMC many-body method
and they are based on AV8’ NN potential supplemented by various
three-body forces (3BF). They are named GCR in reference to the
names of the authors.

Model 3BF ENM Lsym KNM QNM ZNM

(MeV) (MeV) (MeV) (MeV) (MeV)

GCR-1 none 14.48 30.7 17 55 −117
GCR-2 V PW

2π + V R
μ=150 16.15 40.2 45 52 −117

GCR-3 V PW
2π + V R

μ=300 15.99 39.8 47 59 −121
GCR-4 V3π + VR 16.21 42.9 76 93 −137
GCR-5 V PW

2π + V R
μ=150 17.76 50.8 82 56 −121

GCR-6 V3π + VR 17.71 54.7 128 121 −149
GCR-7 UIX 19.02 61.7 147 122 −155

Average 16.76 45.8 77 80 −131
σ 1.39 9.7 43 29 15
Min 14.48 30.7 17 52 −155
Max 19.02 61.7 147 122 −117

where (ei,ε
e
i ) and (pi,ε

p
i ) are the average values and error

bars for the energies and pressures predicted in Ref. [11]. A
likelihood probability is then associated to each set of empirical
parameters, as p(ENM,Lsym,KNM) = exp(−χ2/2)/pnorm, and
the distance to the maximum likelihood probability (pmax) is
measured in terms of σ , where the models at kσ are those for
which p/pmax > exp(−k2/2).

The 1σ , 2σ , and 3σ domains for ELFc meta-EOS passing
through the binding energies and pressures calculated in
Ref. [11] are represented in Fig. 8, while the representa-
tion of the probability distribution showing the correlations
among the empirical parameters is shown in the corner of
Fig. 9. The two-variable probabilities are defined as p(A,B) =∑

C p(A,B,C), while the single-variable probabilities are
p(A) = ∑

B,C p(A,B,C), where (A,B,C) can be any permu-
tation of (ENM,Lsym,KNM).

It is interesting to note the nice correlation between ENM

and Lsym, as well as between KNM and Lsym, while KNM is

FIG. 8. Equations of state at 1σ , 2σ , and 3σ obtained from the first
calculation of neutron matter with chiral EFT at next-to-next-to-next
leading order (N3LO) (points with error bars) and given in Ref. [11].
See text for more details.

FIG. 9. Analysis of the probability distribution p(ENM,Lsym,

KNM) deduced from the best fits to neutron matter calculations shown
in Fig. 8. The centroids and standard deviations for the parameters
ENM, Lsym, and KNM are given in the figure. See text for more details.

almost independent of ENM. The single-variable probabilities
are shown on the diagonal of the corner in Fig. 9. The value
of the centroids, defined as 〈A〉 = ∑

A Ap(A)/
∑

A p(A) and
of the standard deviation, defined as σA =

√
〈A2〉 − 〈A〉2, are

given in Fig. 9 as well as in Table V.
Let us remember that the following constraints have been

obtained in Ref. [11]: Esym = 31.9 ± 3 MeV and Lsym =
54.5 ± 11.5 MeV. Assuming Esat = −16.0 ± 0.5 MeV, we
deduce ENM = 15.9 ± 3.5 MeV from Ref. [11]. These results
are compatible with the ones we obtain from a different
analysis. In addition, we could obtain a constraint for the
neutron matter incompressibility KNM which was not given
in Ref. [11]. Let us finally remark that the determination of the
parameter KNM is possible since the pressure was introduced
into the definition of the χ2. With the energies only, we
would have obtained a much larger spread in the probability
distribution of KMN. The fit of the energy per nucleon and
pressure at the same time offers therefore very interesting
constraints for the nuclear equation of state and its derivatives.

Finally, we analyze the very recent calculations of asym-
metric nuclear matter based on chiral two- and three-body
interactions at N3LO [12]. The empirical parameters shown
in Table IX are deduced from the fit of the binding energy
given in Ref. [12],

e(n0,n1) =
∑

ν=2,3,4,5,6

(C0ν + C2νδ
2)

(
n0

0.16

)ν/3

, (48)

where the values of the parameters C0ν and C2ν are given
in Table II for the seven Hamiltonians detailed in Table I of
Ref. [12].

The reported ranges for Ksat and Esym in Ref. [12] are
very close to ours, Ksat = 218 ± 36 MeV and Esym = 32.05 ±
3.65 MeV, if we consider the values we obtained from the mini-
mal (Min) and maximal (Max) values for these parameters. The
slight difference we obtained may come from the fact that the
free Hartree-Fock spectrum was also considered in Ref. [12]
for the estimation of the error bars.
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TABLE IX. Binding energy Esat , the symmetry energy Esym, saturation density nsat , slope of the symmetry energy Lsym, isoscalar
incompressibility Ksat , isovector incompressibility Ksym, isoscalar skewness Qsat , isovector skewness Qsym, isoscalar kurtosis Zsat , isovector
kurtosis Zsym, and Kτ for chiral EFT given in Ref. [12].

Model Esat Esym nsat Lsym Ksat Ksym Qsat Qsym Zsat Zsym Kτ

(MeV) (MeV) (fm−3) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

1 −16.92 34.57 0.189 48.5 241 −224 −125 −311 1281 −1974 −490
2 −15.73 32.81 0.178 46.9 216 −192 −176 −182 1454 −2283 −435
3 −15.18 32.18 0.174 53.0 224 −108 24 96 1299 −2961 432
4 −14.84 31.63 0.170 46.1 198 −170 −223 −82 1534 −2464 −395
5 −13.80 29.83 0.158 44.5 182 −143 −310 69 1537 −2638 −334
6 −16.44 34.54 0.190 53.5 242 −220 −31 −640 1139 −1750 −534
7 −13.23 28.53 0.140 43.9 192 −144 −132 −95 901 −2149 −378

Average −15.16 32.01 0.171 48.1 214 −172 −139 −164 1306 −2317 −428
σ 1.24 2.09 0.016 3.6 22 40 104 234 214 379 63
Min −16.92 28.53 0.140 43.9 182 −224 −310 −640 901 −2961 −534
Max −13.23 34.57 0.190 53.5 242 −108 24 96 1537 −1750 −334

The empirical parameters of neutron matter given in Table V
are obtained from the combining of isoscalar and isovector
parameters given in Table IX.

C. Behavior of the symmetry energy around saturation density

In the previous sections, we have shown that our meta-EOS
can very accurately reproduce existing models of very different
types (relativistic and nonrelativistic, phenomenological and
ab initio). It can also be used to make complete statistical anal-
ysis of such models, for example, to evaluate the confidence
interval of a nuclear or astrophysical observable compatible
with chiral EFT at any chosen confidence level. We now
turn to show that the parameter space is large enough to
accommodate density behaviors which cannot be explored by

existing functionals. To this aim, we will take the example of
the density dependence of the symmetry energy.

Many theoretical and experimental studies of the density
dependence of the symmetry energy consider models with
very limited number of parameters. This leads to some strong
correlations in the density dependence of the symmetry energy,
e.g., isosoft behavior below nsat and isostiff behavior above
nsat. We have discussed, for instance, the opposite impact of
Lsym and Ksym in the analysis of Figs. 12 and 13. Combining
together the effect of Lsym and Ksym a rich behavior for the
symmetry energy can be explored.

We illustrate our purpose in Fig. 10 where the symmetry
energy S(n0) is represented in various cases: Ksym is varied
for fixed values of Lsym (top panels), and Lsym is varied for
fixed values of Ksym (bottom panels). We observe on the top

FIG. 10. Effect of varying the value of Lsym and Ksym on the symmetry energy around saturation density. Note that we vary the parameters
by ±2σ to enhance the effects. Top panels: varying Ksym at fixed Lsym. Bottom panels: varying Lsym at fixed Ksym.
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FIG. 11. Effect of varying the value of Esat (top panels) and Esym (bottom panels) around the mean value given in Tab. VII considering 1σ

deviation. Here 1σ is also taken from Tab. VII. From left to right: energy per nucleon, symmetry energy and pressure in SNM (δ = 0), ANM
(δ = 0.5), and PNM (δ = 1).

panels of Fig. 10 that for a fixed value of Lsym, changing the
value of Ksym changes the curvature of the symmetry energy
around nsat: Negative values of Ksym produce a concave density
dependence of the symmetry energy, e.g., isosoft below nsat

and isosoft above nsat, while positive values of Ksym produce
a convex density dependence of the symmetry energy, e.g.,
isostiff below nsat and isostiff above nsat. We now turn to the
bottom panels of Fig. 10 where we have varied Lsym at fixed
value of Ksym. Varying Lsym generates different slopes of the
symmetry energy which are more or less isostiff below nsat and
isosoft above nsat.

In conclusion, we have shown that it is possible to play with
the two most important empirical parameters Lsym and Ksym to
modify the behavior of the symmetry energy around nsat and
explore a wide range of possible density dependence.

V. EFFECT OF THE PRESENT UNCERTAINTIES
ON THE NUCLEAR EOS

In this section, we will explore another advantage of the
proposed formalism, namely the possibility of studying the
effect of the different empirical parameters independently from
each other. This allows performing a sensitivity study on
the meta-EOS and recognizing the most influential empirical
parameters.

We consider Table VII as a reference for fixing an average
nuclear meta-EOS and probing the impact of varying the
empirical parameters within their estimated uncertainties.

A. Effect of varying a single parameter

In this analysis, we define an average meta-EOS determined
by the average empirical parameters given in Table VII, then
we vary the empirical parameters one after the other to estimate

the impact of the estimated uncertainties on the prediction of
the EOS. This impact is obtained as a combined effect between
the real influence of the considered parameter and its estimated
uncertainty. For instance, an influential empirical parameter
known very accurately will have a weak influence, while a
less influential but very poorly known empirical parameter
might have a large influence. In the following, we will also
observe that the different order empirical parameters play a
role a different densities. In general, as the order is higher, the
farther from saturation density it has an impact.

In Figs. 11–16, we have grouped together the isoscalar
and isovector empirical parameters order by order. On the
top panels are shown the effects induced by the change of the
isoscalar empirical parameters, while on the bottom panels it is
the impact isovector empirical parameters which are tested.

Let us start with Fig. 11, where we show the impact of
varying Esat/sym considering a 1σ deviation around the average
meta-EOS given in Table VII. The energy per particle and
the pressure for SNM, ANM (defined as δ = 0.5), and PNM
are shown as a function of the density, and the symmetry
energy S(n0) is also represented in Fig. 11. The impact of
our uncertainty on Esat/sym is rather weak for the energy per
particle, the symmetry energy, and the pressure. Let us note that
since the pressure is the derivative of the energy per particle,
it is not impacted at all by Esat/sym.

More interestingly we show in Fig. 12 the impact of varying
nsat and Lsym in the same way as in Fig. 11. The impact of our
uncertainty on nsat is quite small, while the effect of varying
Lsym has a noticeable impact above and below saturation den-
sity for the energy per particle, the symmetry energy, and the
pressure. In asymmetric and neutron matter, the effect of Lsym

below saturation density is opposite to above saturation density.
So a large value of Lsym will strongly reduce (respectively,
increase) the energy per particle below (respectively, above)
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FIG. 12. Same as Fig. 11 for nsat (top panel) and Lsym (bottom panel).

saturation density. The crossing as saturation density of these
quantities is expected since the meta-EOS is a series expansion
taking nsat as the reference density. The slope of the symmetry
energy is sensitive to Lsym. The largest value of Lsym that
we have considered induces a positive slope until nsat while
the lowest value produce a negative slope. For the pressure,
since it is obtained as the derivative of the energy per particle,
the uncertainty in Lsym propagates almost constantly through
the densities.

The impact of our uncertainty in Ksat/sym is shown in Fig. 13.
While the uncertainty in the value of Ksat has a weak impact on
the nuclear EOS (almost unnoticeable), the large uncertainty of

Ksym has a large impact on the nuclear EOS. At variance with
Lsym, the effect of Ksym below and above saturation density is
similar: an increase of Ksym increases the energy per particle
both below and above nsat. Large negative values of Ksym force
the symmetry energy S to bend down at high density. For
very large values of Ksym, S could almost become negative
below 4nsat. Ksym is therefore the most influential empirical
parameter governing the density dependence of the symmetry
energy from 2nsat to 4nsat.

The impact of the variation of Qsat/sym is shown in Fig. 14.
The uncertainty in Qsat has a quite large impact on the EOS and
this is clearly the most important empirical parameter in the

FIG. 13. Same as Fig. 11 for Ksat (top panel) and Ksym (bottom panel).
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FIG. 14. Same as Fig. 11 for Qsat (top panel) and Qsym (bottom panel).

isoscalar channel which is yet weakly known. The uncertainty
in Qsym has also an important impact on the EOS. Its impact
starts above 2nsat.

We show in Fig. 15 the impact of our uncertainty in the
parameters Zsat/sym. Both Zsat and Zsym have an impact on
the EOS. By comparing Figs. 12 to 15, it is interesting to
observe that as the empirical parameter is higher, the farther
from nsat it has an impact. This effect is limited by the
increasing uncertainty in the empirical parameters as their
order increases, but nevertheless it is rather visible. It is
a consequence of the series expansion since the different
order terms in the series expansion have a weight which

goes decreasing around saturation density as their order
increases.

The last figure of this series, Fig. 16, shows the impact of
the isoscalar and isovector splitting of the Landau effective
mass, e.g., m∗

sat and �m∗
sat. It is very interesting to observe that

the Landau effective masses m∗
sat and �m∗

sat have a very weak
impact on the EOS. We remember that in our EOS, we are able
to probe the impact of each empirical parameter separately,
leaving the other parameters unchanged. It is clear from Fig. 16
that the uncertainties in the Landau effective mass are very
limited and almost unobservable for the EOS. It is, however,
expected to impact more crucially the single-particle properties

FIG. 15. Same as Fig. 11 for Zsat (top panel) and Zsym (bottom panel).
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FIG. 16. Same as Fig. 11 for m∗
sat (top panel) and �m∗

sat (bottom panel).

and the density of state, as well as the temperature dependence
of the EOS. This effect will be studied in a future work.

B. Global effect varying isoscalar and isovector
empirical parameters

We now discuss globally the impact of the isoscalar and
isovector empirical parameters. They are varied independently
all together within their own uncertainties, and the impact is
shown in Fig. 17 (for the isoscalar empirical parameters) and
in Fig. 18 (for the isovector empirical parameters).

Looking at Figs. 17 and 18, one has the impression that,
in spite of the tremendous effort of the community in recent
years, the EOS above 2–3nsat is completely unknown. This
impression is, however, not fully correct for at least two
reasons. We have seen in the preceding sections that the
meta-EOS is sufficiently flexible to explore all possible density
dependencies, thus being able to reproduce all existing models.
The drawback of this flexibility is that it can also allow un-
physical parametrizations. This can be clearly seen in Figs. 17
and 18: Models with negative pressures or negative symmetry
energies can be explored by the meta-EOS but are indeed

FIG. 17. Effect of varying the value of all empirical parameters in the isoscalar (top panels) and isovector (bottom panels) channels. From
left to right: energy per nucleon, symmetry energy, and pressure in SNM (δ = 0), ANM (δ = 0.5), and PNM (δ = 1).
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FIG. 18. Same as Fig. 17, varying the value of the empirical parameters all together.

forbidden by the stability requirement. The speed of sound
is not represented in these figures, but superluminal models
also belong to our possible parameter sets. It is clear that these
unphysical models have to be excluded before reasonable error
bars on the equation of state can be calculated.

The second reason why the bands of Figs. 17 and 18
cannot be interpreted as error bars on the EOS is that by
construction the different parameters of the meta-EOS are
independent. This is a quality of the model, because it allows
us to do sensitivity studies and it avoids spurious correlations
due to a too-limited number of parameters in existing func-
tionals. However, physical correlations among the empirical
parameters can exist, like the ones shown by the ab initio
calculation in Fig. 9. These correlations limit the parameter
space and therefore the uncertainty intervals on the EOS.
Such correlations can only be found if the ensemble of meta-
EOS is filtered through the requirement of reproduction of
experimental or observational data. This statistical analysis
of the meta-EOS can be performed with standard Bayesian
techniques and is the object of a forthcoming paper [43].

VI. CONCLUSIONS

In this paper, we have presented a meta-EOS for uniform
matter which is very simply related to the empirical parameters
characterizing the density and isospin density dependence of
the EOS. This meta-EOS is based on nucleonic degrees of
freedom and assumes that they are nonrelativistic. It allows a
natural implementation of our best knowledge of the nuclear
empirical parameters which is based on nuclear physics exper-
iments and which we have discussed in some detail.

We have analyzed the confidence intervals of the empirical
parameters obtained with different methods, namely from the
direct analysis of experimental data and from a statistical
analysis of various theoretical modelings. Phenomenological
and ab initio approaches, as well as relativistic and nonrela-

tivistic interactions, have been analyzed in detail, and from this
study, we have proposed a set of average values and estimated
uncertainties for all empirical parameters from Esat/sym up to
the kurtosis ones Zsat/sym; see Table VII.

Finally, we have analyzed the impact of the uncertainties
on the empirical parameters on the meta-EOS of nucleonic
matter. We have deduced that the lowest order empirical
parameters which require better determination in the future are
the skewness parameter Qsat in the isoscalar channel, and the
slope of the symmetry energy Lsym and its curvature Ksym in
the isovector channel. The determination of these parameters
needs to depart substantially from saturation density, either
below or above. They could be determined either by relativistic
heavy-ion collision; see, for instance, Ref. [133], or as we
already discussed by the mass and radii constraints of NS
[20–26]. The observation of the gravitational waves coming
from NS merging are also expected to give tight constraints
on the properties of dense matter [134]. Most probably, it is a
combination of these different constraints which will be able
to provide a better knowledge on these empirical parameters.

We have also discussed the density dependence of the
symmetry energy which is provided by our meta-EOS, and we
have shown that a rich behavior of the symmetry energy below
and above nsat is possible by combining both Lsym and Ksym. If
Ksym is negligible, Lsym alone provides the well-known isosoft
(below) and isostiff (above) or vice versa, while if Ksym is large
enough, different behaviors can be generated: isosoft (below)
and isosoft (above) or isostiff (below) and isostiff (above).

The meta-EOS which is presented in this paper is an
example of possible metamodeling. Further extensions are
possible, such as implementing quartic dependence in the
asymmetry parameter, considering relativistic kinetic ener-
gies instead of nonrelativistic, or replacing the polynomial
expansion in density by an expansion in Fermi momentum
or other quantity. Considering the present meta-EOS, it will
be applied to β-equilibrium matter in neutron stars in a
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forthcoming paper [43]. In the future, we want also to use
this meta-EOS as a density functional and apply it to the
determination of the global structure of finite nuclei [135]. In
our future application of this meta-EOS, its simple relation
to the empirical parameters is expected to easily highlight
the role of the empirical parameters in the nuclear properties.
Empirical parameters are indeed a simple way to encode the
basic properties of nuclear matter and provides a link between
nuclear physics experiments and astrophysical applications.
They therefore constitute an interesting and promising tool
for better synergy between nuclear physics and astrophysics.

Finally, the interesting aspect of this meta-EOS is its simplicity
and richness. Since it is simple, it shall be easy to implement it
in many different modelings, going from the global structure
of finite nuclei to more complex dynamical simulations. For
neutron star physics, it offers the possibility of providing a
simple approach which can encode many existing EOS for
uniform matter, as well as new EOS, which properties could
be tested against observations. It is therefore an interesting
theoretical tool which could bring more consistency in the
exploration of the nuclear EOS from different branches of
nuclear physics and astrophysics.

TABLE X. Empirical properties of nuclear matter for Skyrme-type interactions.

Model Nmodels Esat Esym nsat Lsym Ksat Ksym Qsat Qsym Zsat Zsym m∗
sat/m �m∗

sat/m κv Kτ

(MeV) (MeV) (fm−3) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

SGII [136] 1 −15.59 26.83 0.1583 37.6 215 −146 −381 330 1742 −1891 0.79 0.28 0.49 −305
RATP [137] 2 −16.05 29.26 0.1598 32.4 240 −191 −350 440 1452 −2477 0.67 0.26 0.78 −338
SKM* [138] 3 −15.75 30.04 0.1602 45.8 216 −156 −386 330 1766 −1868 0.79 0.34 0.53 −349
SKI2 [139] 4 −15.76 33.37 0.1575 104.3 241 71 −339 52 1349 −610 0.69 −0.21 0.24 −408
SKI4 [139] 5 −15.93 29.50 0.1601 60.4 248 −41 −331 351 1278 −2235 0.65 −0.25 0.25 −322
BSK14 [140] 6 −15.85 30.00 0.1586 43.9 239 −152 −359 389 1435 −2191 0.80 0.03 0.28 −350
BSK16 [141] 7 −16.05 30.00 0.1586 34.9 242 −187 −364 462 1460 −2566 0.80 0.04 0.28 −344
BSK17 [142] 8 −16.05 30.00 0.1586 36.3 242 −182 −364 451 1460 −2508 0.80 0.04 0.28 −345
SLY4 [132] 9 −15.97 32.01 0.1595 46.0 230 −120 −363 521 1587 −3197 0.69 −0.19 0.25 −323
SLY5 [132] 10 −15.98 32.03 0.1604 48.3 230 −112 −364 501 1592 −3087 0.70 −0.18 0.25 −326
T44 [143] 11 −16.02 32.00 0.1612 50.0 230 −107 −366 481 1603 −2972 0.70 −0.18 0.25 −327
LNS1 [144] 12 −15.90 29.91 0.1616 30.9 244 −211 −325 444 1299 −2471 0.60 0.34 1.09 −356
LNS5 [144] 13 −15.56 29.15 0.1599 50.9 240 −119 −316 286 1255 −1671 0.60 0.23 0.97 −358
SAMI [145] 14 −15.93 28.16 0.1587 43.7 245 −120 −339 372 1331 −2179 0.68 0.02 0.51 −322
UNEDF1 [146] 15 −15.80 28.99 0.1587 40.0 220 −179 −404 324 1781 −1744 1.01 0.56 0.25 −346
NRAPR [147] 16 −15.85 32.78 0.1606 59.7 226 −123 −363 312 1611 −1838 0.69 0.21 0.66 −385

Average −15.88 30.25 0.1595 47.8 234 −130 −357 378 1500 −2219 0.73 0.08 0.46 −344
σ 0.15 1.70 0.0011 16.8 10 66 22 110 169 618 0.10 0.24 0.27 25
Min −16.05 26.83 0.1575 30.9 215 −211 −404 52 1255 −3197 0.60 −0.25 0.24 −408
Max −15.56 33.37 0.1616 104.3 248 71 −316 521 1781 −610 1.01 0.56 1.09 −305

FPL [148] 17 −15.92 30.93 0.1619 42.8 217 −136 −399 486 1833 −2913 0.84 −0.23 0.03 −314
SKGSIGMA [149] 18 −15.59 31.37 0.1576 94.0 237 14 −349 −27 1379 −5 0.78 0.25 0.48 −412
SKRSIGMA [149] 19 −15.59 30.58 0.1577 85.7 237 −9 −348 22 1377 −255 0.78 0.25 0.48 −397
SKX [150] 20 −16.05 31.10 0.1554 33.2 271 −252 −297 379 904 −1889 0.99 0.72 0.33 −415
SIII [151] 21 −15.85 28.16 0.1453 9.9 355 −394 101 131 −903 −799 0.76 0.26 0.53 −456
SV [151] 22 −16.05 32.82 0.1551 96.1 306 24 −176 48 183 −481 0.38 0.12 2.02 −497
SLY230A [96] 23 −15.99 31.99 0.1600 44.3 230 −98 −364 603 1594 −3786 0.70 −0.47 0.00 −294
SLY230B [96] 24 −15.97 32.01 0.1595 46.0 230 −120 −363 521 1587 −3198 0.69 −0.19 0.25 −323
F0 [106] 25 −16.03 32.00 0.1617 42.4 230 −113 −405 658 1705 −3870 0.70 0.00 0.43 −293
F+ [106] 26 −16.04 32.00 0.1618 41.5 230 −118 −406 661 1710 −3875 0.70 0.17 0.60 −294
F- [106] 27 −16.02 32.00 0.1616 43.8 230 −105 −405 655 1702 −3869 0.70 −0.28 0.15 −291
LNS [144] 28 −15.31 33.43 0.1746 61.5 211 −127 −383 303 1749 −1766 0.83 0.23 0.38 −385
UNEDF0 [152] 29 −16.06 30.54 0.1605 45.1 230 −190 −404 288 1707 −1495 1.11 1.02 0.25 −381
SKMP [153] 30 −15.56 29.89 0.1570 70.3 231 −50 −338 159 1424 −1020 0.65 0.16 0.71 −369
SKO [105] 31 −15.83 31.97 0.1605 79.1 223 −43 −393 131 1720 −851 0.90 0.09 0.17 −379
SKOP [105] 32 −15.75 31.95 0.1602 68.9 222 −79 −391 223 1710 −1349 0.90 0.05 0.15 −371
SKP [154] 33 −15.95 30.00 0.1625 19.7 201 −267 −436 508 2128 −2748 1.00 0.80 0.35 −342
Skz2 [155] 34 −16.00 32.01 0.1600 16.8 230 −260 −365 682 1598 −3894 0.70 0.14 0.57 −334
T6 [156] 35 −15.96 29.97 0.1609 30.9 236 −212 −383 473 1561 −2562 1.00 0.00 0.00 −347

Average −15.87 30.82 0.1596 49.6 237 −132 −349 370 1448 −2175 0.77 0.13 0.43 −354
σ 0.18 1.54 0.0039 21.6 27 89 88 188 510 1069 0.14 0.31 0.37 45
Min −16.06 26.83 0.1453 9.9 201 −394 −436 −27 −903 −3894 0.38 −0.47 0.00 −497
Max −15.31 33.43 0.1746 104.3 355 71 101 682 2128 −5 1.11 1.02 2.02 −291
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TABLE XI. Same as Table X for RMF models.

Model Nmodels Esat Esym nsat Lsym Ksat Ksym Qsat Qsym Zsat Zsym m∗
sat/m �m∗

sat/m κv Kτ

(MeV) (MeV) (fm−3) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

DDME1 [69] 36 −16.20 33.07 0.1520 55.5 245 −101 317 705 4867 −5717 0.66 −0.06 0.45 −506
DDME2 [70] 37 −16.14 32.31 0.1520 51.3 251 −87 479 777 4448 −7048 0.65 −0.06 0.47 −493
DDMEδ [157] 38 −16.12 32.35 0.1520 52.8 219 −118 −748 846 3950 −3545 0.69 −0.17 0.27 −255
NL3 [87] 39 −16.24 37.35 0.1480 118.3 271 101 198 182 9302 −3961 0.67 −0.08 0.40 −696
NL3s [67] 40 −16.31 38.71 0.1500 122.7 259 106 124 224 9997 −3920 0.67 −0.09 0.39 −690
NL-SH [158] 41 −16.35 36.12 0.1460 113.7 355 80 602 −23 5061 −4264 0.67 −0.08 0.40 −795
PK1 [68] 42 −16.27 37.59 0.1480 115.7 282 55 −29 −86 4008 −2866 0.68 −0.08 0.38 −627
PK1R [68] 43 −16.27 37.78 0.1480 116.3 283 56 −21 −86 4032 −2902 0.68 −0.08 0.38 −634
PKDD [68] 44 −16.27 31.19 0.1495 79.5 261 −50 −119 −28 4213 −1315 0.65 −0.08 0.44 −491
TM1 [159] 45 −16.26 36.94 0.1450 111.0 281 34 −285 −67 2014 −1546 0.71 −0.09 0.32 −520
TW99 [160] 46 −16.25 32.77 0.1530 55.3 240 −125 −540 539 3749 −3307 0.64 −0.06 0.49 −332

Average −16.24 35.11 0.1494 90.2 268 −5 −2 271 5058 −3672 0.67 −0.08 0.40 −549
σ 0.06 2.63 0.0025 29.6 34 88 393 357 2294 1582 0.02 0.03 0.06 153
Min −16.35 31.19 0.1450 51.3 219 −125 −748 −86 2014 −7048 0.64 −0.17 0.27 −795
Max −16.12 38.71 0.1530 122.7 355 106 602 846 9997 −1315 0.71 −0.06 0.49 −255
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APPENDIX: DETAILED TABLES OF
EMPIRICAL PARAMETERS

In this Appendix, we provide more details on the general
analysis of the empirical parameters deduced from nuclear
interactions or effective Lagrangians.

The empirical parameters provided by Skyrme interactions
are given in Table X. This table is separated into two parts,
the first 16 Skyrme models and the others. The reason for
this separation is explain in Sec. II B. We briefly summarize

it: The first 16 Skyrme models have been selected since they
are widely used interactions. In addition, we have limited the
number of models per groups generating these interactions in
order to mix as much as possible the various assumptions in the
fitting protocols. The other Skyrme interactions, from 17th to
35th, are also Skyrme interactions widely used either in finite
nuclei (for most of them) or in nuclear matter. They are there
to test the sensitivity of the statistical analysis based on the
first 16.

In Table XI, we have listed the RMF effective Lagrangians
that we have studied in this paper. Let us note that the effective
mass reported in this table is the Landau (nonrelativistic) one
deduced from the momentum dependence of the nonrelativistic
energy density.

Finally, we list in Table XII a few of RHF effective
Lagrangians. The small number of models in this table is
due to the very recent development of such approaches. It
shall be remarked that these effective Lagrangians have been
determined by a single group, and it would be interesting in
the future to see more of these modelings.

In Table XIII are shown the empirical parameters Qsat/sym

and Zsat/sym which are obtained from the meta-EOS ELFd.
The standard deviation in the energy per nucleon in symmetric
matter σe(SM) and in neutron matter σe(NM) between ELFd

TABLE XII. Same as Table X for RHF models.

Model Nmodels Esat Esym nsat Lsym Ksat Ksym Qsat Qsym Zsat Zsym m∗
sat/m �m∗

sat/m κv Kτ

(MeV) (MeV) (fm−3) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

PKA1 [161] 47 −15.83 36.02 0.1600 103.5 230 213 950 292 4935 −16 916 0.68 −0.02 0.45 −835
PKO1 [125] 48 −16.00 34.37 0.1520 97.7 250 106 262 290 4857 −5993 0.75 −0.03 0.31 −583
PKO2 [125] 49 −16.03 32.49 0.1510 75.9 250 77 −10 821 6703 −7993 0.76 −0.02 0.30 −375
PKO3 [125] 50 −16.04 32.99 0.1530 83.0 262 116 355 690 4581 −8921 0.76 −0.03 0.29 −494

Average −15.97 33.97 0.1540 90.0 248 128 389 523 5269 −9955 0.74 −0.02 0.34 −572
σ 0.08 1.37 0.0035 11.1 12 51 350 237 838 4156 0.03 0.00 0.07 169
Min −16.04 32.49 0.1510 75.9 230 77 −10 290 4581 −16 916 0.68 −0.03 0.29 −835
Max −15.83 36.02 0.1600 103.5 262 213 950 821 6703 −5993 0.76 −0.02 0.45 −375
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TABLE XIII. Modification of the empirical parameters, Qsat/sym and Zsat/sym, in the model ELFd adjusted to reproduce reference models.

Model Qsat Qsym Qsym Zsat Zsym Zsym σe(SM) σe(NM) σe(NM)
(MeV) (MeV) (v4 = 0) (MeV) (MeV) (v4 = 0) (v4 = 0)

(MeV) (MeV)

SGII [136] −225.98 272.22 229.89 −535.75 −1040.95 −871.63 0.28 0.17 0.27
RATP [137] −222.18 347.83 279.10 −414.59 −1126.54 −851.61 0.24 0.07 0.58
SKM* [138] −228.35 277.66 239.32 −542.05 −1097.83 −944.48 0.29 0.19 0.24
SKI2 [139] −214.11 25.49 5.56 −447.81 −223.15 −143.41 0.23 0.18 0.10
SKI4 [139] −212.90 224.29 127.37 −410.38 −383.25 4.42 0.22 0.04 0.90
BSK14 [140] −217.69 297.78 227.08 −578.08 −884.03 −601.20 0.26 0.09 0.58
BSK16 [141] −221.14 350.01 262.83 −573.66 −952.84 −604.13 0.26 0.05 0.76
BSK17 [142] −221.14 341.95 257.21 −573.68 −941.63 −602.66 0.26 0.06 0.74
SLY4 [132] −225.01 350.68 226.01 −443.11 −690.35 −191.68 0.26 0.05 1.19
SLY5 [132] −223.62 337.37 217.90 −451.22 −679.62 −201.75 0.25 0.05 1.13

DDME1 [69] 564.80 328.92 263.14 −2377.81 −1297.60 −1034.45 0.62 0.81 1.38
DDME2 [70] 657.79 318.84 248.12 −2611.93 −1317.33 −1034.45 0.80 1.12 1.74
DDMEd [157] −368.60 384.67 333.79 −353.91 −1237.96 −1034.45 0.76 1.23 1.01
NL3 [87] 1307.33 −571.12 −266.85 −4049.23 200.86 −1016.22 1.21 1.00 2.07
NL3∗ [67] 1488.08 −675.42 −305.43 −4478.35 454.57 −1025.36 1.71 1.14 2.74
NL-SH [158] 965.63 −472.62 −207.75 −3542.60 52.43 −1007.05 1.36 1.21 1.46
PK1 [68] 240.19 −316.97 −125.65 −2007.56 −250.93 −1016.22 0.57 0.70 1.40
PK1R [68] 249.68 −320.53 −127.58 −2031.73 −244.39 −1016.22 0.58 0.72 1.40
PKDD [68] 175.33 125.02 95.48 −1556.55 −1141.26 −1023.08 0.34 4.69 4.82
TM1 [159] −105.20 −187.08 −51.79 −1188.79 −461.28 −1002.45 0.19 0.31 1.43
TW99 [160] −206.47 400.18 317.66 −729.57 −1369.06 −1038.98 0.56 0.46 0.52

PKA1 [125] 877.58 −1176.76 −584.77 −3249.25 1297.52 −1070.43 1.74 1.05 5.72
PKO1 [125] 518.91 −489.42 −238.03 −2342.01 −28.93 −1034.45 0.62 0.41 2.35
PKO2 [125] 432.64 −169.80 −85.68 −2088.47 −693.41 −1029.91 0.55 0.42 0.64
PKO3 [125] 595.24 −424.75 −216.59 −2533.23 −206.36 −1038.98 0.72 0.63 1.68

and the original prediction from each of the listed models
are also given, showing the very good agreement between the
meta-EOS ELFd and the original interaction.

The number of parameters in the meta-EOS, including the
effective mass parameters, is 12. It could be interesting to
perform further analysis to reduce this number a bit. For this

purpose, we have explored the impact of removing the highest
order isovector empirical parameter, by setting viv

4 = 0, on the
comparison between the EOS ELFd and the original EOS.
The results are given in Table XIII. It is clear that the impact
is extremely small, showing that this parameter has a weak
influence on the EOS below 4nsat.
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