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Phenomenological study of the pp → π+ pn reaction
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Fully constrained bubble chamber data on the pp → π+pn and pp → π+d reactions are used to investigate
the ratio of the counting rates for the two processes as function of the pn excitation energy Q. Though it is
important to include effects associated with the p-wave nature of pion production, the data are insufficient to
establish unambiguously the dependence on Q. The angular distributions show the presence of higher partial
waves which seem to be anomalously large at small Q. The dispersion relation method to determine scattering
lengths is extended to encompass cases where, as for the pp → π+pn reaction, there is a bound state and, in
a test example, it is shown that the values deduced for the low-energy neutron-proton scattering parameters are
significantly influenced by the pion p-wave behavior.
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I. INTRODUCTION

The most complete measurements of the pp → π+pn
differential cross section were carried out using the Petersburg
Nuclear Physics Institute (PNPI) bubble chamber exposed to
proton beams with kinetic energies between 900 and 1000 MeV
[1–3]. The measured and deduced four-vectors of the final
particles for all the events at the three energies studied are
available on the Bonn-Gatchina website [4]. Although it was
shown that much of the data could be described through the
excitation of the �(1232) isobar through pion exchange [1–3],
it is of interest to see what features could be explained using
less prescriptive model approaches.

The final-state interaction (FSI) theorem [5] links the
production of S-wave spin-triplet pn pairs in the pp → π+pn
reaction to the cross section for pp → π+d. The failure of
the theorem to describe the bubble chamber data was ascribed
to the production of higher partial waves in the recoiling
proton-neutron system at even low pn excitation energy Q [6].
By studying the ratio of thepp → π+pn andpp → π+d cross
sections as a function of Q, as well as the angular distribution of
the produced pn pairs, it is shown in Sec. II that the behavior
for Q < 20 MeV is anomalous, possibly due to the strong
tensor force that couples the S and D waves. Though the
p-wave nature of pion production has to be taken into account
when evaluating the predictions, this does not affect the basic
conclusions.

Though it is hard with the present data to isolate the
contribution from higher partial waves just on the basis of the
FSI theorem, we turn in Sec. III to the question of whether
pp → π+pn could in principle be used to investigate the
properties of the low-energy pn system. Though data on pp →
K+�p have been directly fitted to determine the �p scattering
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length [7], an alternative approach has been advocated that
uses a dispersion relation in an approximate treatment that
only requires data over a limited range in Q [8–10]. In the
derivation of this formalism, it is assumed that there is no true
bound-state pole and in Sec. III we generalize this method
to treat the pp → π+pn reaction, where the final pn pair
could combine to produce a true bound state, namely the
deuteron. By considering the predictions of a simplified model,
the predicted pn parameters are studied as functions of the
cutoff in the dispersion relation description with and without
considering the p-wave nature of pion production. In analogy
to our analysis of the pp → K+�p reaction [11], it is shown
that it is the position of the nearby pole in the pn channel that
remains completely stable and the scattering length itself is
much more model dependent.

Our conclusions are to be found in Sec. IV.

II. COMPARISON OF THE pp → π+ pn AND pp → π+d
PRODUCTION RATES

The final-state interaction theorem relates the normaliza-
tions of the wave functions for S-wave bound and scattering
states [5]. This has been exploited to predict the double-
differential center-of-mass (c.m.) cross section for the S-wave
spin-triplet component in pp → π+pn in terms of the cross
section for pp → π+d [12]:

d2σ

d�dx
(pp → π+{pn}t )

= F (x)
pπ (x)

pπ (−1)

√
x

2π (x + 1)

dσ

d�
(pp → π+d). (1)

Here x denotes the excitation energy Q in the np system in
units of the deuteron binding energy Bt , x = Q/Bt , and pπ (x)
and pπ (−1) are the pion c.m. momenta for the pn continuum
and deuteron, respectively. In a single-channel situation, the
normalization F (x = −1) = 1 at the deuteron pole but it was
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FIG. 1. Values of F (x) extracted from the PNPI bubble chamber
data at 900.2 MeV [1] (black stars), 940.7 MeV [2] (red circles),
and 988.6 MeV [3] (blue squares) using Eq. (1), The errors shown
do not include those arising from the numbers of pp → dπ+ events
measured since these affect all the data at a given beam energy. The
laboratory beam energies quoted here are the nominal ones listed in
Refs. [1–3].

argued [5] that deviations from this value should be small at
low x if the pion production operator is of short range and the
tensor force linking the S and D states in the deuteron could be
neglected. However, although the shape of the high-resolution
inclusive data at 951 MeV, where only the π+ was measured
[13], is plausibly described by Eq. (1) up to an excitation energy
of Q ≈ 20 MeV, reproducing the average absolute magnitude
for x � 9 requires F (x) = 2.2 ± 0.1. It should here be noted
that the contribution from S-wave spin-singlet np pairs was
shown to be very small at 951 MeV [13].

Using bubble chamber data on single-pion production in
proton-proton collisions at three energies between 900 to
1000 MeV [1–3], it is clear that the excess of F (x) over unity
for low Q is primarily due to higher partial waves in the final
proton-neutron system [6]. This conclusion was based upon a
study of the angular distribution of the pn relative momentum
in the rest frame of the two nucleons. It is thus important to
see if extra information could be obtained through a study of
the dependence of the data on the excitation energy in the pn
system.

Figure 1 shows the values of F (x) extracted from the
PNPI bubble chamber data at three beam energies [1–3] using
Eq. (1). Although we are mainly interested in the behavior
at small Q, it is clear from the figure that there remains a
significant dependence on the beam energy, though the overall
errors arising from the small numbers of measured pp → dπ+
events have not been included. In particular, the data at large
x show an effect that seems to be linked to the finite phase
space. The effect is not caused by approximations in Eq. (1)
regarding the phase space limits but rather it is due to the
fact that the reaction is dominated by the excitation of the
�(1232), which necessarily involves a p-wave pion and hence
a pion momentum factor in the production amplitude. The pion
momentum vanishes at the kinematic limit of large x and this
feature leads to the maxima seen in Fig. 1. It is therefore more
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FIG. 2. Values of F ∗(x) extracted from the PNPI bubble chamber
data at 900.2 MeV [1] (black stars), 940.7 MeV [2] (red circles),
and 988.6 MeV [3] (blue squares) on the basis of Eqs. (1) and (2).
The errors shown do not include those arising from the numbers of
pp → dπ+ events measured. Deviations between the values of F ∗(x)
for different energies at large x are due in part to the spread in the
measured beam energy; the nominal beam energies are used in the
evaluation of the momentum factor of Eq. (2).

appropriate to consider

F ∗(x) =
[
pπ (−1)

pπ (x)

]2

F (x), (2)

which takes the p-wave nature of the pion production into
account. Note, however, that F ∗(x = −1) = F (x = −1) so
that the extrapolation to the deuteron pole is unaffected by
the modification introduced through Eq. (2).

The variation of F ∗(x) with x is illustrated in Fig. 2. The
modification introduced through Eq, (2) removes the maxima
seen in Fig. 1 and the data increase up to the largest value
of x allowed by the kinematics. Of crucial importance is the
fact that the data at different beam energies now overlap much
better so that F ∗(x) is a more universal observable. Deviations
from “universality” at large x are due in part to the spread in
the measured beam energy, which is particularly significant in
the 900 MeV data [1]. It should be noted that the nominal beam
energies are used in the evaluation of Eq. (2).

The F ∗(x) data of Fig. 2 were fit in the range 20 < Q <
180 MeV to the quadratic form

F ∗(x) = A + B(x + 1) + C(x + 1)2 (3)

where, according to the FSI theorem [5], the value of the
parameter A should be unity. Given the wide range of F ∗(x)
shown in the figure, it is not surprising that this value was not
confirmed by the data; free fits give A = 3.3 ± 1.6, 9.0 ± 2.0,
and 12.0 ± 2.3 at the three energies. The error bars should be
treated with some caution because the values obtained for A
change significantly if higher order polynomials are used in
the fit.

Imposing the constraint A = 1 on the average of the three
data sets shown in Fig. 3 leads to a reasonable description of the
data for 20 < Q < 180 MeV with B = −0.054 ± 0.026 and
C = 0.0223 ± 0.0007. The data at larger values of x clearly
require a higher order polynomial to achieve an acceptable
description. Thus, it is clear that the Q > 20 MeV data are
not inconsistent with the FSI prediction of A = 1 but, in view
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FIG. 3. Values of F ∗(x) averaged over the PNPI beam energies of
900.2, 940.7, and 988.6 MeV [1–3] obtained using Eqs. (1) and (2).
The curves are fits made on the basis of Eq. (3) with A = 1 (fixed),
B = −0.054, and C = 0.0223.

of the limited statistics, they cannot provide any supporting
evidence.

The principal drawback in using Eq. (1) is that it only leads
to estimates of the cross section where the final proton-neutron
pair in the pp → pnπ+ reaction is in a relative S state. A very
useful tool for investigating the effects of higher pn waves
was developed by Gottfried and Jackson [14]. They defined
an angle θp, which is that between the final proton and the
incident beam direction in the pn rest frame. Any deviation
from isotropy in this angle is unambiguous evidence for the
production of higher partial waves in the final pn system.

It was already pointed out [6] that, even for Q < 20 MeV,
the distributions of the bubble chamber events [1–3] were
not isotropic. In order to increase the statistics, in Fig. 4 the
events at all three beam energies are combined and these show
how the anisotropy grows from Q ∼ 10 to Q ∼ 150 MeV. It
should be noted that since the protons in the initial state are
identical, the distribution must be symmetric about 90◦ so that
the experimental data have been folded about this point.
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FIG. 4. Distributions in the Gottfried-Jackson angle θp for all
the pp → pnπ+ PNPI bubble chamber events in the range 900–
1000 MeV [1–3]. The (red) stars correspond to data chosen with
0 < Q < 20 MeV, whereas the (blue) circles are those where 140 <

Q < 160 MeV. The lines represent the Legendre polynomial curves
of Eq. (4), with the values of the fitted parameters C2 and C4 being
shown in Fig. 5.
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FIG. 5. Variation of the parameters C2 (red stars) and C4 (blue
circles) of the Legendre polynomial fit of Eq. (4) to the Gottfried-
Jackson angular distribution observed in the PNPI bubble chamber
measurements of the pp → pnπ+ differential cross section [1–3].

The distributions in the θp angle were fitted with the
Legendre polynomial expansion

N (θ ) = C0[1 + C2P2(cos θ ) + C4P4(cos θ )] (4)

and the values of the parameters C2 and C4 thus obtained are
plotted in Fig. 5 for the different energy bins. The resulting
curves and data are also shown at two energies in Fig. 4.

Any nonvanishing of the C2 or C4 parameter would be an
indication of higher partial waves in the np system but, since
it is impossible from these data to distinguish the squares of
P waves from S-D interference, one can at best only establish
weak lower bounds on any such contribution. On general
grounds, one expects that close to threshold the C2 parameter
should vary like Q and C4 like Q2. The obvious deviation from
this rule seen in Fig. 5 is in the value of C2 in the lowest Q bin,
which shows that higher pn partial waves are important for Q
even below 20 MeV [6], and this might be connected with the
strong tensor force in the spin-triplet pn system.

III. DETERMINING THE NEUTRON-PROTON
SCATTERING PARAMETERS FROM THE

pp → pnπ+ REACTION

The Q dependence of the pp → pnπ+ cross section is
sensitive to the low-energy pn scattering parameters and a
similar sensitivity is expected in the pp → �pK+ reaction
provided that the �p system emerges in a relative S wave.
The angular distribution shown in Fig. 4 proves that this is
not a valid assumption for Q < 20 MeV in the pp → pnπ+
case [6] and there are similar doubts for pp → �pK+ when
Q < 40 MeV [15].

Even if we could identify the �p S-wave contribution in
say the pp → �pK+ reaction, there are still difficulties in
extracting the �p scattering length due, in part, to the finite
range of �p invariant masses accessible and the coupling to
the inelastic channels, as well as to the limited mass resolution.
An alternative approach has been advocated that exploits the
analyticity of the amplitudes through the use of a dispersion
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relation [8,9]. It was shown that estimates of the S-wave
�p phase shift can be deduced from the pp → �pK+ data
through

δ(k)

k
= − 1

2π

√
mmin

mred

∫ m2
max

m2
min

dμ2

√
m2

max − mX
2

m2
max − μ2

× 1√
μ2 − m2

min (μ2 − mX
2)

log

{
A(μ)

A(mX)

}
, (5)

where the principal value integral in the original derivation has
been here replaced by a standard Riemann integral [11].

In the above, k is the relative momentum in the �p
system and mred is the corresponding reduced mass so that,
nonrelativistically, Q = k2/2mredc

2. A(μ) is the enhancement
factor of the pp → �pK+ cross section with respect to phase
space as a function of the �p invariant mass μ. If one only takes
the �p final-state interaction into account then A ∝ |J (k)|−2,
where J (k) is the �p Jost function. The lower limit of the
integration is mmin = mp + m� and the �p mass is fixed by
the external kinematics as mX = mmin + Q/c2. Ideally, the
upper integration limit mmax should be taken to be infinite but
in general this is not practical because of the desire to retain
only the S wave in the �p system. The authors of Refs. [8,9]
therefore made the approximation of cutting the integration at
Q = Qmax, which they chose to be Qmax = 40 MeV. In this
way, they could obtain estimates for the �p scattering length
and effective range, though at the expense of introducing a
theoretical uncertainty associated with the cutoff energy.

Even if the contribution from higher partial waves, for which
there is some evidence from the Gottfried-Jackson distribution
[15], is discounted, it has been shown [11] that Eq. (5) leads to a
much better determination of the position of the virtual pole in
the �p system than it does of the scattering length or effective
range individually. We now want to apply the methodology to
the pp → pnπ+ reaction.

Apart from the increased complications due to the pion
multiple scatterings, the critical difference between the pp →
�pK+ and pp → pnπ+ reactions is that there is a true bound
state, the deuteron, in the pn system whereas the virtual state
pole in the �p case is on the second sheet. The derivation
of Eq.(5) must therefore be modified accordingly and this
can be accomplished following Eq. (12.63) of Newton’s book
[16]. Suppose that there is just one bound state at k = iα.
In the reduced S-wave Jost function the bound-state pole is
replaced by one corresponding to a virtual state, α → −α, by
constructing

J red(k) = J (k)

(
k + iα

k − iα

)
. (6)

For real k, the magnitudes of the two Jost functions are
identical:

|J red(k)| = |J (k)|. (7)

Since the phase of the Jost function is determined by theS-wave
phase shift δ,

J (k) = |J (k)| exp(−iδ), (8)

it follows immediately that the reduced phase shift is related
to the true one through

δred(k) = δ(k) − i log

(
k + iα

k − iα

)
. (9)

For small values of k, i log [(k + iα)/(k − iα)] ≈ −π +
k/α − k3/3α3. The −π term, which is a consequence of
Levinson’s theorem when there is one bound state, does
not contribute in the evaluation of cot δ. It can therefore be
neglected so that, effectively, for small k,

δ(k) = δred(k) + 2k/α − 2k3/3α3 + O(k5), (10)

where it is δred(k) that is approximated by the formulas of
Ref. [8], with a virtual rather than a bound state.

In a low-energy expansion, the S-wave phase shift can
expressed in terms of the scattering length a and effective range
r as

δ(k) = −ka + a2k3(a/3 − r/2) + O(k5). (11)

Using this expansion in Eq. (10) for both δ(k) and δred(k), and
comparing terms of order k and k3, shows that

a1 = a0 − 2/α,

a 2
1 (a1 − 3r1/2) = a 2

0 (a0 − 3r0/2) − 2/α3, (12)

where a1 and r1 are the scattering length and effective range
when the pole is a bound state and a0 and r0 are the correspond-
ing parameters when there is a virtual bound state at k = −iα.

It must be emphasized that apart from the change in the sign
of α, the parameters of the true and reduced Jost functions are
identical, though this is by no means obvious when looking at
the very different values of the scattering length and effective
range determined by Eq. (12).

It would, of course, be preferable to test the methodology
described above on experimental data but, as shown by the
Gottfried-Jackson distributions [14], higher partial waves con-
tribute in pp → pnπ+ at even small values of Q [6]. We use
instead data generated from the one-pole Jost function, where

J (k) = k − iα

k + iβ
. (13)

This form corresponds to the Bargmann potential where the
expressions for the scattering length and effective range are,
respectively,

a = α + β

αβ
and r = 2

α + β
· (14)

Although the exact numbers are not crucial for the pur-
poses of a test, the experimental spin-triplet values of a =
5.414 fm and r = 1.757 fm [17] correspond to parameters
α = 0.2315 fm−1 and β = 0.9055 fm−1 for the Bargmann
potential.

Estimates of a0 and r0 were made on the basis of the
dispersion integral of Eq. (5) using the Jost function of Eq. (13)
with the sign of α changed so that there is a virtual rather
than a true bound state. The corresponding bound state case
was then treated by employing the relations given in Eq. (12).
The results are shown in Fig. 6 as functions of Qmax. In order
to be consistent with the potential description, nonrelativistic
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FIG. 6. Estimates of the spin-triplet np scattering length (a1) and
effective range (r1) deduced from Eqs. (5) and (12) as functions of
the cutoff energy Qmax in the integration. The true values with no
cutoff should be a1 = 5.414 fm and r1 = 1.757 fm. The solid lines
were obtained with the bare Jost function of Eq. (13) as input but with
α → −α. The dashed lines were derived by using the modified Jost
input of Eq. (15), where the effects of the p-wave nature of the pion
production have been included.

kinematics have been used in the studies, even though this is
hard to justify for Qmax � 100 MeV.

It must be noted that the pole position α0 determined from
Eq. (5) should be identical to that of the input because this
is determined uniquely by the singularity in A(mX), which
is independent of the value of Qmax. It then follows from
Eq. (9) that the pole position of the bound state, α1, should
be equally stable to changes in the value of Qmax. However,
for small Qmax, where higher order terms in the effective range
expansion become relatively more important, it is necessary to
take these into account when extracting the value of α.

The variation of the np scattering length a1 with the
integration cutoff parameter Qmax is less strong than in our
previous work on the pp → K+�p reaction [11]. This can be
linked to the different value of β/α since Eq. (14) shows that
for large β the scattering length is fixed primarily by the value
of α, which is very stable. These arguments do not, of course,
apply to the effective range r1.

It was remarked already in the papers on the dispersion
integral approach to the analysis of pp → K+�p data [8–10]
that the value obtained for the �p scattering length could
be distorted through a reflection of the production of N∗
isobars in the K+� channel. This is typically a problem of
limited energy where the Dalitz plot is not sufficiently open
and the dependence on the three invariant masses cannot be
independently determined. We saw in the description of the
bubble chamber data on pp → π+pn [1–3] in Fig. 2 that it
was important to take the p-wave nature of the �(1232) into
account and so it is interesting to study the estimates made in
the dispersion relation approach using as input an enhancement
factor of the form

A =
(

k2 + β2

k2 + α2

)
(pπ )2 , (15)

where the pion momentum pπ is a function of x and hence
of k2.

The effect of the pion momentum factor depends on the lim-
its of phase space and, at very high energies, pπ is essentially
constant over the relevant part of the integration in Eq. (5), in
which case the results would be indistinguishable from those
obtained using the bare Jost function. For the purposes of
the test, we have assumed that the available energy is twice
that of the cutoff energy Qmax. The resulting estimates for the
scattering length and effective range are compared in Fig. 6
with the predictions of a1 and r1 obtained without the pion
momentum factor.

Just as for the bare Jost input, within numerical uncertainties
the position of the virtual state pole remains stable at α0 =
−0.2135 fm−1 and α1 = −α0. On the other hand, if one derives
values of the parameter β from Eq. (14), it is seen that these are
identical for the virtual and true bound state cases, i.e., β1 = β0,
and thatβ approaches the input value for largeQmax. In general,
though, the value of β obtained in the pion p-wave case is
bigger than that for the bare Jost input because it effectively
reduces the strength at larger k2.

IV. CONCLUSIONS

Using the PNPI bubble chamber data, we have investigated
two features of the pp → π+pn reaction in ways that mini-
mize the model dependence. Though we had earlier shown that
the cross section at low-np excitation energy Q was high as
compared to that of pp → π+d, and that this was probably
linked to the production of higher partial waves in the np
system [6], studies of the cross section ratio presented here do
not clarify sufficiently the effect. However, the deviations from
the predictions of the final-state interaction theorem [5,12] are
particularly large in the lowest Q bin. This might arise from
the strong tensor force in the np system. This discrepancy is
little affected by the distortions induced by the production of
the �(1232) isobar.

Even though the behavior of the pp → π+pn/pp → π+d
ratio with Q could not be investigated completely with the
limited statistics of the bubble chamber experiments, it is of
interest to ask to what extent such data could in principle be
used to investigate the neutron-proton scattering length. We
generalized the dispersion relation approach of Refs. [8,9] to
situations where, as in this case, there is a true bound state in the
np system. The results of this, or a direct-fitting approach to the
data, are influenced by the dominantly p-wave nature of pion
production and, if this is not taken into account, a systematic
error is made in the extracted value of the np scattering
length.

Although the value obtained for the scattering length
changes with the cutoff, or whether the pion p-wave factor
is included or not, the position of the bound-state pole remains
completely fixed, so that it is primarily this parameter that
could be fixed by the data rather than the scattering length and
effective range separately. This parallels our discussion of the
pp → K+�p reaction, where it is the position of the virtual
bound state that could be determined by good data [11]. All
this assumes, of course, that data can be obtained with purely
S-wave np or �p events. As is clear from Fig. 4, this presents
more of a challenge as Q is increased, which reinforces our
argument that the data should be used to fix the pole rather
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than the scattering length. This will remain true even if the
pion multiple scatterings are taken into account, though these
will undoubtedly complicate the extrapolation to the deuteron
pole.
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