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We present a fully three-dimensional model providing initial conditions for energy and net-baryon density
distributions in heavy-ion collisions at arbitrary collision energy. The model includes the dynamical deceleration
of participating nucleons or valence quarks, depending on the implementation. The duration of the deceleration
continues until the string spanned between colliding participants is assumed to thermalize, which is either after a
fixed proper time, or a fluctuating time depending on sampled final rapidities. Energy is deposited in space time
along the string, which in general will span a range of space-time rapidities and proper times. We study various
observables obtained directly from the initial-state model, including net-baryon rapidity distributions, two-particle
rapidity correlations, as well as the rapidity decorrelation of the transverse geometry. Their dependence on the
model implementation and parameter values is investigated. We also present the implementation of the model with
3+1-dimensional hydrodynamics, which involves the addition of source terms that deposit energy and net-baryon
densities produced by the initial-state model at proper times greater than the initial time for the hydrodynamic
simulation.
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I. INTRODUCTION

The Beam Energy Scan (BES) program at the Relativistic
Heavy Ion Collider (RHIC) at Brookhaven National Labora-
tory [1–4] and the energy scans performed with NA61/SHINE
at CERN [5] constitute systematic scans of heavy-ion collisions
over a range of beam energies. These programs provide
the opportunity to explore the phase diagram of quantum
chromodynamics (QCD) by varying the typical temperature
and baryon chemical potential of the produced matter.

Precise measurements of the hadronic final state ought to
allow for the extraction of transport properties of the quark-
gluon plasma (QGP) in a baryon-rich environment as well as
the determination of the QCD critical point [6–8], should it
exist in the accessible region of the phase diagram. To do so we
require a reliable theoretical framework which can model the
dynamical evolution of the collisions and all relevant sources
of fluctuations.

Viscous relativistic hydrodynamics is a successful phe-
nomenological model for heavy-ion collisions at high collision
energies [9,10]. Its combination with a hadronic transport
model, which provides a more detailed description of the
dilute hadronic phase, creates a powerful hybrid framework
for describing and predicting a wide range of observables in
heavy-ion collisions at Large Hadron Collider (LHC) energies
and top RHIC energies (for a review see [11]).

Some complications arise at lower collision energies. While
the hybrid framework reduces the theoretical uncertainties in
the late stage of the evolution, a large uncertainty remains in
the initial and early time pre-equilibrium stages. A particular
problem for describing the early time evolution of the sys-
tem for the lower BES energies arises because the Lorentz
contraction factors for the two incoming nuclei cannot be
approximated by infinity. Thus, the nuclei have a finite size

in the longitudinal (beam) direction and will consequently
take a considerable time to pass through each other. One
possibility is to start hydrodynamic simulations after the two
nuclei have completely passed through each other. However,
at

√
sNN ∼ O(10) GeV, this may take approximately ∼2 fm or

more, leaving a large theoretical uncertainty for the early time
dynamics of the system.

To address this problem, in a previous work [12] the hadron
transport approach UrQMD [13,14] was used to describe the
early stage of the collision. Then the switch to hydrodynamics
was performed at a constant proper time, larger or equal to the
passing time of the two nuclei. A similar model, using AMPT
for the early stage was presented in [15,16], but it has not been
applied to energies below top RHIC energies so far.

In this work, we aim to solve the problem by introducing
a dynamical framework which interweaves the initial condi-
tion that produces three-dimensional net-baryon and energy
densities with the hydrodynamic evolution of the system.
After a minimal thermalization time, which in general can be
smaller than the time the two nuclei overlap, the hydrodynamic
evolution is started. Collisions between nucleons that occur
after this initial time will contribute additional energy and
net-baryon number, which enter the hydrodynamic simulation
via source terms. A similar idea using source terms in the
hydrodynamic simulation but with different assumptions about
the nature of these sources was presented in [17].

The time and location of the energy and net-baryon density
deposition is determined from binary collisions of nucleons. A
Monte Carlo–Glauber model-like prescription determines the
position of the collisions in the transverse plane. To determine
the longitudinal structure of the collision, a string is formed
between colliding nucleons (or valence quarks within them,
depending on the implementation) and they begin to decelerate.
After a predetermined proper time the string will thermalize
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and deposit energy along its entire length and net-baryon
density near its ends.

When using nucleon degrees of freedom, the only fluc-
tuations will be those of the transverse structure and the
longitudinal position of constant length strings. Introducing
constituent quarks, whose longitudinal momentum fraction
fluctuates, produces fluctuations of the string length. Addi-
tional fluctuations can be included by varying the time a string
requires to thermalize. We study the effect of the latter by
implementing varying final rapidities of each particle, sampled
according to the distribution first introduced within the LEXUS
model [18,19].

We focus on the analysis of net-baryon and multiplicity dis-
tributions in rapidity as well as measures of fluctuations, with
emphasis on their dependence on different model assumptions.
We present Legendre coefficients of net-baryon and energy
density rapidity fluctuations, measures of decorrelations of the
transverse geometry with rapidity, and cumulant ratios for net
proton distributions obtained directly from the initial state.

The paper is organized as follows. In Sec. II we present
the model, detailing the three-dimensional collision dynamics,
string production, and deceleration, as well as details like
the possible choice of participants and rapidity fluctuations.
We close Sec. II with a discussion of the form of the source
terms for hydrodynamics. In Sec. III we lay out the form of
the hydrodynamic equations with sources, and in Sec. IV we
present results of the numerical calculations. Conclusions are
presented in Sec. V.

II. THREE-DIMENSIONAL MONTE
CARLO–GLAUBER MODEL

There exist several models that provide fluctuating initial
conditions in three spatial dimensions [12,19–23]. Here, we
generalize the Monte Carlo–Glauber model to three dimen-
sions by introducing a prescription for the energy and net-
baryon density deposition as a function of rapidity. We show
that in general a (proper) time-dependent prescription for this
deposition is required. This will be achieved by introducing
source terms into the hydrodynamic simulation.

A. Collision dynamics in 3D

The time it takes two nuclei to pass through each other in
a heavy-ion collision depends on the collision energy. Given
the nuclear radius R, the overlap time of two nuclei moving
with opposite velocities ±vz can be estimated in the laboratory
frame as

τoverlap = 2R

γvz

= 2R

sinh(ybeam)
, (1)

where γ is the Lorentz factor and ybeam = arccosh
(
√

sNN/(2mp)) is the beam rapidity. Here
√

sNN is the collision
energy per nucleon pair and mp = 0.938 GeV is the mass of a
proton.1

For two sample Au+Au events Fig. 1 shows the distribution
of nucleons in the laboratory frame at the time of the first

1We approximate the neutron mass mn ≈ mp .

FIG. 1. Nucleon positions as a function of one transverse (x) and
the longitudinal direction (z) for two different collision energies.

NN collision. Nucleon positions (xi
P ,yi

P ,zi
P ) and (xj

T ,y
j
T ,z

j
T ),

where i and j run over all projectile (P ) and target (T )
nucleons, respectively, were sampled from a three-dimensional
isotropic Woods-Saxon distribution, then Lorentz contraction
in the z direction was applied according to the collision energy.
This illustrates that it will take a finite time for the two nuclei to
pass through one another and that nucleon-nucleon collisions
will occur at different positions z and over an extended range
in time t .

Figure 2 shows the overlapping time τoverlap as a function
of the collision energy

√
sNN for Au+Au and d+Au collision

systems. Because of the finite τoverlap, binary collisions of the
nucleons cannot be approximated to all occur at the origin of
the light cone t = z = 0. To get the collision time and position
for every binary collision, we perform a simple transport
simulation, described in the following. We assume straight
line trajectories for the colliding nucleons—a binary collision
does not change the direction of the colliding nucleons but
only slows them down. This assumption can be relaxed by

FIG. 2. The nuclear overlapping time of 0%–5% central d+Au
and Au+Au collisions as a function of the collision energy at the
RHIC BES program.
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adding small random transverse kicks to nucleons at every
binary collision in the future.

Before the collision, all projectile and target nucleons are
assigned the velocities,

vP (T ) = (0,0, tanh(±ybeam)), (2)

respectively. At time t = 0, we set max{zP
i } = min{zT

j } = 0.
This ensures that all binary collisions occur inside the forward
light cone. The space-time positions of individual binary colli-
sions are determined using a simple collision driven transport
scheme. Whether collisions between nucleons i and j occur
is determined with a standard Monte Carlo–Glauber model
using the geometric interpretation of the nucleon-nucleon cross
section and the transverse position of the nucleons (xi

P ,yi
P ) and

(xj
T ,y

j
T ) [24]. Collision positions are computed as

xij
c = (

xi
P + x

j
T

)/
2, yij

c = (
yi

P + y
j
T

)/
2, (3)

and

zij
c = zi

P + �tijv
i
P , (4)

where the �tij = (zj
T − zi

P )/(vP − vT ) are the collision times.
Note that with |vP − vT | being defined in the laboratory frame,
there is no problem with this difference being greater than the
speed of light c. It is defined as the rate of change of the distance
between the two approaching nucleons.

B. String production and deceleration

Having determined the positions and times of all binary
collisions, we need to develop a prescription for how produced
energy and net-baryon number are distributed. To do so
we assume that strings are produced between all colliding
nucleons.2 For details on how strings are connected between
participating nucleons we refer the reader to the appendix.

Before a string breaks and thermalizes with the system (i.e.,
contributes its energy to the medium), its end points decelerate
according to [25]

dE

dz
= −σ and

dpz

dt
= −σ, (5)

where σ is the string tension. A similar prescription with the
constant string tension replaced by space- and time-dependent
components of the energy momentum tensor of the Glasma
was introduced in [26]. That framework is, however, likely
constrained to high (i.e., top RHIC and higher) energies.

We note here that we do not assign a specific color structure
to each string and the string tension σ can be understood as an
effective parameter characterizing the average force between
interacting components (either nucleons or what we will call
valence quarks) of the two nuclei. We make this choice for
simplicity but note that in the future detailed color information
can be added to the model, and its effect on the longitudinal
structure and fluctuations studied. The implementation could,
for example, follow the method employed in HIJING [27], where

2We will discuss below how to modify the model to use constituent
quark degrees of freedom.

a nucleon-nucleon collision produces two color neutral strings,
each between a quark and a di-quark [28].

An early version of this model [29] assumed an instanta-
neous energy loss at the time of the binary collision followed
by a free-streaming propagation for the strings. In that case,
the produced string length along the longitudinal direction
was anticorrelated with the amount of energy lost in the
collisions. This leads to the unphysical situation that a collision
without energy loss would produce a string that feeds the
most energy to the hydrodynamic medium. Adopting the
deceleration dynamics cures this shortcoming. The energy of
the produced string from Eq. (5) is proportional to the energy
lost during the collision.

From Eq. (5) we find that the rapidity of a string end is
decelerated to

ỹ(�τf ) = ỹi ± arccosh

(
�τ 2

f σ 2

2m2
+ 1

)
, (6)

where we always take the solution with |ỹ(�τf )| < |ỹi |, the
absolute value of the initial rapidity of the string’s endpoints
(which is the same for both endpoints in the rest frame of
the string). If one nucleon is connected to multiple strings, its
incoming rapidity ỹi starts with the beam rapidity in the earliest
collision and is decelerated sequentially for a time �τf for
each string it is connected to. The sign in Eq. (6) depends on the
direction the endpoint is moving. The final rapidity of the string
endpoint is ỹf = ỹ(�τf ), however, when the string endpoint
comes to a halt and Eq. (6) would lead to an acceleration,
evolution of the string is stopped. The maximum deceleration
time at which this happens is

�τmax = m

σ

√
2(cosh(ỹi) − 1). (7)

To obtain equations for the space-time coordinates of the string
ends in the laboratory frame, we need to apply a boost with the
center of mass rapidity of the string,

Y = 1
2

(
yi

l + yi
r

)
, (8)

where yi
l and yi

r are the initial laboratory frame rapidities of the
left (l) moving and right (r) moving string ends, respectively.
Using Eq. (6) we determine the positions of the left and right
moving endpoints at the time of string breaking as

t
l/r
lab = tc + �τf

(
−�τf σl/r

2m
sinh

(
yi

l/r

)

+
√

�τ 2
f σ 2

l/r

4m2
+ 1 cosh

(
yi

l/r

))
, (9)

z
l/r
lab = zc + �τf

(
−�τf σl/r

2m
cosh

(
yi

l/r

)

+
√

�τ 2
f σ 2

l/r

4m2
+ 1 sinh

(
yi

l/r

))
, (10)

with the initial laboratory frame rapidities of the endpoints,
yi

l/r . They are obtained from the rapidities in the rest frame
of the collision as yi

l/r = ỹi
l/r + Y . For the left moving end,
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FIG. 3. The trajectories of the endpoints of the decelerating
strings with different initial rapidities in t − z (a) and τ − ηs (b)
coordinates.

because yl < 0, we use σl = −σ and for the right moving end,
because yr > 0, we use σr = σ .

Figure 3 shows the trajectories of the right moving end of
a string during its deceleration with constant σ = 1 GeV/fm
and m = 1 GeV for different initial rapidities.

Using the definition of the space-time rapidity,

ηs = 1

2
ln

(
t + z

t − z

)
, (11)

Eqs. (9) and (10) provide the space-time rapidity of the left and
right ends of the string, ηs,l and ηs,r .

To fully construct source terms of energy and net-baryon
number density for hydrodynamic simulations we need the
following information for each string:

τc,ηs,c,xc,yc,�τf ,ηs,l,ηs,r ,yl,yr , (12)

where ηs,c is the space time rapidity and τc the proper time of
the collision, obtained from tc and zc.

The space-time position of the entire string in the laboratory
frame after evolving for �τ is given by the equation,

(t − tc)2 − (z − zc)2 = �τ 2. (13)

The string will cross a given constant proper time τ surface at

ηs = ηs,c ± arccosh

(
τ 2 + τ 2

c − �τ 2

2ττc

)
, (14)

or

τ = τc cosh(ηs − ηs,c)

+
√

τ 2
c cosh2(ηs − ηs,c) − (

τ 2
c − �τ 2

)
. (15)

Equation (14) only has solutions for τ > τc + �τ , with the
smallest value of τ realized at ηs = ηs,c. In practice, we will
use the above equations with �τ = �τf to determine every
string’s space-time position when it thermalizes and becomes
part of the hydrodynamic medium.

We know a string’s extension in space-time rapidity,
[ηs,l,ηs,r ], so this string will contribute as a source term during
the proper time interval determined by varying ηs in Eq. (15)
between ηs,l and ηs,r .

Examples of the space-time distribution of thermalizing
strings, and thus the positions of sources for the hydrodynamic
simulation, which will be detailed in the next section, are
shown for Au+Au collisions in Fig. 4 and for d+Au collisions
in Fig. 5. At the highest considered energy,

√
s = 200 GeV,

the τ range occupied by strings is somewhat limited around
space-time rapidity ηs = 0, however, at larger |ηs | thermalizing
strings are present for up to τ ≈ 3 fm. At the lower considered
energy,

√
s = 19.6 GeV, strings (sources) are spread over a

wide range in τ for all space-time rapidities ηs . This clearly
demonstrates the necessity to initialize the hydrodynamic sim-
ulation dynamically at energies below 200 GeV. Furthermore,
if one is interested in the dynamics away from midrapidity,
considering source terms for up to τ ≈ 3 fm may be necessary.

Let us note here that while we describe the deceleration
of string ends dynamically, for the sake of simplicity we do
not model string breaking or the emerging substructure of
strings explicitly. Including string fragmentation as done, for
example, in [30–32] can be added in future extensions of the
model and will likely affect the detailed longitudinal structure
of the deposited energy and net-baryon numbers. Comparison
to experimental observables discussed in Sec. IV can then be
used to constrain the detailed mechanisms of string breaking
and deceleration.

C. Choice of participants

So far we have assumed that strings are connected to
participant nucleons and disregarded any possible nucleonic
substructure. In that case the initial rapidities are fixed to
yi

l = −ybeam and yi
r = ybeam. Alternatively, for every wounded

nucleon valence quarks can be sampled from the parton
distribution function (PDF) and strings are spanned between
two such quarks. Their initial rapidity can be estimated from
the following formula,

yq = arcsinh

(
xq

√
s

4m2
q

− 1

)
. (16)

In the high energy limit, s → ∞, Eq. (16) reduces to the often
used expression yq = log (xq

√
s/mq), which would, however,

lead to negative yq when xq

√
s < mq .
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FIG. 4. The space-time distribution of the strings at their thermalization in a Au+Au collision at 200 GeV and 19.6 GeV in t − z and τ − ηs

coordinates. The black dots indicate the space-time position of the net-baryon charges.

Sampling initial rapidities for the constituent quark par-
ticipants leads to fluctuations of the strings’ lengths. The
transverse position of the valence quarks are sampled from
a two-dimensional (2D) Gaussian distribution [19].

D. Rapidity loss fluctuations

Alternatively to using a constant thermalization time for
every string, in every nucleon-nucleon collision the rapidity
loss of the incoming nucleons in their pair rest frame can be
sampled from a probability distribution,

P (yloss) = cosh
(
2y in

lrf − yloss
)

sinh
(
2y in

lrf

) − sinh
(
y in

lrf

) , (17)

where y in
lrf denotes the absolute value of the incoming nucleons’

rapidity in their pair rest frame. This distribution was first
introduced within the LEXUS model [18].

The rapidity loss yloss fluctuates in the range [0,y in
lrf ],

introducing fluctuations of the string thermalization time,

�τf = m

σ

√
2(cosh(yloss) − 1). (18)

The mean rapidity loss and average string deceleration
time are

〈yloss〉 = cosh
(
2y in

lrf

) − cosh
(
y in

lrf

) − y in
lrf sinh

(
y in

lrf

)
sinh

(
2y in

lrf

) − sinh
(
y in

lrf

) , (19)

and

〈�τ 〉 =
∫ yin

lrf

0
dyloss

m

σ

√
2(cosh(yloss) − 1)P (yloss). (20)

For y in
lrf → ∞, the mean rapidity loss 〈yloss〉 → 1. The average

string deceleration time 〈�τ 〉 is shown in Fig. 6 for a string
tension σ = 1 GeV/fm and particle mass m = 1 GeV. We
see that even on average it takes a significant amount of time
〈�τ 〉 = O(1 fm) for a string to thermalize and deposit energy
into the medium.

We will demonstrate the effect of these additional rapidity
fluctuations on observables sensitive to longitudinal fluctua-
tions in Sec. IV.

E. Sources for hydrodynamic fields

Individual strings are not thermalized at a fixed proper
time and depending on the collision energy, many of them
will thermalize after the hydrodynamic simulation has already

024907-5



CHUN SHEN AND BJÖRN SCHENKE PHYSICAL REVIEW C 97, 024907 (2018)

FIG. 5. Same as for Fig. 4 but for a d+Au collision at 200 GeV and 19.6 GeV.

started.3 This is why we need to treat the energy and net-baryon
number deposition dynamically and introduce source terms
to the hydrodynamic simulation. The velocity profile of the
string is

u
μ
string(τ,ηs) =

(
cosh[ystring(ηs) − ηs],0,0,

1

τ
sinh[ystring(ηs) − ηs]

)
, (21)

where ystring(ηs) is the momentum rapidity along the string
defined at the time of string breaking τbreak = τc + �τf . We
define the momentum rapidity profile via a linear interpolation,

ystring(ηs) = yl + yr − yl

ηs,r − ηs,l

(ηs − ηs,l). (22)

To vary how much of the source longitudinal velocity will
be affected by the flow velocity from the medium at its

3Once the deceleration of a string’s endpoints is completed, the
string is assumed to be thermalized with the medium and its energy
and net-baryon numbers are added to the hydrodynamic medium. We
do not perform any explicit thermalization procedure, whose details
are not known.

thermalization we introduce a quenching factor α,

ysource
L,α (ηs) = ystring(ηs) − α

(
ystring(ηs) − yflow

L

)
. (23)

FIG. 6. The average string deceleration time �τ as a function
of the initial string rapidity in the LEXUS model. The black points
indicate the RHIC BES collision energies, 5, 7.7, 11.5, 14.5, 19.6, 27,
39, 62.4, and 200 GeV.
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The rapidity corresponding to the source’s transverse velocity,
which is entirely from the motion of the medium, is given by

ysource
⊥,α (ηs) = αyflow

⊥ , (24)

where yflow
⊥ is the transverse flow rapidity. The four velocity of

the source can be written as

uμ
source(τ,ηs)

= (
cosh

[
ysource

L,α (ηs) − ηs

]
cosh

[
ysource

⊥,α (ηs)
]
,

sinh
[
ysource

⊥,α (ηs)
]

cos(φ), sinh[ysource
⊥,α (ηs)] sin(φ),

sinh
[
ysource

L,α (ηs) − ηs

]
cosh

[
ysource

⊥,α (ηs)
])

. (25)

For α = 0 the string is not affected by the background medium
such that ysource

L,α (ηs) = ystring(ηs) and ysource
⊥,α = 0. When α =

1 the string is fully “stopped” to the medium flow velocity
ysource

L,α (ηs) = yflow
L and ysource

⊥,α = yflow
⊥ .

The energy-momentum current Jμ
source at a given space-time

point xα is defined as

Jμ
source(xα) =

∑
i∈{strings}

eiu
μ
i,sourcefsmear

(
xα; xα

i

)
. (26)

Here ei is the local energy density of the string i. The spatial
smearing function fsmear(xα; xα

i ) takes the form,

fsmear
(
xα; xα

i

) = δ(τ − τi)

τ
f⊥(x,y; xi,yi)fηs

(ηs ; ηs,i). (27)

We use Gaussian smearing profiles in the transverse and
longitudinal directions,

f⊥(x,y; xi,yi) = 1

πσ 2
⊥

exp

[
− (x − xi)2 − (y − yi)2

σ 2
⊥

]
, (28)

and

fηs
(ηs ; ηs,i) = 1√

πσηs

exp

[
− (ηs − ηs,i)2

σ 2
ηs

]
, (29)

with σ⊥ = 0.5 fm and σηs
= 0.2 as the size of the hot spot for

a source at (xi,yi,ηs,i).
In this work we consider net-baryon charge, but below de-

scription could also be extended to other conserved quantities.
To get the source term for the conserved charge density ρsource,
we first consider the charge number current,

N
μ
Q(xα) =

∑
i∈{participants}

Qi

P
μ
i

P τ
i

fsmear
(
xα,xα

i

)
, (30)

where P μ is the momentum of the baryon charge. Here the
index i sums over all the participants in the collision. Qi stands
for the quantum charge of participant i. The source term ρsource

in one fluid cell can be computed as

ρsource(xα) = uflow
μ N

μ
Q(xα)

=
∑

i∈{participants}
Qi

uflow
μ P

μ
i

P τ
i

fsmear
(
xα,xα

i

)
. (31)

The energy density distribution, obtained from the sum over
all strings should exhibit a plateau in the ηs direction. Because
in the hydrodynamic simulation, we propagate the system in

proper time τ , we need to include the Jacobian in the Gaussian
profile to take into account the difference in dτ and dηs when
we integrate over the positions of all Gaussians,

plateau =
∫ ηmax

ηmin

dηGe−(η−ηG)2/σ 2
η

=
∫

dτ
dηG

dτ
e−(η−ηG)2/σ 2

η , (32)

with

dηG

dτ
= ± 1

τ

τ 2 − τ 2
0 + �τ 2√(

τ 2 + τ 2
0 − �τ 2

)2 − 4τ 2τ 2
0

, (33)

where dηG/dτ > 0 for ηs > ηs,0 and dηG/dτ < 0 for
ηs < ηs,0.

III. INITIALIZATION OF HYDRODYNAMIC FIELDS
WITH SOURCE TERMS

The hydrodynamic equations with source terms [33,34] can
be written as

∂μT μν = J ν
source, (34)

and

∂μJμ = ρsource. (35)

To understand the effect of the energy momentum source
current, we can consider the ideal part of the hydrodynamic
equations in the local rest frame. By projecting Eq. (34) with
uμ and �μν , we have

De = −(e + P )θ + uνJ
ν
source, (36)

and

Duμ = ∇μP + �μνJν, source

e + P
, (37)

where D = uμ∂μ and θ = ∂μuμ. The component of J ν
source

that is parallel to uν in Eq. (36) feeds energy to the local
hydrodynamic medium. We denote it as δe = uνJ

ν
source. In

Eq. (37), the orthogonal component of J ν
source acts as an

acceleration force on the fluid cell. We denote the acceleration
vector as

δuμ = �μνJsource ,ν

e + P
. (38)

So the energy momentum source vector can be decomposed as

Jμ
source = δeuμ + (e + P )δuμ. (39)

The charge current conservation equation Eq. (35) can be
written as

Dρ = −ρθ + ρsource. (40)

The ρsource is understood as a source term that contributes to
the local conserved charges. In general, the velocity of the
baryon charge may not be exactly equal to the flow velocity of
the medium. In this case, the conserved charge current N

μ
Q in

Eq. (30) contributes to a charge diffusion current,

q
μ
Q = �μνNQ,ν. (41)
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The size of the diffusion current can be quantified using the
inverse Reynolds number for the diffusion current,

R−1
q =

√
−qQ,μq

μ
Q

ρ2
source

=
√√√√1 − NQ,μN

μ
Q(

uμN
μ
Q

)2 . (42)

With N
μ
Q in Eq. (30), we find 0 � R−1

q � 1.

IV. RESULTS

In this section we present results from four variations of
the initial-state model introduced above. They differ by the
choice of participants (nucleons or constituent quarks) and by
whether we decelerate participants for a constant proper time
�τ or a deceleration time that fluctuates together with the
rapidity loss. The valence quarks’ x values are sampled from
the CT10NNLO PDFs [35]. For Au and Pb nuclei, nuclear
many-body effects are included by using the EPS09 nuclear
PDF [36].

A. Baryon stopping

Figure 7 shows the comparison of the space-time rapidity
distribution of the net-baryon number from the four initial-
state models at two collision energies. The peak positions

FIG. 7. The space-time rapidity distributions of charged hadrons
and net-baryon numbers from the four initial conditions for 0%–5%
Au+Au collisions at 200 GeV (a) and 19.6 GeV (b).

of the net-baryon distributions are approximately the same
in all four models. The largest differences are visible around
midrapidity. The model using nucleon degrees of freedom and
a constant deceleration time results in the smallest, almost zero,
baryon density at midrapidity for both energies. This is easy
to understand, because the incoming nucleons are all assigned
the same beam rapidity and the constant deceleration time cor-
responds to a constant rapidity loss for every binary collision
that produced a string. Because there are very few nucleons
connected with multiple strings with our numerical method
described in the appendix, the model for nucleons decelerated
with a constant �τ = 0.5 fm predominantly produces a shift
of the initial peaks around the beam rapidity, which for the
considered energies is not large enough to move baryons to
midrapidity.

Incorporating fluctuations of the outgoing rapidities in-
spired by the LEXUS model in Eq. (17) allows for a large
rapidity loss in a single collision. Hence there is a finite
probability for a nucleon to be stopped near midrapidity.

When considering valence quark degrees of freedom, addi-
tional rapidity fluctuations appear because their x values are
sampled from the PDF. In addition, this leads to shifts towards
smaller rapidities and quark participants are more likely to be
stopped at midrapidity. Finally, the valence quark model with
additional rapidity fluctuations includes both effects mentioned
above. Consequently it produces the highest baryon density
around midrapidity.

We note that including a string breaking mechanism in the
model will likely modify the baryon density distribution along
the string. This is because the formation of baryons away
from the original string ends would be possible. It will be
interesting to study the effect on average baryon production
and its fluctuations.

Our model simulates the space-time evolution of the par-
ticipant nucleons or quarks dynamically assuming decelera-
tion caused by a constant string tension. Consequently, the
resulting momentum rapidities of the baryons are not equal
to their space-time rapidities. Figure 8 shows the correlation
between the net-baryon momentum space rapidities y with
their space-time rapidities ηs after the deceleration dynamics.
At forward rapidities, the net-baryon rapidities y are typically
approximately 1–2 units larger than their space-time rapidities
ηs . This can be understood because the deceleration time is
finite (also see Fig. 3) and the binary collision points are not at
the origin of the collision system t = 0,z = 0.

To present first comparisons to experimental measurements
we initialize hybrid (ideal hydrodynamics4 [37] + hadronic
cascade [13,14]) simulations using source terms obtained from
the four variants of our initial-state model. Figure 9 compares
the shape of the net proton rapidity distribution among the four
initial-state models for 0%–5% Pb+Pb collisions at the top SPS
energy [38]. The hybrid model evolves the system’s energy and
net-baryon density distributions that are dynamically injected
by the source terms discussed in Secs. II E and III until freeze-
out.

4The numerical code is publicly available at http://www.
physics.mcgill.ca/music.
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FIG. 8. Contour plots for the correlation of the net-baryon rapidity
in momentum space to its space-time rapidity ηs from the valence
quark + rapidity loss fluctuation model for 0%–5% Au+Au collisions
at 200 GeV (a) and 19.6 GeV (b).

The net proton rapidity distribution maintains a similar
shape as the initial net-baryon distribution shown in Fig. 7. The
nucleon model with a constant deceleration time produces the
smallest number of net protons in the midrapidity region after
the dynamical evolution. Additional fluctuations, included by
using quark degrees of freedom or fluctuations of the final
rapidities, allow more baryons to be transported from the
forward to central rapidities and lead to larger net-proton
numbers around midrapidity. For the used string tension σ =
1 GeV/fm, the valence quark + final rapidity fluctuations
model provides a reasonable description of the experimental
data [38], while other models underestimate the net proton
yield at y = 0.

Figure 10 further studies the charged hadron dN ch/dη and
net proton dNp−p̄/dy at different collision energies using the
valence quark + final rapidity fluctuation model. At every
collision energy, we adjust an overall normalization factor

FIG. 9. The rapidity distribution of net protons from the four
different initial-state models coupled with hydrodynamics + hadronic
cascade simulations in central Pb+Pb collisions at the top SPS
energy [38].

for the system’s total entropy such that the measured charged
hadron multiplicity is reproduced. This amounts to modeling
the energy dependence of particle production. We found that
this normalization factor is the same from

√
sNN = 62.4 GeV

to
√

sNN = 19.6 GeV. But it is about 25% larger at the

FIG. 10. The rapidity distributions of charged hadrons (a) and
net protons (b) at four different collision energies from our hybrid
simulations with the model using valence quarks + rapidity loss
fluctuations.
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top 200 GeV. The shape of the charged hadron pseudora-
pidity distribution dN ch/dη is reasonably predicted by the
valence quark + final rapidity fluctuation model. The dN ch/dη
is slightly wider compared to the RHIC measurements at
200 GeV [39]. For the net proton rapidity distribution, a
reasonable agreement with experimental data is found for
Au+Au collisions at

√
sNN = 5 GeV [40–42] and Pb+Pb

collisions at
√

sNN = 17.3 GeV [38]. The net proton yield
is underestimated in the central rapidity region at the higher
RHIC energies [43]. Considering finite net-baryon diffusion
effects in the hydrodynamic simulations will likely improve
the agreement with experimental data [29].

B. Longitudinal fluctuations

The degree of longitudinal fluctuations can be quantified
by studying two-particle multiplicity rapidity correlations [44]
and the event-plane decorrelation ratio rn as a function of
rapidity [45,46].

The two-particle rapidity multiplicity correlation function
is defined as [47]

C(η1,η2) =
〈
dN
dη

(η1) dN
dη

(η2)
〉

〈
dN
dη

(η1)
〉〈

dN
dη

(η2)
〉 , (43)

and the corresponding normalized multiplicity correlation
function is

CN (η1,η2) = C(η1,η2)

Cρ(η1)Cρ(η2)
, (44)

where the denominator Cρ(η1) = 1
2Y

∫ Y

−Y
C(η1,η2)dη2 is the

marginal distribution. The analyzed rapidity window is chosen
to be from −Y to Y . The normalized multiplicity correla-
tion function can be expanded into a Legendre series with
coefficients,

an,m =
∫

dη1

Y

dη2

Y
CN (η1,η2)

Tn(η1)Tm(η2) + Tn(η2)Tm(η1)

2
,

(45)

where Tn(η) =
√

n + 1
2Pn( η

Y
) and Pn(x) are the standard Leg-

endre polynomials.
In Fig. 11, we present the first Legendre coefficient in the

series, a1,1, for initial energy and net-baryon profiles. The coef-
ficient a1,1 is the least affected by short-range correlations [44]
and is only a little affected by the late stage hydrodynamical
evolution [16].

We find that the a1,1 coefficient of the system’s initial
energy density decreases as a function of collision energy.
This is because the produced strings stretch over a longer
range in rapidity for higher collision energies, which reduces
longitudinal fluctuations in the midrapidity region. In contrast,
the collision energy dependence of a1,1 for the initial net-
baryon density is opposite. This is because there are fewer net
baryons in the midrapidity region for higher collision energies,
which increases the fluctuations.

The model that contains both initial valence quarks and
rapidity loss fluctuations produces a larger a1,1 coefficient
for the energy density distribution. The collision-by-collision
rapidity loss fluctuation introduces additional fluctuations to

FIG. 11. The longitudinal fluctuation coefficients {a1,1} for initial
energy (a) and net-baryon number (b) density profiles as functions of
collision energy in 0%–5% Au+Au collisions. The rapidity window
is chosen to be |y| < 0.72 to be consistent with the current STAR
measurements.

particle production along the longitudinal direction. For the
net-baryon density, the valence quarks + final rapidity fluc-
tuation model transports more net baryons to the midrapidity
region and hence reduces the net-baryon density fluctuation. In
this case, the a1,1 coefficient is smaller compared to the model
with valence quarks and fixed rapidity loss.

The longitudinal fluctuation can also be constrained
by studying the event-plane rapidity decorrelation ratio rn

defined as

rn(ηa,ηb) = 〈�{En(−ηa) · E∗
n (ηb)}〉ev

〈�{En(ηa) · E∗
n (ηb)}〉ev

. (46)

Here the ratio rn captures the decorrelation of the initial
eccentricity of the energy density profile between ηa and −ηa .
The reference (space-time) rapidity is chosen to be ηb = 2.

In Fig. 12, we compare the initial eccentricity rn ratio for the
four initial-state models. The nucleon + constant deceleration
model gives the smallest event-plane decorrelation. The fluc-
tuation introduced by sampling the valence quarks’ rapidities
results in a larger decorrelation. Allowing for a fluctuating
rapidity loss introduces extra fluctuations that further reduce
the event-plane correlation at large η difference. We find that
the fluctuations of the rapidity loss have a larger effect than the
valence quark sampling in these rn observables.
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FIG. 12. The participant plane decorrelation coefficients
r2,3(ηa,ηb = 2.0) in 0%–5% Au+Au collisions at 200 GeV for
four different models.

In Fig. 13, we study the collision energy dependence of
the rn ratio at various RHIC BES energies. The decorrelation
effect becomes stronger at lower collision energy, which is
driven predominantly by the reduction of Ybeam with decreasing
collision energy. To remove this effect we can study rn as a
function of the scaled variable η̃a = ηa/Ybeam. We find that the
decorrelation is still stronger at lower collision energy in our
models, even after such a scaling.

C. Moments of the net proton distribution

Longitudinal fluctuations in the initial-state models can lead
to nontrivial net-baryon number fluctuations within a certain
rapidity interval. In this section, we study the moments of
the decelerated proton distribution in our models. Because
only protons are measured in the experiments, we converted
the decelerated baryons to protons by randomly assigning the
proton or neutron identification to the nucleons in our model.
In every 197

79 Au + 197
79 Au collision, we require the total proton

number to be 158 and total neutron number to be 236. This
identification procedure introduces additional fluctuations but
does not overwhelm the initial-state fluctuations. Here we
study the moments of the decelerated proton distributions up to√

s = 27 GeV. At these low collision energies, the decelerated
proton yield dominates over the produced proton antiproton
pairs and is a good proxy for the total proton yield.

FIG. 13. The participant plane decorrelation coefficients
r2,3(ηa,ηb = 2.0) in 0%–5% Au+Au collisions at different collision
energies.

The central moments of the decelerated proton distribution
can be computed as

C1 = 〈N〉 = M, (47)

C2 = 〈(�N )2〉 = σ 2, (48)

C3 = 〈(�N )3〉 = Sσ 3, (49)

C4 = 〈(�N )4〉 − 3C2
2 = κσ 4. (50)

To reduce finite volume effects, one usually computes ratios
of these moments,

σ 2

M
= C2

C1
, Sσ = C3

C2
, κσ 2 = C4

C2
. (51)

The Poisson limit of these ratios are 1. Here we study these
fluctuation moments in 0%–5% central Au+Au collisions.
Centrality is determined by the number of participants.

Figure 14 shows the ratios of decelerated proton moments
defined in Eq. (51) as a function of collision energy using
the valence quark + rapidity loss fluctuation model. With a
small rapidity window |y| < 0.5, these ratios increase with
the collision energy and approach the Poisson limit at high
collision energy. This is because fewer and fewer baryons
are decelerated to the midrapidity region when the energy
increases. As the rapidity acceptance increases, more baryons
are included in the analysis and the ratios of proton fluctuation
moments decrease and deviate away from the Poisson limit. In
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FIG. 14. The ratios of proton fluctuation moments, C2/C1 =
σ 2/M , C3/C2 = Sσ , C4/C2 = κσ 2, as functions of the collision
energy from the valence quark + rapidity loss fluctuation model.
Their dependence on the rapidity cut window are shown.

the y → ∞ limit, these ratios approach those of the fluctuation
moments of the number of participants Npart in the simulation.
Interestingly, we find negative skewness and kurtosis of the
Npart distribution in our models.

Figure 15 compares the moments of decelerated protons
among the four initial-state models within a same rapidity
window. The nucleon + rapidity loss fluctuation model gives
the largest ratios. The ratios are larger than the Poisson limit
for

√
s � 11.5 GeV. We checked that their values approach

the Poisson result in the high energy limit. Compared to the
nucleon with the constant time deceleration case, the additional
fluctuations lead to an increase of all the central moments
Cn of the net proton distribution. The increase is larger for
higher order of n. In contrast, the models using valence quark
participants produce less fluctuations near the midrapidity
region. In this case all the moment ratios are smaller than the
Poisson limit and rapidity loss fluctuations do not modify the
moments of the stopped protons.

Independent of the details of the model, we find that initial-
state fluctuations of the proton number within a given rapidity
window by themselves generate large cumulant ratios. If one
were to fold our result with another Poisson distribution, which
is similar to what would occur in the grand-canonical picture,
where after hydrodynamic evolution Poisson distributions are
sampled for a given freeze-out temperature and baryon chem-
ical potential [48], then the cumulant ratios would increase by
1. That would lead to an overestimation of the experimental
data [1] for most studied energies.

FIG. 15. Same as Fig. 14 but for comparison among different
models at the same rapidity window, |y| < 0.5.

V. CONCLUSIONS AND OUTLOOK

Heavy-ion collisions with center-of-mass energies as re-
alized in the RHIC beam energy scan or the NA61/SHINE
program have a complex early time behavior, owing to the
fact that the colliding nuclei have a finite extend in the beam
direction. Furthermore, the assumption of boost invariance is
not valid for most of the BES energies, and the net-baryon
density can reach values much greater than at top RHIC
energies, where it is usually ignored.

All these complications demand the development of a
sophisticated initial-state model to complement state-of-the-art
hydrodynamic simulations. In this work we have presented
a three-dimensional dynamical initial-state model that inte-
grates with 3+1D hydrodynamic simulations. This model
addresses all issues mentioned above: It provides fluctuating
three-dimensional distributions of both energy and net-baryon
density, which dynamically enter the hydrodynamic simulation
via source terms.

The model is based on the formation of strings between
(nucleon or quark) participants and the gradual deceleration of
the string ends. After a certain time the strings are assumed
to thermalize and become part of the hydrodynamic medium,
leading to complex structures of energy (and baryon) deposi-
tion in space time.

Various sources of fluctuations are present in this initial-
state description. First we have the usual fluctuations of
nucleon positions in the incoming nuclei. When using quark
degrees of freedom, the quarks’ positions in the nucleon also
fluctuate. This leads to the usual fluctuations in the transverse
plane of the collision, but fluctuations in the longitudinal
coordinate of participating nucleons also generate longitudinal
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fluctuations. Additional fluctuations in the longitudinal struc-
ture occur in the quark-based model because of fluctuations in
the momentum fraction x of the participating quarks. Finally,
we allow for random fluctuations of the amount of rapidity lost
by each participant similar to the LEXUS model.

Apart from presenting average quantities such as the initial
(and final) distributions of net baryons (protons), we concen-
trate on measures of fluctuations and how various realizations
of our initial-state model affect them. We presented Legendre
coefficients of net-baryon and energy density rapidity fluctu-
ations, measures of decorrelations of the transverse geometry
with rapidity, and cumulant ratios for net proton distributions
obtained directly from the initial state.

We find significant sensitivity to the details of the initial-
state model for all of these fluctuation measures. We conclude
that a certain subset of experimental observables will have to be
used to constrain model parameters, so that the effect of initial-
state fluctuations can be estimated reliably in the experimental
program aimed at revealing critical fluctuations.

In particular we find significant contributions to the cu-
mulants of net-proton distributions solely from the initial
state—these will have to be folded with additional fluctuations
potentially occurring during the hydrodynamic evolution and
at freeze-out. Full scale event-by-event viscous hydrodynamic
simulations using the presented initial states will then allow
for direct comparison with experimental data and hopefully
provide insight into whether critical behavior is present on top
of the background provided by our model.
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APPENDIX: ALGORITHM FOR STRING GENERATION

We assume that strings are produced between all colliding
nucleons. To reduce multiple strings overlapping with each
other, we want to reduce the number of strings that connect to
the same colliding nucleon. This can be achieved by adopting
the following algorithm. We introduce a cost function for the
production probability of a string from a given binary collision,

f (Nconn) = exp(−FasyNconn). (A1)

Here Nconn is the total number of connections already attached
to the colliding nucleons. The probability of generating one
new string is exponentially suppressed with Nconn. To increase
the numerical efficiency in asymmetric collisions, we introduce
an asymmetry factor Fasy defined as

Fasy = 1

max{NA,NB}
NANB

NA + NB

, (A2)

where NA and NB are the atomic numbers of the two col-
liding nuclei. For symmetric collision systems Fasy = 1/2,
but for asymmetric systems such as p+A collisions, Fasy =
1/(1 + NA) � 1/2. This asymmetry factor Fasy allows a high
acceptance probability for a p+A collision when Nconn is large.
We apply this algorithm when looping over the binary collision
list until all the colliding nucleons are connected with at least
one string. Once all string production points are determined,
they are sorted according their production time.

When valence quarks are used for the string ends, a similar
cost function f (Nq

conn) = exp(−N
q
conn) is applied to sample the

colliding valence quark pair for the binary collision.
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