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Influence of the asymmetry parameter and dissipation coefficient of the K coordinate on different
aspects of fission of excited compound nuclei
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The dynamics of fission of the excited compound nuclei 256Fm, 215Fr, 187Ir, 172Yb, 162Yb, and 142Ce produced in
fusion reactions with 158.8 MeV 18O has been studied by solving three- and four-dimensional Langevin equations
with dissipation generated through the chaos weighted wall and window friction formula. The constant dissipation
coefficients of K , γK = 0.077 (MeV zs)−1/2, γK = 0.2 (MeV zs)−1/2 and a nonconstant dissipation coefficient of
K have been used to reproduce the experimental data for both symmetric and asymmetric splitting of the fissioning
systems. The average kinetic energies of fission fragments, the pre-scission neutron multiplicities, the fission time,
and the variances of the mass and kinetic energy of fission fragments are calculated for the excited compound
nuclei 256Fm, 215Fr, 187Ir, 172Yb, 162Yb, 142Ce, and results of the calculations are compared with each other and
with the experimental data. Comparison of the theoretical results with the experimental data calculated by using
different values of γK shows that the difference is small between the results of calculations for symmetric and
asymmetric simulations of the fission process of excited intermediate nuclei, whereas for heavy compound nuclei
the difference is slightly high. In other words, the effect of the asymmetry parameter on the fission process of
intermediate nuclei is smaller than the effect on heavy nuclei. Furthermore, we show that the pre-scission neutron
multiplicity decreases rapidly with increasing fragment asymmetry.
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I. INTRODUCTION

The characteristics of fission of excited nuclei produced in
heavy-ion fusion reactions have been studied extensively both
theoretically and experimentally over the years. Statistical and
dynamical descriptions of the fission process are often used
to explain different fission characteristics (see, for example,
Refs. [1–20]). Many researchers searching to describe the
different features of the fission process of excited compound
nuclei assumed that compound nuclei have zero spin about
the symmetry axis, whereas this assumption is not consistent
with statistical models and with dynamical treatment of the
orientation degree of freedom, as pointed out by Lestone
[21]. The authors of Ref. [22] also stress that a large volume
of heavy-ion-induced-fission data needs to be reanalyzed by
applying a dynamical treatment of the orientation degree of
freedom. The dynamical models based on the multidimen-
sional Langevin equations have been extensively and rather
successfully used to solve many problems of collective nu-
clear dynamics in heavy-ion fusion-fission reactions. Recently,
four-dimensional (4D) Langevin equations with a constant
dissipation coefficient for the orientation degree of freedom
(the K coordinate) have been used to calculate different aspects
of fusion-fission reactions [23–25]. In our previous paper [20],
we also used the 4D dynamical model based on the Langevin
equations to calculate the evaporation residue cross section,
the anisotropy the angular distribution of fission fragments,
the fission probability, the mass-energy distribution of fission
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fragments, and the average pre-scission neutron multiplicity
for the compound nucleus 210Rn in a wide range of excitation
energy. In our calculations [20], we considered the dissipation
coefficient of K as a free parameter and its magnitude is
inferred by fitting measured data on the evaporation residue
cross section and the anisotropy of the angular distribution of
fission fragments.

In the present investigation, we use the four-dimensional
(4D) and three-dimensional (3D) dynamical models based on
Langevin equations to calculate a number of other fission
features of the excited nuclei in a wide range of mass number.
In our calculations, we use the constant and non-constant
dissipation coefficients of K to reproduce the experimental
data in the fission process of the excited compound nuclei
256Fm, 215Fr, 187Ir, 172Yb, 162Yb, and 142Ce produced in
fusion reactions with 158.8 MeV 18O. In the 4D dynamical
model, we use three collective-shape coordinates (c,h,α) plus
the projection of total spin of the compound nucleus on the
symmetry axis K and in the 3D dynamical model we use two
collective-shape coordinates (c,h,α = 0) plus the projection
of total spin of the compound nucleus on the symmetry axis.
Furthermore, in the 4D and 3D dynamical models, we use
the chaos weighted wall and window friction formula to
reproduce the average kinetic energies of fission fragments,
the pre-scission neutron multiplicities, the fission time, and the
variances of the mass and kinetic energy of fission fragments
for the excited compound nuclei 256Fm, 215Fr, 187Ir 172Yb,
162Yb, and 142Ce.

The main purpose of this research is to investigate how
the asymmetry parameter and dissipation coefficient of the K
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coordinate influences different aspects of fission of excited
compound nuclei over a wide range of mass number.

The present paper is arranged as follows: In Sec. II, we
describe the models and basic equations. The results of the
calculations are presented in Sec. III. Finally, the concluding
remarks are given in Sec. IV.

II. DESCRIPTION OF MODEL

We use a stochastic approach based on multidimen-
sional Langevin equations to treat the symmetry and

asymmetric fission process of some compound nuclei produced
in fusion reactions. In our calculations, we use the 3D Langevin
dynamical model developed in Refs. [26–28] by adding the ori-
entation degree of freedom (K coordinate) to three collective
coordinates q = (q1,q2,q3) = (c,h,α) [29]. The parameter c
is the half length of the nucleus, h describes a variation in
thickness of the neck for a given elongation of the nucleus,
and α is the asymmetry parameter. In the stochastic approach
the evolution of the collective coordinates can be treated as the
motion of a Brownian particle placed in a viscous heat bath
[30,31]. The coupled Langevin equations for describing the dy-
namics of the collective coordinates have the following form:
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where mij (‖μij‖ = ‖mij‖−1) is the tensor of inertia, qi and pi are the collective coordinates and their conjugate momenta, γij is
the friction tensor, θij ξj is a random force, θij is its amplitude, and ξj is a random variable that possesses the following statistical
properties: 〈ξi〉 = 0 and 〈ξi(t1)ξj (t2)〉 = 2δij δ(t1 − t2). The superscript n in Eq. (1) shows that the corresponding quantity is
calculated at the instant tn = nτ , where τ is the integration time step of the Langevin equations. Qi is a conservative force and
can be given by the Helmholtz free energy

Qi(q,I,K) = −
(

∂F

∂qi

)
T

. (2)

The Helmholtz free energy can be determined in terms of the potential energy and level density parameter as follows:

F (q,I,K) = V (q,I,K) − a(q)T 2. (3)

From Eqs. (2) and (3), it follows that the conservation force in the Fermi gas model has the form

Qi(q,I,K) = −∂V (q,I,K)

∂qi

+ ∂a(q)

∂qi

T 2, (4)

where the deformation dependence of the level-density parameter can be obtained as [32]

a(q) = 0.073A + 0.095A2/3BS(q). (5)

where A and BS(q) are mass number and surface energy of the compound nucleus, respectively. During a random walk along the
Langevin trajectory, conservation of energy is satisfied by

E∗ = Eint(t) + Ecoll(q, p) + V (q,I,K) + Eevap(t), (6)

where E∗ is the total excitation energy of the compound nucleus, Eint is the intrinsic excitation energy of the nucleus, Ecoll =
0.5μij (q)pipj is the kinetic energy of the collective motion of the nucleus, V (q,I,K) is the potential energy, Eevap(t) is the energy
carried away by evaporated particles by time t . In cylindrical coordinates, the surface of the nucleus is given by

ρ2
S(z) =

{
(c2 − z2)(As + Bz2/c2 + az/c), B � 0
(c2 − z2)[As + αz/c)exp(Bcz2)], B < 0

, (7)

where ρS is the polar radius and z is the coordinate along the symmetry axis of the nucleus. The coefficients B and As in Eq. (7)
can be expressed in terms of the nuclear shape parameters c,h, and α as follows:

B = 2h + c − 1

2
, (8)

As =
{

c−3 − B
5 , B � 0

− 4
3

B

exp(Bc3)+(1+ 1
2Bc3 )

√−πBc3erf(
√−Bc3)

, B < 0, (9)

where erf(x) is the error function.
The friction tensor is calculated by the chaos weighted wall and window friction formula. For small elongation before neck

formation, the chaos weighted wall formula is used to calculate the friction tensor and, after neck formation used the chaos

024614-2



INFLUENCE OF THE ASYMMETRY PARAMETER AND … PHYSICAL REVIEW C 97, 024614 (2018)

weighted wall and window friction formula [33] as follows

γij =
{
μ(q)γ wall

ij for nuclear shapes featuring no neck
μ(q)γ wall

ij + γ win
ij for nuclear shapes featuring a neck

. (10)

The chaoticity μ is a measure of chaos in the single particle motion and depends on the shape of the nucleus. The magnitude of
the chaoticity μ changes from 0 to 1 as the nucleus evolves from spherical to a deformed shape. γ wall

ij and γ win
ij can be determined

as in Refs. [33,34]. For nuclear shapes featuring no neck,
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and for nuclear shapes featuring a neck,
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where zmin and zmax are the left and right ends of the nuclear
shape, zN is the position of the neck plane that divides the
nucleus into two parts, ρS is the radial coordinate of the nuclear
surface, D1 and D2 are the positions of the mass centers of the
two parts of the fissioning system relative to the center of mass
of the whole system, ρm is the mass density of the nucleus, v̄ is
the average nucleon speed inside the nucleus, R is the distance
between the centers of mass of future fragments, and �σ is an
area of the window between two parts of the system. The inertia
tensor is calculated in the Werner–Wheeler approximation for
the incompressible and irrotational flow [35]. The rotational
part of the potential energy is calculated by

Erot(q,I,K) = h̄2K2

2J||(q)
+ h̄2[I (I + 1) − K2]

2J⊥(q)

= h̄2I (I + 1)

2J⊥(q)
+ h̄2K2

2Jeff (q)
, (14)

where I is the spin of a compound nucleus and K is the
projection of I on the symmetry axis of the nucleus. J|| is
the rigid body moment of inertia of the nucleus parallel to its
symmetry axis, while J⊥ is the rigid body moment of inertia
perpendicular to the symmetry axis. The rigid body moments
of inertia about and perpendicular to the symmetry axis can
be determined as in Ref. [36]. Jeff is the effective moment of
inertia. The inverse of the effective moment of inertia can be
determined by J−1

eff = J−1
|| − J−1

⊥ .
In our calculations, we consider the evolution of the K

collective coordinate by using the Langevin equation for
overdamped motion as in Ref. [22]:

K (n+1) = K (n) − γ 2
KI 2

2

∂Erot

∂K
τ + γKIξ (t)

√
T τ, (15)

where γK is a parameter controlling the coupling between the
orientation degree of freedom K and the heat bath, ξ (t) is a
random number from a normal distribution with unit variance,

and T is the heat bath temperature. The authors of Refs. [22,37]
showed that, in the case of a dinucleus, γK can be obtained as

γK = 1

RRN

√
2π3n0

√
JR|Jeff |J||

J 3
⊥

, (16)

where n0 = 0.0263 MeV zs fm−4 is the bulk flux in the stan-
dard nuclear matter [38], RN is the neck radius, R is the
distance between the centers of mass of the nascent fragments
and JR = M0R

2/4 for a reflection symmetric shape. For the
case of mononuclear shapes without a neck, the results of
Eq. (16) can be extrapolated as in Ref. [1]. Figure 1 shows
the dissipation coefficient of K as a function of the collective
coordinate q1 for the compound nucleus 215Fr. It should be
mentioned that the constant parameter γK is usually used in
dynamical investigations of the K coordinate time evolution.
The value γK = 0.077 (MeV zs)−1/2 was found reasonable.
The magnitude of this parameter was estimated by reproducing
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FIG. 1. The dissipation coefficient of K as a function of the
collective coordinate q1 for the compound nucleus 215Fr. The dotted
line corresponds to γK = 0.077 (MeV zs)−1/2.

024614-3



H. ESLAMIZADEH AND N. ABDOLLAHI PHYSICAL REVIEW C 97, 024614 (2018)

0.4 0.8 1.2 1.6 2 2.4

-30

-15

0

15

30

45
F 

(M
eV

)

I=50, K=50
I=50, K=40
I=50, K=30
I=50, K=20
I=50, K=0
I=0,   K=0

256Fm, T=2MeV

0.4 0.8 1.2 1.6 2 2.4
q1

-30

-15

0

15

30

45

F 
(M

eV
)

I=50, K=50
I=50, K=40
I=50, K=30
I=50, K=20
I=50, K=0
I=0,   K=0

215Fr, T=2MeV

(a)

(b)

FIG. 2. The Helmholtz free energy for the compound nuclei
(a) 256Fm and (b) 215Fr as a function of the collective coordinate q1

and for different combinations of I and K values at T = 2 MeV.

experimental data on angular distributions of fission fragments
[39].

The potential energy is calculated on the basis of the liquid
drop model with a finite range of nuclear forces [40] using the
parameters from Ref. [41],

V (q,I,K) = [BS(q) − 1]E0
S(A,Z)

+ [BC(q) − 1]E0
C(A,Z) + Erot(q,I,K), (17)

where BS(q) and BC(q) are surface- and Coulomb-energy
terms, respectively. BS(q) and BC(q) can be calculated as in
Ref. [40]. E0

S and E0
C are the surface and Coulomb energies

of a spherical nucleus, respectively. In Figs. 2 and 3 we com-
pare the Helmholtz free energy calculated for the compound
nuclei 256Fm, 215Fr, and 187Ir as a function of the collective
coordinate q1 and for different combinations of I and K
values at T = 2 MeV. It is clear from Figs. 2 and 3 that, for a
given value of spin, the height of the potential-energy surface
increases with increasing K . Such an increase of the fission
barrier will increase the fission time and consequently increase
the number of evaporated pre-scission particles. It can also
be seen from Figs. 2 and 3 that the inclusion of the K coordinate
not only changes the fission barrier height but also affects the
saddle-point configuration. It is clear from Figs. 2 and 3 that the
distance between the ground state and saddle point decreases
with increasing mass number of nuclei. Furthermore, it can
be seen from Fig. 3 that the inclusion of the K coordinate in
the calculation of the potential energy shifts the saddle point
toward the scission point.

FIG. 3. The Helmholtz free energy for the compound nuclei
(a) 256Fm, (b) 215Fr, and (c) 187Ir as a function of the collective
coordinates q1 and K at T = 2 MeV and I = 50h̄. The numbers at
the contour lines represent the Helmholtz free energy values in MeV.

In our calculations, we start modeling fission dynamics from
the ground state with the excitation energy E∗ of the compound
nucleus. The initial conditions in the ground state can be chosen
by the Neumann method with the generating function


(q0, p0,I,t = 0)

∝ exp

[
−V (q0) + Ecoll(q0, p0)

T

]
δ(q − q0)F (I ), (18)

where F (I ) is the spin distribution for heavy-ion complete
fusion, which is expressed as

F (I ) = 2π

k2

2I + 1

1 + exp
(

I−Ic
δI

) , (19)
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where k is the wave number, δI is the diffuseness, and Ic is the critical spin. The parameters δI and Ic can be approximated by
the relations [42]

δI =
{

(APAT)3/2 × 10−5[1.5 + 0.02(Ec.m . − VC − 10)] for Ec.m. > VC + 10
(APAT)3/2 × 10−5[1.5 − 0.04(Ec.m. − VC − 10)] for Ec.m. < VC + 10,

(20)

and

Ic =
√

APAT/ACN
(
A

1/3
P + A

1/3
T

)
(0.33 + 0.205

√
Ec.m. − VC), (21)

when 0 < Ec.m. − VC < 120 MeV; and when Ec.m. − VC >
120 MeV the term in the final brackets is set equal to 2.5.
In Eqs. (20) and (21) AT, AP, and ACN represent the mass of
the target, projectile and the compound nucleus, respectively.
VC is the Coulomb barrier. The initial spin for each Langevin
trajectory is sampled from the above spin distribution function.
Figure 4 shows the calculated results of the spin distribution
F (I ) for the compound nuclei 256Fm, 215Fr, 187Ir, 172Yb, and
142Ce as a function of spin at Elab = 158.8 MeV. It can be seen
from Fig. 4 that, at a given energy of the projectile, the heavier
compound nucleus formed with a larger spin.

It should be mentioned that the initial K value can be
generated by using the Monte Carlo method from the uniform
distribution in the interval (−I , I ). In the present calculations,
we neglect the spins of the projectile and target nuclei and
assume that the spin of the compound nucleus is approximately
equal to the orbital angular momentum. In the simulation of
the fission process of the excited nuclei, the evaporation of
pre-scission light particles along the Langevin trajectory can
be taken into account by using a Monte Carlo simulation
technique. The decay widths for emission n, p, α, and γ can be
calculated at each Langevin time step τ as in Refs. [43,44]. The
decay widths for emission n, p and α particle can be calculated
by the following relation [43]:

�v = (2sv + 1)
mv

π2h̄2ρcomp(Eint)

×
∫ Eint−Bv

0
dεvρres(Eint − Bv − εv)εvσinv(εv), (22)
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FIG. 4. The spin distribution F (I ) for the compound nuclei
256Fm, 215Fr, 187Ir, 172Yb, and 142Ce as a function of spin at Elab =
158.8 MeV.

where σinv is the inverse cross section [43], ρres(Eint − Bv −
εv) and ρcomp(Eint) are the level densities of the residual and
compound nuclei, and Bv and εv are the separation energy and
kinetic energy of the evaporated particle v, respectively. sv is
the spin of the emitted particle v and mv is its reduced mass
with respect to the residual nucleus. The width of the gamma
emission is calculated as in Ref. [44]. The loss of spin is taken
into account by assuming that each neutron, proton, or γ quanta
carries away 1h̄ while the α particle carries away 2h̄. It should
be stressed that the level density is a key physical quantity in the
calculations, because it comes in all the disintegration widths.
In the calculations of the level density, we take into account
the paring corrections, collective vibrations, and rotation in the
nuclei as in Ref. [45].

In the simulation of the evolution of a fissile nucleus, a
Langevin trajectory either reaches the scission surface and
counts as a fission event or, if the excitation energy for a
trajectory which is still inside the saddle reaches the value
Eint + Ecoll < min(Bn,Bf ), the event is counted as an evapo-
ration residue (Bn is the binding energy of neutron and Bf is the
fission-barrier height). In our calculations, we obtain average
values of the pre-scission particle multiplicity by using the
following relation:

〈M〉 =
∑I=Ic

I=0

∑α=αf
α=0 〈M〉Iα(2I + 1)PI∑
I,α (2I + 1)PI

, (23)

where PI is the probability of a particle crossing the fission
barrier. This can be determined by the ratio of number of the
trajectories crossing the barrier for given α, I and the total
number of trajectories chosen. Ic and αf are the critical spin
and maximum asymmetry parameter, respectively.

In the calculations, the total kinetic energy Ek of the fission
fragments is obtained by the sum of the Coulomb repulsion
energy VC of the fragments, the nuclear attractive energy Vn of
the nascent fragments and the kinetic energy of their relative
motion Eps :

〈Ek〉 = 〈VC〉 + 〈Vn〉 + 〈
Eps

〉
, (24)

and its variance is

σ 2
Ek

= σ 2
ṼC

+ σ 2
Eps

+ 2σṼCEps
, (25)

where

σ 2
ṼC

= 〈
Ṽ 2

C

〉 − 〈ṼC〉2,

σ 2
Eps

= 〈
E2

ps

〉 − 〈Eps〉2, (26)

σṼCEps
= 〈ṼCEps〉 − 〈ṼC〉〈Eps〉,
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FIG. 5. The pre-scission neutron multiplicity as a function of
the compound nuclear mass ACN. The open squares, open trian-
gles, and open circles are the calculated results calculated with
the 4D Langevin equations and by using γK = 0.077 (MeV zs)−1/2,
γK = 0.2 (MeV zs)−1/2 and γk = nonconstant, respectively. The solid
symbols are the experimental data [48].

and

ṼC = VC + Vn, (27)

The last equation means that a part of the Coulomb re-
pulsion energy is used to overcome the nuclear attraction
between the nascent fragments. It can be estimated as in
Refs. [46,47].

III. RESULTS AND DISCUSSIONS

In this paper, we apply a stochastic approach based on the
3D and 4D Langevin equations to study the effect of dissipation
coefficient of the K coordinate and the asymmetry parameter
on different aspects of fission of excited compound nuclei. We
calculated the observables in fission of the compound nuclei
256Fm, 215Fr, 187Ir, 172Yb, 162Yb, and 142Ce formed in the
following heavy-ion reactions:

(1) 18O + 238U → 256Fm (Elab = 158.8 MeV);
(2) 18O + 197Au → 215Fr (Elab = 158.8 MeV);
(3) 18O + 169Tm → 187Ir (Elab = 158.8 MeV);
(4) 18O + 154Sm → 172Yb (Elab = 158.8 MeV);
(5) 18O + 144Sm → 162Yb (Elab = 158.8 MeV);
(6) 18O + 124Sn → 142Ce (Elab = 158.8 MeV).

In the 4D dynamical model, we used three collective shape
coordinates (q1 = c, q2 = h, q3 = α) plus the projection of
total spin of the compound nucleus on the symmetry axis, K .
In the 3D dynamical model we used two collective shape co-
ordinates (q1 = c, q2 = h, q3 = α = 0) plus the projection of
total spin of the compound nucleus on the symmetry axis. In the
dynamical calculations for symmetric and asymmetric fission,
nuclear dissipation was generated through the chaos weighted
wall and window friction formula and the magnitude of the dis-
sipation coefficient of K , γk , has been considered as a constant,
γK = 0.077 (MeV zs)−1/2, γK = 0.2 (MeV zs)−1/2, and a non-
constant value according to Eq. (16). The pre-scission neutron
multiplicities, the fission time, the average kinetic energies of
fission fragments, and the variances of the mass and kinetic
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FIG. 6. Same as Fig. 5 but for the average kinetic energies of
fission fragments as a function of the compound nuclear mass ACN.
The solid symbols are the experimental data [48].

energy of fission fragments have been calculated for symmetric
and asymmetric fission of the compound nuclei 256Fm, 215Fr,
187Ir, 172Yb, 162Yb, 142Ce and results of the calculations
compared with each other and with the experimental data.
Figures 5–7 show the results of the pre-scission neutron multi-
plicities, the average kinetic energies of fission fragments, and
the fission time as a function of mass number of the compound
nuclei ACN calculated for symmetric and asymmetric fission
by using γK = 0.077 (MeV zs)−1/2, γK = 0.2 (MeV zs)−1/2,
and γK = nonconstant.

It can be seen from Fig. 6 that the differences between
the calculated data calculated with the 4D and 3D dynam-
ical models and by using γK = 0.077 (MeV zs)−1/2, γK =
0.2 (MeV zs)−1/2 and γk = nonconstant are small. It can also
be seen from Figs. 5 and 7 that, for intermediate nuclei, the dif-
ferences between the calculated data calculated with the differ-
ent values of γK are small, although the differences between the
calculated values themselves and with the experimental data
increase with increasing mass number of the excited compound
nuclei. It is clear from Figs. 5 and 7 that the calculated data for
heavy nuclei are slightly lower than the experimental data. It
is also clear from Figs. 5 and 7 that the results of symmetric
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FIG. 7. Same as Fig. 5 but for the fission time as a function of the
compound nuclear mass ACN. The solid symbols are the experimental
data [48].
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FIG. 8. The results of calculations for variance of the kinetic
energy distribution of fission fragments as a function of the compound
nuclear mass ACN. The open squares, open triangles, and open circles
are the calculated results calculated with the 4D Langevin equations
and by using γK = 0.077 (MeV zs)−1/2, γK = 0.2 (MeV zs)−1/2 and
γk = nonconstant, respectively. The solid circles are the experimental
data [48].

simulations by using γk = nonconstant are in better agreement
with the experimental data. According to the results obtained
for pre-scission neutron multiplicity and fission time, it can be
concluded that, for heavy nuclei, the strength of the nuclear
dissipation needs to be increased. Furthermore, it can also
be seen from Fig. 5 that the observed multiplicities increase
with the increase in the compound nuclear mass in general
and show some fluctuations. The fluctuations in the observed
and calculated multiplicity may be due to specific structure
effects.

We have also calculated the variance of the kinetic-energy
distribution and the variance of mass distribution of fission
fragments for the above-mentioned fusion-fission reactions.
The results of calculations for asymmetric fission and by using
different values of the dissipation coefficient of K are presented
in Figs. 8 and 9.

It can be seen from Figs. 8 and 9 that the differences between
the calculated data with the experimental data for intermedi-
ate nuclei calculated with the 4D dynamical model and by
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FIG. 9. Same as Fig. 8 but for the variance of mass distribution of
fission fragments as a function of the compound nuclear mass ACN.
The solid symbols are the experimental data [48].
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FIG. 10. The pre-scission neutron multiplicity as a function of
the asymmetry parameter for the compound nucleus 162Yb calculated
with the 4D dynamical model and by using different values of γK .
The solid circles are the experimental data [48].

using γk = nonconstant, γK = 0.077 (MeV zs)−1/2 and γK =
0.2 (MeV zs)−1/2 are small, although the differences between
the calculated data with each other and with the experimental
data increase with increasing mass number of the excited
compound nucleus. It is also clear from Figs. 8 and 9 that the
calculated results calculated with the 4D dynamical model and
by using γK = 0.2 (MeV zs)−1/2 are more in agreement with
the experimental data. In the present investigation, we have also
calculated the pre-scission neutron multiplicity as a function
of the asymmetry parameter for the compound nucleus 162Yb.
Figure 10 shows the predicted pre-scission neutron multiplicity
as a function of the asymmetry parameter for the compound
nucleus 162Yb.

It is evident from the Fig. 10 that the predicted values of pre-
scission neutron multiplicity calculated with the 4D Langevin
equations are strongly dependent on the fragment asymmetry.
It is also clear from Fig. 10 that the calculated values for pre-
scission neutron multiplicity decrease rapidly with the increase
in fragment asymmetry.

IV. CONCLUSIONS

The average kinetic energies of fission fragments, the
pre-scission neutron multiplicities, the fission time and the
variances of the mass and kinetic energy of fission frag-
ments have been calculated in a wide range of mass number
for the excited compound nuclei 256Fm, 215Fr, 187Ir, 172Yb,
162Yb, and 142Ce by solving 3D and 4D Langevin equa-
tions with dissipation generated through the chaos weighted
wall and window friction formula. The constant dissipation
coefficients of K equal to γK = 0.077 (MeV zs)−1/2, γK =
0.2 (MeV zs)−1/2 and a nonconstant dissipation coefficient
of K have been used to reproduce the experimental data
for both symmetric and asymmetric fission, and the results
of the calculations compared with each other and with the
experimental data. Comparison of the theoretical results with
the experimental data shows that the differences between the
results of calculations calculated by using different values of
γK for symmetric and asymmetric simulations of the fission
process of the excited intermediate compound nuclei are
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low, whereas for heavy compound nuclei are slightly high.
In other words, the effect of asymmetry parameter on the
fission process of intermediate nuclei is smaller than heavy
nuclei. Furthermore, it is shown that the pre-scission neutron
multiplicity decreases rapidly with the increase in fragment
asymmetry.
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