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Dynamical and statistical bimodality in nuclear fragmentation
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The origin of bimodal behavior in the residue distribution experimentally measured in heavy ion reactions is
reexamined using Boltzmann-Uehling-Uhlenbeck simulations. We suggest that, depending on the incident energy
and impact parameter of the reaction, both entrance channel and exit channel effects can be at the origin of the
observed behavior. Specifically, fluctuations in the reaction mechanism induced by fluctuations in the collision
rate, as well as thermal bimodality directly linked to the nuclear liquid-gas phase transition, are observed in our
simulations. Both phenomenologies were previously proposed in the literature but presented as incompatible and
contradictory interpretations of the experimental measurements. These results indicate that heavy ion collisions at
intermediate energies can be viewed as a powerful tool to study both bifurcations induced by out-of-equilibrium
critical phenomena, as well as finite-size precursors of thermal phase transitions.
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I. INTRODUCTION

The definition and characterization of phase transitions in
finite systems is a fascinating multidisciplinary topic that has
been studied within different phenomenological applications
for several decades [1,2]. One interesting aspect is linked
to the smoothing of phase transitions with finite number of
constituents and the existence of specific scaling behaviors [3]
signaling the proximity of a critical point. Another specificity
of finite systems is linked to the nonequivalence of statistical
ensembles out of the thermodynamical limit [4]. This implies
that the phase structure of the system does not only depend on
the Hamiltonian or evolution rule but also on the procedure of
data sampling.

Depending on the experimental condition and the data
sorting criterium, different thermodynamical anomalies can
therefore be observed and associated to the realization of the
finite system counterpart of a thermodynamic phase transition
[4]. The concept itself of statistical ensemble has to be
redefined, since the experimental conditions and the sorting
technique can produce a virtually infinite number of possible
statistical ensembles [5–7]. Such extended ensembles can
be coherently modeled by accounting for the experimental
constraints, including time-odd observables and collective
flows [8,9], and lead to predictions that can interpolate between
the standard canonical, microcanonical, and grandcanonical
ensembles of macroscopic (N,V,T ) systems [10,11].

For a temperature-driven phase transition, in the particular
case of a canonical (or close to canonical) sorting, the two-
peaked or bimodal behavior of the order parameter distribution
is known to be a robust observable of the phase transition
[12–16]. This observation has raised some interest in the
heavy ion community, because it opens up the possibility of
experimentally pinning down the nuclear Liquid-Gas phase
transition through the experimental measurement of the size
distribution of the heaviest cluster produced in properly sorted

multifragmentation reactions [17,18]. Inspired by these the-
oretical works, clear bimodality signals were evidenced in
different sets of nuclear multifragmentation data [19,20].

The first observations [19] concerned the distribution of the
normalized charge asymmetry between the heaviest Zmax and
the second heaviest Z2 fragment, a2 = (Zmax − Z2)/(Zmax +
Z2) in events corresponding to a given centrality, selected
in bins of light particle transverse energy E⊥12. From the
experimental point of view, the observation appears very robust
and appears in virtually all different multifragmentation exper-
iments. However, this observable is only loosely correlated to
the order parameter [3,17], and it is not proved that the sorting
can be assimilated to a canonical one. Moreover, this very same
signal was successfully reproduced by quantum molecular dy-
namics (BQMD) [21,22] and Boltzmann-Uehling-Uhlenbeck
(BUU) [23] calculations where a memory of the entrance
channel is clearly present and thermal equilibrium is not
achieved. The signal was interpreted in these studies as a
dynamical bifurcation [22] of reaction mechanism, induced by
fluctuations of the collision rate, which leads to fluctuations of
the collective momentum distribution as expected in complex
nonlinear dynamical systems.

Other successive experimental studies [20] concerned the
asymptotic heaviest cluster charge Zmax, which is strongly
correlated to the theoretical order parameter, namely the size
of the heaviest cluster at the fragmentation time. In those
studies an explicit canonical sorting was applied, based on the
event-by-event measurement of the excitation energy. Also in
that case a bimodality was observed, which would rather point
towards a thermal phase transition. However, the data analysis
is less direct and the imperfect estimation of the calorimetric
excitation energy might deform the signal.

Therefore, the origin of the experimentally observed bi-
modality is still not clear.

In the previous dynamical approaches used to study the
bimodality phenomenon [21–23], the collision final state was
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determined by the semiclassical one-body transport equation
itself, considering simulations evolving until asymptotic times.
However, these approaches lack the necessary correlations to
properly treat fragment formation in the exit channel, even if
they are known to very well describe the entrance channel of
heavy-ion reactions at intermediate energy. For this reason,
to have a quantitative reproduction of experimental data, the
secondary decay of the dynamically formed primary fragments
is typically treated in two-steps calculations, coupling the
transport dynamics to a statistical model (or “afterburner”)
[24]. In this work, we follow this standard procedure [25] using
a recently developed version of the BUU transport model [26]
for the dynamical phase, and the canonical thermodynamical
model (CTM) [27] for the de-excitation phase. Both models
have been already successfully confronted to a large set of
experimental data (see Refs. [26,27]).

We observe that, depending on the incident energy and
impact parameter of the reaction, both bimodality mechanisms
can appear, meaning that the different scenario proposed in the
literature are both potentially observable in heavy ion data.

Specifically, fluctuations in the stopping dynamics in central
collisions lead to different reaction mechanisms that can
coexist in the the sample characterized by a well-defined value
of the impact parameter. This gives rise to a bimodal behavior
of the Zmax distribution that can survive to the secondary
de-excitation if the deposited energy is low enough, which
happens at incident energies in the Fermi energy domain (40A
MeV). At higher incident energies (100A MeV), focusing on
binary mid-peripheral reactions, the fluctuations in the energy
deposition leads to an excitation energy distribution for the
quasispectator source which is close to the LG phase transition
range. For these events, local equilibrium is achieved and a
thermal bimodality is observed in agreement with statistical
expectations.

These results have important implications on the possi-
bility of connecting bimodality signals to a possible finite
size precursor of phase coexistence. Specifically, inclusive
measurements as in Refs. [19], where the different reaction
mechanisms are summed up with the only requirement of a
quasicomplete detection in the forward hemisphere, are more
likely to be connected to the dynamical bimodality observed in
the QMD calculations. Conversely, if a careful selection of the
binary character of the reaction mechanism is performed as in
Refs. [20], we can expect that the signal might be ascribed to a
thermal effect, that is to the convex entropy intruder indicating
the first order phase transition [4].

For this first exploratory study, we concentrate on a single
light symmetric system 40Ca + 40Ca. This does not allow yet to
make quantitative comparisons with experimental data, which
are left for future work. However, it was already observed that
size [22] and Coulomb [28–30] effects might distort but not
qualitatively compromise the bimodality signals. This means
that the results of the present paper are expected to represent
general trends which can be observed also with other heavier
systems.

The paper is organized as follows. The models employed are
briefly reviewed in Sec. II, and the coupling conditions between
the dynamical and statistical treatment is detailed in Sec. III.
Our results concerning the different conditions of occurrence

of the bimodality signals are given in Sec. IV, and Sec. V
summarizes the paper.

II. DYNAMICAL AND STATISTICAL MODELS

The BUU transport model calculation [31,32] for heavy ion
collisions starts with two nuclei in their respective ground states
approaching each other with specified velocities and impact
parameters. Calculations are done in a 200 × 200 × 200 fm3

box. At t = 0 fm/c the projectile and target nuclei are centered
at (100 fm, 100 fm, 90 fm) and (100 fm, 100 fm, 110
fm). The ground-state energies and densities of the projectile
(mass number Ap) and target (mass number At ) nuclei are
constructed using the Thomas-Fermi approximation [33,34].
The Thomas-Fermi phase space distribution is then sampled
using Monte Carlo technique by choosing test particles (we
use Ntest = 100 for each nucleon) with appropriate positions
and momenta.

As the the projectile and target nuclei propagate in time,
the test particles move in a mean field and occasionally
suffer two-body collisions, with probability determined by the
nucleon-nucleon scattering cross section, provided the final
state of the collision is not blocked by the Pauli principle.
To explain clustering in multifragmentation, one needs an
event by event computation in transport calculation. To do
that, we have followed the recently developed computationally
efficient prescription described in Ref. [32], which lies midway
between the original BUU calculation [31] and the original
fluctuation added model [35]. According to this prescription,
the nucleon-nucleon collisions are computed at each time step
with the physical cross-section σnn only among the Ap + At

test particles belonging to the same event. For each event,
if a collision between two test particles i and j is allowed,
the method proposed in Ref. [35] is followed: the Ntest − 1
test particles closest to i are picked and the same momentum
change � �p as ascribed to i is given to all of them. Similarly,
the Ntest − 1 test particles closest to j are selected and these
are ascribed the same momentum change −� �p suffered by j .
As a function of time this is continued till the event is over. For
the mean-field propagation the Vlasov technique is employed:
all test particles are used and the Lattice Hamiltonian method
[25,36] is used for calculating the mean field potential. This
procedure is repeated for as many events as one needs to
build up enough statistics. The details of BUU transport model
calculation can be found in Refs. [23,32,34]

At the end of the transport calculation at freeze-out stage,
we get different clusters of finite number of test particles with
known position and momenta. By knowing the number of test
particles present in the cluster one can get the mass, and by
knowing the position and momenta of these test particles one
can calculate the potential and kinetic energies, respectively.
By adding kinetic and potential energy the excited state energy
of the cluster can be obtained. However, to know excitation
one needs to calculate the ground-state energy also. This is
done by applying the Thomas-Fermi method for a spherical
(ground-state) nucleus having mass equal to the cluster mass.
Knowing PLF mass and its excitation, the freeze-out tempera-
ture is calculated by using the canonical thermodynamic model
(CTM) [27].
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Indeed, CTM can be used to calculate the average excitation
per nucleon for a given temperature and mass number, and
the relation is inversed to get the temperature from the output
of the dynamical stage [34]. In CTM, it is assumed that a
system with A0 nucleons at temperature T has expanded
to a higher than normal volume where the partitioning into
different composites can be calculated according to the rules
of equilibrium statistical mechanics. According to this model,
the average number of composites with a nucleons can be
calculated from

〈na〉 = ωaQA0−a

QA0

, (1)

where ωa is the partition function of one composite with a
nucleons, and QA0 is the total partition function, which can be
calculated from the recursion relation,

QA0 = 1

A0

∑

a

aωaQA0−a. (2)

It is important to stress that Eq. (2) is an exact expression for the
canonical partition sum of the statistical model [27]. Therefore,
the only model dependence of Eq. (1) arises from the chosen
expression for the cluster energies and entropies. Though
theses quantities naturally influence the cluster distribution,
the qualitative observation of a phase transition around T ≈ 5
MeV with a bimodal order parameter distribution, is a generic
feature of the cluster model [14,27,28]. The details of the
statistical model can be found in Ref. [27].

When the temperature is lower than the temperature asso-
ciated to the nuclear Liquid-Gas phase transition Tt ≈ 5 MeV,
the final fragment distribution is almost independent of the
assumed freeze-out volume and very close to the one predicted
by standard evaporation models [37–39].

III. DETERMINATION OF FREEZE-OUT

We first intend to identify the time when the target and
projectile spectators are completely separated and they have
reached their freeze-out stage so that one can safely stop the
dynamical calculation there and switch over to the statistical
one. To do that we have studied the evolution of the largest
and second-largest cluster with time and also have studied the
isotropy of the momentum distribution inside these fragments
as a function of time. Indeed, in the binary collisions we
consider the largest and second-largest cluster are always the
residues of projectile and target. The first signal can therefore
help us to determine the time when the projectile and target
spectators are completely separated, while the second one will
point to the attainment of thermalization of these residues.
To state it more precisely, the time when the size of the
second-largest cluster will reach maximum is actually the time
when one can consider the target spectator and the projectile
spectator to have completely crossed each other and there is no
overlap between them. These can then fragment and one can
apply the statistical models to take care of that part.

Figure 1 displays the variation of the average size of
the largest and the second-largest cluster with time for four
different impact parameters ranging from central to peripheral
collisions at the projectile beam energy of 100 MeV/A. In

FIG. 1. Variation of average mass of largest cluster Amax (red solid
lines) and second-largest cluster A2 (blue dashed lines) with time as
calculated from BUU model for (a) b = 0 fm, (b) b = 3 fm, (c) b =
6 fm, and (d) b = 9 fm at projectile beam energy 100 MeV/nucleon.

each case we have shown the time evolution from 50 fm/c and
continued till 300 fm/c. In the beginning, there was just one
system comprising of both projectile and the target and hence
the size of the largest cluster is Amax = 80 for our Ap = 40
on At = 40 reaction, while that of the second largest being
obviously zero at this time.

The nature of variation for both the largest and the second
largest is similar for all the impact parameters shown from
b = 0 fm to b = 9 fm. The size of the largest cluster decreases
gradually with time as the system fragments as well as there
is evaporation of light clusters and nucleons. In case of b = 0
fm (central), the rate of decrease is maximum, while for b = 9
fm it is the least. This is because the size of the participant
zone is maximal for central collisions, which results in faster
disintegration and hence smaller size of the largest fragment.
The size of the second largest starts from zero, gradually
increases as the target and projectile crosses and reaches a
maximum when they are completely separated and then again
decreases because of secondary decay, and settles to a final
value. The evolution of the largest and that of the second-
largest cluster is pretty similar after the second-largest cluster
reaches its maximum and the evolution coincides for the most
peripheral collisions. This is only because we are dealing with
a symmetric collision and would change if we would consider
an asymmetric entrance channel.

Figure 2 displays the time evolution of the average isotropy
of the momentum distribution of the largest and second largest
cluster. This observable indicates the thermalization of the
final system, and hence the ideal time to stop the dynamical
calculation. This is defined through the following equations. As
described in the previous section, in BUU calculation, every
nucleon of each event is represented by Ntest test particles.
So the total number of test particle in every event is (Ap +
At )Ntest. Let for a given event, out of these (Ap + At )Ntest test
particles, only N test particles form a cluster, i.e., the mass of
the cluster is N/Ntest. The average momentum of cluster along
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FIG. 2. Variation of isotropy of momentum distribution (I ) of the
largest cluster with time calculated from BUU model for (a) b = 0
fm, (b) b = 3 fm, (c) b = 6 fm, and (d) b = 9 fm at projectile beam
energy 100 MeV/nucleon.

k = x, y, and z direction can be calculated from the relation

Pk = 1

N

N∑

i=1

pki
, (3)

where pki
is the k component of momentum of the ith test

particle.
The isotropy in momentum distribution can be defined as

I =
1
N

∑N
i=1(pxi

− Px)2 + 1
N

∑N
i=1

(
pyi

− Py

)2

2 × 1
N

∑N
i=1

(
pzi

− Pz

)2 . (4)

The quantity is defined such that it is less than 1 when the
system is not fully thermalized and still there are some test
particles having significant momentum in the beam direction.
This will reduce the isotropy and hence initially during the
collision of the target and the projectile or during the crossing
stage the isotropy is less than 1. With time it gradually increases
and finally reaches the maximum possible value when full
thermalization is achieved. This is also almost the same time
when the second largest cluster attained its maximum size
as is shown in Fig 1. This freeze-out time varies from about
tFO = 150 fm/c at b = 9 fm to about tFO = 200 fm/c at b = 0
fm. For simplicity, we have stopped the dynamical calculation
at t = 175 fm/c for all impact parameters. Accounting for
the precise impact parameter dependence of the freeze-out
time would only marginally affect the distributions shown
in this paper, and would not affect any of our conclusions
which are essentially based on the qualitative properties of the
distributions. A similar analysis was performed for the other
case studied in this paper, E/A = 40 MeV/A, and the coupling
time was determined as approximately t = 400 fm/c in that
case.

FIG. 3. Probability distribution of largest cluster P (Amax) (red
solid lines) and normalized mass asymmetry of two largest masses
P (a2) (black dashed lines) at constant projectile beam energy
100 MeV/nucleon but four different impact parameters (a) b = 0 fm,
(b) b = 3 fm, (c) b = 6 fm, and (d) b = 9 fm calculated from BUU
model at freeze-out time t = 175 fm/c. At each impact parameter
2000 events are simulated.

IV. DYNAMICAL AND STATISTICAL BIMODALITY

We now turn to study the behavior of the distribution
of Amax, which represents the order parameter of the frag-
mentation transition [3,17]. We first examine the distribution
obtained at the end of the dynamical calculation.

In Fig. 3 we have plotted the probability distribution of the
average size of the largest cluster for four different impact
parameters of varying centrality at t = 175 fm/c, where we
have decided to stop the dynamical calculation. The distri-
bution of asymmetry a2 = (Amax − A2)/(Amax + A2), used in
Refs. [19,21–23], is also shown. For central collision(b = 0
fm), two peaks are seen in both distributions.

We can interpret this observation as a dynamical bimodality
very similar to the phenomenon described in Refs. [21,22].
Fluctuations in the collision rates lead to fluctuations in the
momentum distribution, that is in the degree of stopping of
the reaction. This is shown in the right panel of Fig. 4, which
displays the z component of the momentum [defined in Eq. (1)]
of the largest cluster for central collisions, for the two classes of
events corresponding to different cuts in the largest cluster size.
We have fixed a mass cut of Acut = 37 to distinguish the two
event classes as it corresponds to the minimum between the two
peaks in Fig. 3(a). We can see that those with Amax < Acut have
momentum similar to that of the initial projectile in forward
(PLFs) as well as in the reverse (TLFs) direction as expected for
an incomplete stopping leading to a binary collision. The other
class (Amax > Acut) have Pz nearly equal to zero indicating
that they can be identified as completely stopped events. The
same information is given by the left panel of Fig. 4, which
displays the angular distribution of the largest cluster for the
same events. It is clearly seen from the figure that in events
with Amax > Acut, the fragments are emitted isotropically and
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FIG. 4. Largest cluster scattering angle (left panel) and momen-
tum (right panel) probability distribution for Amax � 37 (red lines) and
Amax < 37 (blue lines) for central collisions (b = 0 fm) at projectile
beam energy 100 MeV/nucleon calculated from BUU model at
freeze-out time t = 175 fm/c. To study this, 2000 events are simulated.
The average value of 10 degrees and 10 MeV are shown for angle and
momentum, respectively.

hence they correspond to stopped events. On the other hand
in events with Amax < Acut, they are scattered either in the
forward direction (PLFs) or in the backward direction (TLFs),
clearly indicating their source to be crossed events.

With increasing impact parameter, the peak at higher mass
and higher asymmetry disappears, implying negligible stop-
ping while that at the lower mass shifts to the right because as
the impact parameter increases, the participant zone decreases
resulting in increase of the PLF/TLF size. The distribution
also becomes sharper with increase of impact parameter for
the same reason.

The distribution plotted in Figs. 3 and 4 can be defined
as freeze-out distribution and still evolve in subsequent time
because of secondary decay. If the excitation energy at the
time of freeze-out is below the threshold of cluster emission,
the secondary decay only involves particle emission. In that
case we expect Amax to monotonically decrease in time, and the
shape of the distributions to be preserved. This is also observed
if we simply run the calculation for a longer time. However,
if the excitation energy of the heaviest cluster is higher, this
latter can undergo multiple decay. This multifragmentation
channel is not accessible in the transport equation because it
needs the consistent inclusion of many-body correlations [24],
which is out of the scope of transport models. Because of that,
the fragment distributions obtained at asymptotic times in the
transport calculation might not correspond to the asymptotic
physical partition. To overcome this problem, the secondary
decay is treated with the statistical CTM model, with inputs
given event-by event by the transport calculation at the freeze-
out time, as explained in Sec. II.

Further details on the evaluation of temperature and ex-
citation energy from the BUU calculation can be found in
Refs. [25,26].

In Fig. 5 we have plotted the distribution of excitation energy
and temperature of the largest as well as the second-largest
cluster for three different impact parameters. The step size
selected for displaying these distributions are 1 MeV/A for
the excitation energy and 1 MeV for the temperature. For the
excitation energy, the distribution is more or less similar in

FIG. 5. Excitation (E∗) (upper panels) and temperature (T )
(lower panels) probability distribution for largest (red dash dotted
lines) and second-largest cluster (blue dotted lines) at constant
projectile beam energy 100 MeV/nucleon but two different impact
parameters b = 0 fm (left panels), b = 3 fm (middle panels), and
b = 6 fm (right panels). At each impact parameter 2000 events are
simulated. The average value of 1 MeV/nucleon and 1 MeV are shown
for excitation and temperature, respectively.

shape for b = 0 and 3 fm; there is a small peak at low excitation
that corresponds to the second-largest cluster of the stopped
event which is small in size and has less excitation. Using
these excitation energies from the transport code as input to
the statistical model code, temperature is calculated and its
distribution is plotted. The obtained temperature distributions
of the largest and second-largest fragment show a good agree-
ment, providing an extra test of equilibrium for the freeze-out
configuration. At b = 3 and 6 fm, the distribution is quite sharp
strongly indicating its connection to the phase transition during
which the temperature remains constant. This will be further
established from the next figure.

In Fig. 6 we have plotted the probability distribution of the
largest cluster as well as the total multiplicity for these three
impact parameters. These distributions have been calculated
after switching over to the statistical code from the transport
one. The ones at b = 0 fm are structureless and typical of
multifragmentation reactions: the average excitation energy is
so high in that case that both fully stopped and incompletely
stopped events undergo multiple decay. As a consequence, the
bimodality signal observed in Fig. 3 disappears.

At higher impact parameter, the situation is reversed. The
probability distribution of the largest cluster now shows a
bimodal behavior, which is indicative of existence of two
phases simultaneously. The mass distribution on the lower
panel can be seen as a superposition of a multifragmentation
distribution (predominant the case of b = 0) with a residue
distribution (clearly visible the case b = 6). This illustrates
the well-known fact that in the case of heavy ion reactions
the ordered phase can be associated to compound nucleus
evaporation, while the disordered phase can be associated to
multifragmentation. The dynamical bimodality displayed in
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FIG. 6. Final largest cluster probability distribution (upper pan-
els) and mass distributions (lower panels) studied after CTM calcula-
tion at constant projectile beam energy 100 MeV/nucleon but three
different impact parameters b = 0 fm (left panels), b = 3 fm (middle
panels), and b = 6 fm (right panels). At each impact parameter 2000
events are simulated.

Fig. 3 does not survive secondary decay (and is therefore
not detectable experimentally), because the excitation energy
deposited in the quasiprojectile source is too high. This
however strongly depends on the entrance channel conditions.
In particular, we may expect that lower bombarding energy
might lead to a situation where the freeze-out distribution is not
distorted by secondary decay. This is shown in Fig. 7 , where
we have plotted the largest cluster probability distribution
for central collisions at 40 MeV/nucleon both after transport
calculation, and after the statistical model calculation. We have
plotted separately the crossed and the stopped events in both
the cases. These events are separated following the prescription
described in Fig. 4 based on the momentum distribution.
In both the cases the largest cluster probability distribution
shows a dynamical bimodality, and the distribution both after
transport calculation and that after decay is almost the same,
indicating a small contribution of secondary decay in this
energy domain. For completeness, the asymmetry distribution

FIG. 7. Largest cluster probability distribution for crossed events
(blue lines) and stopped events (red lines) studied after BUU model
calculation (left panel) and CTM calculation (right panel) for central
collisions (b = 0 fm) at projectile beam energy 40 MeV/nucleon.
To study this 500 events are simulated and the BUU calculation is
stopped at t = 400 fm/c.

FIG. 8. Probability distribution of normalized mass asymmetry
of two largest masses P (a2) studied after BUU model calculation
(black dashed line) and CTM calculation (red solid line) for central
collisions (b = 0 fm) at projectile beam energy 40 MeV/nucleon.
To study this 500 events are simulated and the BUU calculation is
stopped at t = 400 fm/c.

before and after secondary decay is shown in Fig. 8 for a
representative impact parameter. As already observed in the
case of the higher beam energy in Fig. 3, the information of the
Amax distribution is perfectly consistent with the information
given by the asymmetry.

Another situation leading to a very small effect of secondary
decay, and therefore a potential observation of the dynamical
bimodality, is the case of a peripheral spectator source at high-
incident energy, as we can also infer from the right panels of
Fig. 5. This is indeed the kinematic situation where a dynamical
bimodality was observed in BQMD calculations [22]. In our
calculations, the collision rate is not significant enough at
b = 6 and E/A = 100 MeV/A to produce any stopped event,
at variance with that calculation. This is probably due to
the small size of the Ca + Ca system studied in this paper.
Indeed, the average collision rate, as well as its fluctuations,
increases with increasing mass of the colliding system [40].
It is therefore probable that both dynamical and thermal
bimodalities could be observed at the same time in the Au + Au
system, consistent with Ref. [22]. This point is currently under
study.

V. CONCLUSIONS

In this paper we have analyzed the largest fragment size
distributions for the Ca + Ca system at two different bombard-
ing energies, as predicted by a two-step model. The entrance
channel dynamics is described by the BUU transport equation,
which is coupled to the statistical CTM decay model at the
time of local equilibration of the primary fragments produced
in the collision.

We have shown that different initial conditions can lead to
the observation of bimodal distributions. When the collision
rate is sufficiently high (as it is only the case in central
collisions, for the light system analyzed), two different reac-
tion mechanisms can coexist at the same impact parameter,
corresponding to fully stopped and partially stopped events.
This dynamical entrance channel effect leads to a bimodal
distribution of the largest cluster, which can persist in the
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asymptotic stage if the excitation energy deposited in the
nonstopped events is below the threshold of cluster emission.
This is obtained if the incident energy is low enough (40
MeV/A in the present application). The same behavior can
also be potentially obtained if the degree of transparency of the
nonstopped events is sufficiently important, or in other terms
if the fluctuation in the momentum distribution is very high.
Such a behavior was reported in Ref. [22] for the Au + Au
system.

When nonstopped binary events are selected, and the aver-
age excitation energy deposited in the quasiprojectile source
is sufficiently large, as well as its fluctuation, the collision
passes through a freeze-out stage that can be assimilated
to a quasicanonical ensemble at a temperature close to the
LG transition temperature. This happens in our calculations
for semi-central collisions at high bombarding energy. In
that case, the system undergoes a thermal phase transition
which signalled again by a bimodal distribution of the order
parameter.

These results indicate that heavy-ion collisions can be used
as a laboratory to study both types of bimodalities which have
been proposed in the literature. Indeed we have shown that
the two bimodality mechanisms are associated in the transport
model to different time scales of the reaction, and to different
energy regimes. This means that both dynamical bifurcations
and first order phase transition could be potentially measurable
with heavy ion collisions.

The reaction mechanism out-of-equilibrium bifurcation due
to the nonlinearity of the dynamical evolution can be studied
within a proper selection of the entrance channel, while the
thermal bimodality signaling the liquid-gas phase transition
requires an additional control on the reaction mechanism. It is
possible that the experimental studies reported in Refs. [19]
correspond to the dynamical bimodality while the ones of
Refs. [20], where a careful control of the reaction mechanism
was performed, might correspond to the thermal phenomenon.

To confirm this hypothesis, further calculations in the same
conditions as studied experimentally are in progress.
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