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Monotonic properties of the shift and penetration factors
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We study derivatives of the shift and penetration factors of collision theory with respect to energy, angular
momentum, and charge. Definitive results for the signs of these derivatives are found for the repulsive Coulomb
case. In particular, we find that the derivative of the shift factor with respect to energy is positive for the repulsive
Coulomb case, a long anticipated but heretofore unproven result. These results are closely connected to the
properties of the sum of squares of the regular and irregular Coulomb functions; we also present investigations
of this quantity.
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I. INTRODUCTION

The shift and penetration factors occur in the theoretical
description of nuclear, atomic, and molecular scattering and
reactions, particularly in R-matrix descriptions of such pro-
cesses [1,2]. These quantities are defined to be the real and
imaginary parts of the logarithmic radial derivative of the
outgoing Coulomb function, as given below by Eq. (5). They
play a central role in determining how physical quantities, such
as cross sections and resonance widths, depend upon energy,
angular momentum, and charge.

This study is motivated by a desire to understand the sign
of the energy derivative of the shift factor for the repulsive
Coulomb case, as is applicable to the study of nuclear reactions.
This sign has important implications for the relationship
between the R-matrix parameters describing a level and its
observed width, as discussed by Lane and Thomas [1, Sec.
XII.3, pp. 327–328]. The sign is also important for establishing
the uniqueness of the alternative R-matrix parametrization
given by Brune [3]. We will elaborate on these points further
in the Conclusions, Sec. VII. While this sign appears to be
positive in practice, a general proof for positive energies is
lacking and several authors have commented on this point
[1–3]. Lane and Thomas did show that it is positive for negative
energies [1, Eq. (A.29), p. 351], for positive energies in the
JWKB approximation [1, Eq. (A.19), p. 350], and they also
gave a heuristic argument that it should be positive below the
Coulomb and/or angular momentum barriers [1, Eq. (A.32), p.
352]. It is also straightforward to show that this sign is positive
in the limits of zero radius, infinite radius, zero energy, and
infinite energy (see Appendices C and D).
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We have succeeding in proving that the energy derivative
of the shift factor is always positive for the repulsive Coulomb
case. We report results for the sign of the derivatives of the
shift and penetration factors, as well as the related amplitude
and phase, with respect to energy, angular momentum, and
charge. The results are obtained using the phase-amplitude
parametrization of the Coulomb functions and a little-known
Nicholson-type integral representation for the sum of squares
of the regular and irregular Coulomb functions. We also find
that almost none of the results are generally valid in the
attractive Coulomb case.

This paper is organized as follows. We first review the rele-
vant properties of the Coulomb functions and then derive derive
the monotonicity results, with discussion and conclusions
following. Appendices include information on the theory of
monotonic functions, further properties of Coulomb functions,
and additional integral relations for the energy derivative of the
shift factor.

II. OVERVIEW OF COULOMB FUNCTIONS

A. Definitions

In terms of physical parameters, a Coulomb function u
satisfies

− h̄2

2μ

d2u

dr2
+ Z1Z2q

2

r
u + h̄2

2μ

�(� + 1)

r2
u = Eu, (1)

where r � 0 is the radial coordinate, E is the energy, h̄2/μ is
a positive constant, Z1Z2q

2/r is the Coulomb potential, and
h̄2�(� + 1)/(2μr2) is an effective potential corresponding to
the centrifugal or angular momentum barrier. The quantity � is
the angular momentum quantum number and is a nonnegative
integer in physical applications, but unless otherwise indicated
we will consider it to be a nonnegative continuous real param-
eter. The quantity Z1Z2q

2 is the constant charge factor that is
positive for a repulsive Coulomb field, zero in the neutral case,
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and negative otherwise. We will also assume E > 0, unless
otherwise indicated. In terms of the dimensionless parameters
ρ and η, we have u(�,η,ρ) and this equation becomes

u′′ +
[

1 − 2η

ρ
− �(� + 1)

ρ2

]
u = 0, (2)

where ρ = kr , k =
√

2μE/h̄2, ηk = Z1Z2q
2μ/h̄2, and ′ ≡

d/dρ. The outgoing u = H+
� and incoming u = H−

� solutions
are given, respectively, by

H+
� = G� + iF� and (3a)

H−
� = G� − iF�, (3b)

where G�(η,ρ) ≡ G� and F�(η,ρ) ≡ F� are the irregular and
regular Coulomb functions, respectively.

The logarithmic derivative of the outgoing solution is
given by

L� ≡ r

H+
�

dH+
�

dr
= ρ

H+′
�

H+
�

, (4)

with the real and imaginary parts defined to be

L� ≡ S� + iP�, (5)

where S� and P� are the shift and penetration factors, respec-
tively. Note that for for E � 0 we have P� = 0. It is also
customary to define the asymptotic phase

θ� = ρ − η log(2ρ) − 1
2�π + σ�, (6)

where σ� is the Coulomb phase shift defined in Appendix B.
We also define the energy derivative ∂E which is understood
to be taken at fixed radius (i.e., with the product ηρ fixed):

∂

∂E
= 2μr2

h̄2

(
1

2ρ

∂

∂ρ
− η

2ρ2

∂

∂η

)
(7a)

= ρ

2E

(
∂

∂ρ
− η

ρ

∂

∂η

)
. (7b)

B. Amplitude and phase

It is possible to parametrize the Coulomb functions in terms
of an amplitude (or modulus) A� and phase φ� [1,4–6]:

A� = (
F 2

� + G2
�

)1/2
, (8)

φ� = tan−1 F�/G�, (9)

H±
� = A� exp(±iφ�), (10)

P� = ρ

A2
�

, and (11)

S� = ρA′
�

A�

= ρ
(
A2

�

)′

2A2
�

, (12)

where the Wronskian relation

H+
� H−′

� − H+′
� H−

� = −2i (13)

has been used to derive Eq. (11) from Eq. (5). The
amplitude and phase obey the following differential

equations:

A′′
� +

[
1 − 2η

ρ
− �(� + 1)

ρ2

]
A� − A−3

� = 0 and (14)

φ′
� = A−2

� . (15)

In this work we make extensive use of square of A� and we will
refer to A2

� as “the amplitude.” A differential equation satisfied
by A2

� is discussed in Sec. VI C.
Thomas derived an integral representation for A2

� that
is useful for establishing its monotonic properties [1,
p. 350], [6]:

A2
� = 2ρ

∫ ∞

0
dz e−2ρz Q(z), where (16a)

Q(z) = exp(2η tan−1 z)(1 + z2)�

× 2F1

(
−� − iη, − � + iη,1;

z2

1 + z2

)
(16b)

= exp(2η tan−1 z)(1 + z2)iη

× 2F1(� + 1 + iη, − � + iη,1; −z2). (16c)

The equivalence of the two expressions for Q(z) results
from Pfaff and Euler transformations of the hypergeometric
function. This formula is also given in Hull and Breit [7,
Eq. (12.5), p. 440], but one of the factors of −iη in their
hypergeometric function must be reversed in sign to agree with
Eq. (16b).

Expressions such as Eq. (16) are known as Nicholson-type
integrals; further discussion is provided below in Sec. VI C.
This equation appears to have been overlooked for over half a
century, but it is very useful in the present context. The formula
is based on a result given by Erdélyi [8] that expresses the
product of two Whittaker functions as a Laplace transform,
which is applicable since we also have

A2
� = H+

� H−
� = eπη W−iη,�+1/2(−2iρ) Wiη,�+1/2(2iρ), (17)

where W is the Whittaker function.
The particular hypergeometric function in Eq. (16b) may

be defined via

t = z2

1 + z2
, (18a)

2F1(−� − iη, − � + iη,1; t) ≡ F (t) =
∞∑

n=0

dnt
n, (18b)

d0 = 1, and (18c)

dn+1 = dn

η2 + (n − �)2

(n + 1)2
, (18d)

which is absolutely convergent for |t | � 1. We also note that
F (t) is real, positive, and monotonically increasing between
F (0) = 1 and

F (1) = 22�e−πη

C2
� (η)(2� + 1)2
(2� + 1)

, (19)

where C�(η) is defined in Appendix C. The function
Q(z) is likewise positive for 0 � z < ∞. The integral
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representation of Erdélyi and the positivity of the integrand
in certain circumstances are also remarked upon by Buchholz
[9, p. 89, Eq. (10a)].

Equation (16a) may be integrated by parts to yield [1,6]

A2
� = 1 +

∫ ∞

0
dz e−2ρz dQ

dz
. (20)

Further integrations by parts would yield an asymptotic ex-
pansion for A2

� in terms of inverse powers of ρ. We also
have

1

Q

dQ

dz
= 2(η + �z)

1 + z2
+ 1

F (t)

dF (t)

dt

dt

dz
, (21a)

dF (t)

dt
=

∞∑
n=1

ndnt
n−1, and (21b)

dt

dz
= 2z

(1 + z2)2
. (21c)

Considering only the repulsive Coulomb case (η > 0), we
clearly have dQ/dz > 0, and hence A2

� > 1. By differentiating
Eq. (20) with respect to ρ, one can see that (A2

�)′ < 0 and
consequently S� < 0 [1,6]. Further differentiation shows that
all derivatives of A2

� have well-defined sign:

0 < (−1)n
(

d

dρ

)n

A2
� < ∞ n = 1,2,3, . . . (22)

This result shows that A2
� is a completely monotonic (CM)

function of ρ. Many of the conclusions reached in this paper
follow from this fact and are proven rather easily using the
machinery of CM functions. Some properties of CM functions
are discussed in Sec. A 2 of the Appendix; additional details
are available in the review article of Miller and Samko [10].

Using Eqs. (16a) and (16b), Prosser and Biedenharn [6]
showed that ∂(A2

�)/∂η > 0; noting that

∂P�

∂E
= ρ

2E

⎡
⎣A2

� − ρ(A2
�)′ + η

∂A2
�

∂η

A4
�

⎤
⎦, (23)

it is clear that ∂P�/∂E > 0. These authors went on to show
that ∂S�/∂η < 0. However, it does not appear to be feasible to
extend their approach to determine the sign of ∂S�/∂E.

Some additional properties of the Coulomb functions are
discussed in Appendices B–D. It should be noted that S� is not
monotonic in ρ: from the formulas given in Appendix C it is
clear that S ′

� is negative for ρ → 0 and positive for ρ → ∞.

III. ENERGY DERIVATIVE OF L

Using the differential equation with two different solutions
O1 and O2 with outgoing wave boundary conditions (i.e., O ∝
H+) corresponding to energies E1 and E2 in Eq. (1), one can
show that

− h̄2

2μ

d

dr

[
O1O2

r
(L2 − L1)

]
= (E2 − E1)O1O2. (24)

Note that the � (angular momentum label) subscripts will
be suppressed from this point forward in this paper. Upon

integrating from r = a to b with a < b this becomes

− h̄2

2μ

[
O1O2

r
(L2 − L1)

]b

a

= (E2 − E1)
∫ b

a

O1O2 dr. (25)

In the limit that O2 → O1, this becomes

− h̄2

2μ

[
O2

r

∂L

∂E

]b

a

=
∫ b

a

O2 dr, (26)

where ∂E is taken at fixed radius as discussed above. For bound
states (E < 0), O is proportional to the exponentially decaying
Whittaker function and one can take b → ∞ with the surface
term at r = b in the left-hand side of Eq. (26) vanishing; see
also Lane and Thomas [1, Eq. (A.29), p. 351]:

h̄2

2μ

[
O2

r

∂L

∂E

]
a

=
∫ ∞

a

O2 dr. (27)

Since O(r)/O(a) is real, it follows that ∂S/∂E is positive for
E < 0 [1].

It is not immediately obvious how to extend this result to
positive energies because O(r)/O(a) is nonzero and oscillat-
ing for large r and it is also necessarily a complex quantity.
We attempted to find an integral expression with a positive-
definite integrand, analogous to Eq. (27). These efforts were not
successful; some of the results found are given in Appendix E.
We show here a successful approach to proving ∂S/∂E > 0
for the repulsive Coulomb case, using an integral expression
with an integrand that oscillates in sign with properties that
allow a definitive sign for the integral to be deduced.

Adopting O = H+ = A exp(iφ) and changing the integra-
tion variable from r to ρ, we can write Eq. (26) in terms of the
amplitude and phase

−E

[
e2iφ A2

ρ

∂L

∂E

]ρb

ρa

=
∫ ρb

ρa

A2 e2iφ dρ. (28)

We next change the integration variable to ψ , noting that ψ is
a monotonically increasing function of ρ:

ψ ≡ 2[φ(ρ) − φ(ρa)], (29)

ψ ′ = 2A−2, (30)

ψb = 2[φ(ρb) − φ(ρa)], and (31)

−E

[
eiψ A2

ρ

∂L

∂E

]ψb

0

= 1

2

∫ ψb

0
A4eiψ dψ, (32)

where Eq. (30) follows from Eq. (15). Using

d(A4)

dψ
= 2A2(A2)′

ψ ′ = A4(A2)′, (33)

we can integrate by parts to find[
eiψ

(
−E

A2

ρ

∂L

∂E
+ i

2
A4

)]ψb

0

= i

2

∫ ψb

0
A4(A2)′eiψ dψ.

(34)

Considering the large-ρ behavior of the Coulomb quantities
given in Tables III and IV of Appendix C, one can now take
ψb → ∞ as A4(A2)′ ∼ −η/ρ2 and the integral is absolutely
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convergent:[
E

A2

ρ

∂L

∂E
− i

2
A4

]
ρa

= i

2

∫ ∞

0
A4(A2)′eiψ dψ. (35)

Taking the real part of this expression yields

E

[
A2

ρ

∂S

∂E

]
ρa

= −1

2

∫ ∞

0
A4(A2)′ sin(ψ) dψ. (36)

Our strategy will be to use the fact that A2 is a CM function
of ρ (see Secs. II B and A 2) to prove that certain integrals, such
as the one appearing in Eq. (36), have definite sign. Since A4

is the product of two CM functions (i.e., A2 × A2) it is also
CM. Furthermore, we have(

− d

dψ

)n

A4 =
(

−A2

2

d

dρ

)n

A4 > 0

n = 1,2,3, . . . (37)

and thus A4 is also a CM when considered as a function of ψ .
The quantity

−dA4

dψ
= −A4(A2)′ (38)

appearing in the right-hand side of Eq. (36), which is the neg-
ative of Eq. (33), is thus a CM function of ψ . In particular, the
fact that this quantity is positive and monotonically decreasing
allows one to conclude that the right-hand side of Eq. (36) is
positive using reasoning given in Appendix A. To summarize,
the definite integral from zero to infinity of a CM function
multiplied by the sine or cosine function is positive, provided
the integral converges. We thus finally have

E

[
A2

ρ

∂S

∂E

]
ρa

= −1

2

∫ ∞

0
A4(A2)′ sin(ψ) dψ > 0, (39)

and we can conclude that ∂S/∂E is indeed always positive for
E > 0 and a repulsive Coulomb field.

This method can also provide information about ∂P/∂E.
Starting from Eq. (32) and choosing b such that

ψb = ψn = 2πn n = 1,2,3,... (40)

the range of integration becomes an integer multiple of the
period of eiψ and the surface terms are simplified since
eiψn = 1:

−E

[
A2

ρ

∂L

∂E

]ψn

0

= 1

2

∫ ψn

0
A4eiψ dψ. (41)

Taking imaginary part, we have

E

[
A2

ρ

∂P

∂E

]
ρa

= 1

2

∫ ψn

0
A4 sin(ψ) dψ + E

[
A2

ρ

∂P

∂E

]
ρn

,

(42)

where ρn = ρb when ψb = ψn. We cannot take n → ∞ in
this case since A4 ∼ 1 for large ρ (at least without employing
a regularization procedure), but it is sufficient to consider n
to be very large such that the asymptotic expansions of the
Coulomb functions are applicable (see Tables III and IV in

Appendix C):

E

[
A2

ρ

∂P

∂E

]
ρa

= 1

2

∫ ψn

0
A4 sin(ψ) dψ

+ 1

2

(
1 + 2η

ρn

+ · · ·
)

. (43)

Since A4 is a CM function of ψ , we observe that both terms on
the right-hand side of Eq. (43) are positive and we can conclude
that ∂P/∂E > 0 (which has been derived previously using a
different method [6]). In fact, we can do better because the
surface term is nonzero as ρn → ∞:

∂P

∂E
>

ρ

2EA2
. (44)

It is also interesting to consider further integrations by parts.
Since ∫

eαxf dx =
m∑

k=0

(−1)k
eαx

αk+1

dkf

dxk

+ (−1)m+1
∫

eαx

αm+1

dm+1f

dxm+1
dx (45)

for m = 0,1,2, . . ., Eq. (35) generalizes to[
2E

A2

ρ

∂L

∂E

]
ρa

=
[

m∑
k=0

ik+1

(
d

dψ

)k

A4

]
ρa

+ im+1
∫ ∞

0
eiψ

(
d

dψ

)m+1

A4 dψ. (46)

Setting m = 1 provides[
2E

A2

ρ

∂L

∂E

]
ρa

=
[
iA4 − d(A4)

dψ

]
ρa

−
∫ ∞

0
eiψ d2(A4)

dψ2
dψ,

(47)

and then taking the imaginary part gives[
2E

A2

ρ

∂P

∂E
− A4

]
ρa

= −
∫ ∞

0
sin(ψ)

d2(A4)

dψ2
dψ. (48)

Since the right-hand side of this equation must be negative, it
provides an upper-limit constraint on ∂P/∂E:

∂P

∂E
<

ρ

2E
A2, (49)

This result could also be deduced from the imaginary part of
Eq. (35). Taking the real part of Eq. (47) yields[

2E
A2

ρ

∂S

∂E
+ d(A4)

dψ

]
ρa

= −
∫ ∞

0
cos(ψ)

d2(A4)

dψ2
dψ. (50)

Since the right-hand side of this equation must be negative,
this implies

∂S

∂E
< − ρ

2EA2

[
d(A4)

dψ

]
ρa

= − ρ

2E
A2(A2)′. (51)

The results of this section are summarized in the first two lines
of Table I.
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TABLE I. Summary of the result of Secs. III and IV for the
variation of S and P with E, �, and η. The second column is deduced
from the first using Eqs. (11) and (12).

0 < ∂S
∂E

< − ρA2(A2)′
2E

0 < ∂S
∂E

< − ρ2S

EP 2

ρ

2EA2 < ∂P
∂E

< ρA2

2E
P
2E

< ∂P
∂E

< ρ2

2EP

(2�+1)
A4

ρ2

[
ρ(A2)′

2A2 − 1
2

]
< ∂S

∂�
< 0

2�+1
P 2

(
S − 1

2

)
< ∂S

∂�
< 0

− (2�+1)A2

2ρ
< ∂P

∂�
< 0 − 2�+1

2P
< ∂P

∂�
< 0

2A4

ρ

[
ρ(A2)′

2A2 − 1
4

]
< ∂S

∂η
< 0

2ρ

P 2

(
S − 1

4

)
< ∂S

∂η
< 0

−A2 < ∂P
∂η

< 0 − ρ

P
< ∂P

∂η
< 0

IV. VARIATION OF L WITH ANGULAR
MOMENTUM AND CHARGE

It is also interesting and feasible with the above approach to
investigate the variation of L with the angular momentum � and
charge. On page 414 of their article, Prosser and Biedenharn [6]
stated that ∂(A2)/∂� > 0 (and consequently also ∂P/∂� < 0)
based on Eqs. (16a) and (16b) of the present paper, but it is not
clear how they arrived at that conclusion. The other statements
made by the authors in that paragraph follow simply from
the properties of Q(z), but this one does not. Assuming that
Q(z) is defined by Eq. (16b), ∂(A2)/∂� > 0 is true provided
that ∂F (t)/∂� > 0, where F (t) is the hypergeometric function
defined by Eq. (18). However, it is not always the case that
∂F (t)/∂� > 0. Ref. [6] was unable to find a result for ∂S/∂�.

Using Eq. (2) with two different solutions O1 and O2

corresponding to angular momenta l1 and l2 but with the same
energy, one finds

d

dρ

[
O1O2

ρ
(L2 − L1)

]
= (�1 + �2 + 1)(�2 − �1)

O1O2

ρ2
.

(52)

Integrating and taking O2 → O1 (considering � to be a con-
tinuous parameter) leads to[

O2

ρ

∂L

∂�

]ρb

ρa

= (2� + 1)
∫ ρb

ρa

O2

ρ2
dρ. (53)

One can now take ρb → ∞ and proceed as before:

2

2� + 1

[
A2

ρ

∂L

∂�

]
ρa

= −
∫ ∞

0

A4eiψ

ρ2
dψ. (54)

Noting that ρ−2 is a CM function of ρ, and that hence A4/ρ2

is likewise CM, we have(
− d

dψ

)n
A4

ρ2
=

(
−A2

2

d

dρ

)n
A4

ρ2
> 0

n = 1,2,3, . . . , (55)

and we can conclude immediately that

∂S

∂�
< 0 and

∂P

∂�
< 0, (56)

using the methods of Appendix A. Integrating Eq. (54) by parts
twice yields

2

2� + 1

[
A2

ρ

∂L

∂�

]
ρa

=
[
−i

A4

ρ2
+ A6

ρ3

(
ρ(A2)′

A2
− 1

)]
ρa

+
∫ ∞

0

d2

dψ2

(
A4

ρ2

)
eiψ dρ, (57)

which shows

∂S

∂�
> (2� + 1)

A4

ρ2

[
ρ(A2)′

2A2
− 1

2

]
(58)

and

∂P

∂�
> − (2� + 1)A2

2ρ
. (59)

The variation of L with charge can be studied using this
procedure via the Coulomb parameter η. This results in

d

dρ

[
O1O2

ρ
(L2 − L1)

]
= 2(η2 − η1)

O1O2

ρ
. (60)

Upon integrating and taking O2 → O1,[
O2

ρ

∂L

∂η

]ρb

ρa

= 2
∫ ρb

ρa

O2

ρ
dρ. (61)

Proceeding as above, we have[
A2

ρ

∂L

∂η

]
ρa

= −
∫ ∞

0

A4eiψ

ρ
dψ. (62)

Noting that ρ−1 is a CM function of ρ and thus(
− d

dψ

)n
A4

ρ
=

(
−A2

2

d

dρ

)n
A4

ρ
> 0,

(63)
n = 1,2,3, . . . ,

we conclude

∂S

∂η
< 0 and

∂P

∂η
< 0, (64)

confirming the findings of Ref. [6]. Integrating Eq. (62) by
parts twice yields[

A2

ρ

∂L

∂η

]
ρa

=
[
−i

A4

ρ
+ A6

2ρ2

(
2ρ(A2)′

A2
− 1

)]
ρa

+
∫ ∞

0

d2

dψ2

(
A4

ρ

)
eiψ dρ, (65)

which shows

∂S

∂η
>

2A4

ρ

[
ρ(A2)′

2A2
− 1

4

]
(66)

and

∂P

∂η
> −A2. (67)

The results of this section are summarized in Table I.
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V. VARIATION OF THE AMPLITUDE AND PHASE
WITH E, �, AND η

It is also expected that the amplitude and phase depend
monotonically on E, �, and η. Noting P = ρ/A2, the variations
of squared amplitude A2 with � and η are easily found to
be opposite of those already derived for P : ∂A2/∂� > 0
and ∂A2/∂η > 0. The latter result can also be shown by
differentiating Eq. (16a) with Q(z) given by Eq. (16b) [6]. For
the energy variation of the amplitude, we have using Eq. (7)

∂A2

∂E
= ρ

2E

[
(A2)′ − η

ρ

∂A2

∂η

]
. (68)

Since (A2)′ < 0 and ∂A2/∂η > 0, we can also conclude that
∂A2/∂E < 0.

The variation of the phase φ with these parameters can also
be related to those for P . Noting that

dφ

dr
= P

r
and hence [φ]a =

∫ a

0

P

r
dr, (69)

we have [
∂φ

∂X

]
a

=
∫ a

0

∂P

∂X

dr

r
, (70)

where X = E, �, or η, and the variation of φ with these
parameters is seen to be in the same direction as it is for
P . Note that in the case of � = 0 for ∂φ/∂� the integrand
has a logarithmic singularity as r → 0, but the integral is
still convergent. The results of this section are summarized
in Table II.

VI. DISCUSSION

We have limited our consideration to the repulsive Coulomb
field (η > 0) in this work. In this section we will briefly
consider the attractive Coulomb field and then in more detail
the neutral case. We next provide further discussion of the
amplitude A2, followed by a brief review of negative energies.
In Fig. 1 we show shift factor S(E) for the repulsive, neutral,
and attractive cases (Z1Z2 = 1, 0, and −1, respectively). We
have also assumed � = 0, q to be the fundamental charge, μ
to be the nucleon-nucleon reduced mass, and a radius of 2
fm. The repulsive case shows the expected results: S < 0 and
∂S/∂E > 0 for all energies.

A. The attractive Coulomb case

In the case of an attractive Coulomb field, the amplitude A2

is no longer guaranteed to be a CM function of ρ because
according to Eq. (21) dQ/dz is not necessarily positive.
Consequently, very few of the results from the repulsive case

TABLE II. Summary of the result of Sec. V.

∂A2

∂E
< 0 ∂A2

∂�
> 0 ∂A2

∂η
> 0

∂φ

∂E
> 0 ∂φ

∂�
< 0 ∂φ

∂η
< 0

-1.0 -0.5 0.0 0.5 1.0
E (MeV)

-0.3

-0.2

-0.1

0.0

0.1

S 0

Z1Z2 = 1
Z1Z2 = 0
Z1Z2 = -1

FIG. 1. The � = 0 shift factor versus energy for the repulsive (blue
dashed curve), uncharged (black solid curve), and attractive (red dot-
dashed curve) cases. Additional details are provided in the text.

are generally valid for η < 0. We can conclude that A2 > 0 and
hence P > 0 from Eqs. (16a) and (16b). For the particular case
with � = 0 plotted in Fig. 1, it can be seen that ∂S/∂E < 0 for
E > 0.

B. The neutral case

In the neutral or uncharged case, we have η = 0 and the
amplitude is given by

A2 = π

2
ρ
[
J 2

�+1/2(ρ) + Y 2
�+1/2(ρ)

]
, (71)

where J and Y are the regular and irregular Bessel functions. It
is convenient in this case to use form ofQ(z) given by Eq. (16c),
which becomes

Q(z) = 2F1(−�,� + 1,1; −z2). (72)

Following Prosser and Biedenharn [6, Eq. (16a)] may then be
integrated termwise to yield

A2 = 3F0
(−�,� + 1, 1

2 ; −ρ−2
)
, (73)

where 3F0 is a generalized hypergeometric function, and it
is assumed that both hypergeometric functions may be repre-
sented by their canonical power series. If � is a nonnegative in-
teger (the case for physical problems), then the hypergemeotric
functions in Eqs. (72) and (73) are represented by series that ter-
minate and there are no questions of convergence. Otherwise,
the 2F1 in Eq. (72) cannot be represented by its series when
z > 1 and the series for 3F0 in Eq. (73) is a nonconvergent
asymptotic expansion, equivalent to Eq. 13.75(1) of Watson
[11, p. 449].

Alternatively, one may utilize the fact that Eq. (72) is a
representation of the Legendre function P̃� (a polynomial if �
is a nonnegative integer) [12, Eq. 15.4.16, p. 562]

2F1(−�,� + 1,1; −z2) = P̃�(1 + 2z2), (74)

to write

A2 = 2ρ

∫ ∞

0
dz e−2ρzP̃�(1 + 2z2). (75)
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This is a known integral representation for Eq. (71) deduced
by Hartman [13, Eq. (11.6), p. 588] using a different approach.

In the neutral case, the monotonicity results are essentially
unchanged from the repulsive charge case, since dQ/dz � 0
[see Eq. (21)]. Note that dQ/dz = 0 only occurs when � =
0, in which case we have Q = 1 and A2 = 1, which leads
to P = ρ, S = 0, and φ = ρ for E > 0. This shift factor is
plotted in Fig. 1. In this case, the monotonicity properties are
trivial may be deduced by inspection. In particular, we note
that ∂S/∂E = 0 for � = 0 and positive energy.

C. Further discussion of the amplitude A2

Our finding that A2 = F 2
� + G2

� is CM for the case of
a repulsive Coulomb field is a generalization of the result
that ρ[J 2

ν (ρ) + Y 2
ν (ρ)] is CM [14]. The key to proving that

A2 is CM is the Laplace transform representation given by
Eq. (16). Integral representations for the sum of squares of
linearly independent solutions to an ordinary second-order
differential equation, such as Eq. (16), are known as Nicholson-
type integrals and may considered to be generalizations of
sin2 ρ + cos2 ρ = 1. These representations are often useful
for establishing monotonicity properties of special functions
[14–16], as has been the case in the present work.

Hartman [13,17] has studied the differential equation

u′′ + [c + s(ρ)]u = 0, (76)

where c is a positive constant and s → 0 as ρ → ∞. He has
shown that there are always solutions x and y to Eq. (76)
with unit Wronskian such that the generalized amplitude
A2 = x2 + y2 → 1 as ρ → ∞ and, if −s(ρ) is CM, the
generalized amplitude A2 is CM. Since Eq. (2) is of this form
with both the repulsive Coulomb potential and the centrifugal
barrier making CM contributions to −s(ρ), this provides an
alternate proof that A2 is CM for the repulsive Coulomb case.
It is also clear from this perspective that we are unable to draw
general conclusions regarding the monotonicity of A2 for an
attractive Coulomb potential.

We finish the discussion of the amplitude by deriving
its asymptotic expansion for large ρ. Leading asymptotic
expansions for A have been given by Hull and Breit [7] that
lack general formulas for the coefficients. The asymptotic
expansion for A2 turns out to be considerably simpler. If u and
v are solutions of Eq. (2), their product w = uv satisfies the
Appell equation, a third-order homogeneous linear differential
equation [13, p. 560, Eq. (2.23)], which in our case reads

w′′′ + 4

[
1− 2η

ρ
− �(�+1)

ρ2

]
w′ + 2

[
2η

ρ2
+ 2�(�+1)

ρ3

]
w = 0.

(77)

Any linear combinations of such solutions, including A2 =
F 2

� + G2
� , is likewise a solution of Eq. (77). Assuming an

expansion of the form

A2 ∼
∞∑

k=0

ak

ρk
(78a)

with a0 = 1 and substituting into Eq. (77) leads to the following
result for the coefficients:

a0 = 1, (78b)

a1 = η, and for k � 1 (78c)

ak+1 = η
2k + 1

k + 1
ak + k(2� + k + 1)(2� − k + 1)

4(k + 1)
ak−1.

(78d)

Considering that any solution of Eq. (77) must be a linear
combination of F 2

� , G2
� , and F�G� and the leading asymptotic

expansions of these possibilities, it is clear that Eq. (78) is in
fact the asymptotic expansion of A2. If η = 0 (i.e., the neutral
case), the expansion only contains even terms and is equivalent
to Eq. (73). If � is also a nonnegative integer (the case for
physical problems), the series terminates. Equation (78) is the
generalization to the Coulomb case of the asymptotic series
for J 2

ν + Y 2
ν given by Eq. 13.75(1) of Watson [11, p. 449].

D. Negative energies

In the case of negative energies, the Coulomb functions
satisfy

u′′ +
[
−1 − 2η

ρ
− �(� + 1)

ρ2

]
u = 0, (79)

where ρ = kr , k =
√

−2μE/h̄2, ηk = Z1Z2q
2μ/h̄2, and ′ ≡

d/dρ. We will consider the solution given by the exponentially-
decaying Whittaker function W−η,�+1/2(2ρ) ≡ W and the shift
factor that is given for negative energies by

S = ρ
W ′

W
. (80)

Adapting Eqs. (27), (53), and (61) to negative energies, we
have [

W 2

ρ

∂S

∂E

]
ρa

= − 1

E

∫ ∞

ρa

W 2 dρ, (81)

[
W 2

ρ

∂S

∂�

]
ρa

= −(2� + 1)
∫ ∞

ρa

W 2

ρ2
dρ, and (82)

[
W 2

ρ

∂S

∂η

]
ρa

= −2
∫ ∞

ρa

W 2

ρ
dρ. (83)

These equations show ∂S/∂E > 0, ∂S/∂� < 0, and ∂S/∂η <
0 for negative energies, regardless of whether the Coulomb
potential is repulsive, attractive, or zero. These results have
been noted previously—see the discussion of Eq. (27) above
regarding ∂S/∂E and Prosser and Biedenharn [6, Sec. IV].
Also, all of the shift factors plotted in Fig. 1 are consistent with
∂S/∂E > 0 for E < 0. One should be aware that, for the attrac-
tive Coulomb case, the shift factor has singularities for slightly
negative energies due to zeros of the Whittaker function.

In the absence of the Coulomb potential, the negative-
energy solutions are modified Bessel functions. Goldstein and
Thaler [18] showed that an amplitude and phase parametriza-
tion can be implemented in this situation. Here, the solutions
depend exponentially on the “phase,” as opposed to the sinu-
soidal dependence used for positive energies. Presumably, this
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description could be extended to include the Coulomb potential
and describe the negative-energy Whittaker function solutions.

VII. CONCLUSIONS

We have studied the derivatives of the shift and penetration
factors, as well as the related amplitude and phase, with respect
to energy, angular momentum, and charge. For the cases of
neutral or repulsive Coulomb fields, we find definitive results
for the signs of these quantities, as summarized in Tables I and
II. In particularly, we have succeeded in proving ∂S/∂E > 0,
a result that has been long thought to be true, but for which a
general proof was lacking.

The fact that ∂S/∂E > 0 for positive energies and a
repulsive or neutral Coulomb field has implications for the
R-matrix description of nuclear reactions. When relating R-
matrix reduced width amplitudes to physical quantities, one is
presented with the factor

N−1 = 1 +
∑

c

γ 2
λc

∂Sc

∂E
, (84)

where c is the channel label and γλc are the reduced width am-
plitudes. For an unbound state in the one-level approximation,
the observed partial width is given by Lane and Thomas [1,
Eqs. (3.5) and (3.6), p. 327],


λc = 2NPcγ
2
λc. (85)

The Thomas approximation [19] has been employed here,
which assumes that Sc(E) may be replaced by its first-order
Taylor series. Knowledge that ∂S/∂E > 0 ensures that N > 0
and that the observed partial width is nonnegative, a require-
ment for a physically reasonable partial width. In the case of
a bound level, the factor N defined by Eq. (84) also arises.
In this situation, N changes the normalization volume of the
wave function from inside the channel surfaces to all space
[1, Sec. IV.7, p. 280; Eqs. (A.29) and (A.30), p. 351]. For this
case, N was already known to be positive. The description
of the physical properties of bound and unbound levels may
be unified by considering the complex poles of the scattering
matrix [20]. In this approach, a similar normalization factor
containing ∂L/∂E naturally appears in the residues of the
scattering matrix poles. If the level is narrow such that the pole
is near the real energy axis, this normalizaton factor becomes
equivalent to Eq. (84) in the one-level approximation. Although
less fundamental than partial widths defined via the residues
of the poles of the scattering matrix, Eqs. (84) and (85) may
serve as a practical definition of the observed partial width in
R-matrix theory.

Brune [3] has given an alternative parametrization of R-
matrix theory that utilizes level energies and reduced width
amplitudes that are more closely connected to the observed
resonance energies and partial widths than in the standard
parametrization [1]. The present result that ∂S/∂E > 0 is
sufficient to prove that the alternative parameters have a one-to-
one relationship to the standard parameters and ensures that the
alternative parametrization is well defined and fully equivalent
to the standard parametrization. Further information on this
point is provided by Eq. (45) of Ref. [3] and that equation’s
surrounding discussion.

The results given in this paper follow from the Nicholson-
type integral representation of the amplitude A2 given by
Eq. (16). When the Coulomb field is repulsive or absent, we
find that A2 is a CM function of ρ, which leads to definitive
monotonicity properties for the shift and penetration factors.
Considering the work of Hartman [13,17] on the theory of
differential equations, it is apparent that any central potential
that is a CM function of radius will give analogous results.
To be explicit, a CM potential is necessarily repulsive and
monotonically decreasing with radius, with the signs of higher
derivatives prescribed according to Eq. (A5). An attractive
potential cannot be CM and almost none of the conclusions
of this paper apply in this case.
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APPENDIX A: SOME RESULTS CONCERNING
MONOTONIC FUNCTIONS

We summarize here some aspects of monotonic functions
that are of use in this paper.

1. Integrals of the type
∫ 2πm

0 f (x) sin (x) dx

Consider the integral

I =
∫ 2π

0
f (x) sin(x) dx, (A1)

where f (x) > 0 and f ′(x) < 0 for x > 0. The integral can be
split and rewritten as an integral from 0 to π :

I =
∫ π

0
f (x) sin(x) dx +

∫ 2π

π

f (x) sin(x) dx (A2)

=
∫ π

0
[f (x) − f (x + π )] sin(x) dx. (A3)

Since the conditions on f (x) imply f (x) − f (x + π ) > 0 and
sin(x) > 0 for 0 < x < π , we can conclude that I > 0. The
same result holds if the integration range is extended by an
integer multiple m of 2π :∫ 2πm

0
f (x) sin(x) dx > 0 m = 1,2,3, . . . , (A4)

including for m → ∞, provided the integral converges. Note
that an analogous conclusion cannot in general be drawn for∫ 2π

0 f (x) cos(x) dx, but in may be possible to draw conclusions
using integration by parts—depending on the sign off ′′(x) (see
Sec. A 2 below).

2. Completely monotonic functions

A function f (x) is said to be completely monotonic
(CM) if

0 � (−1)n
(

d

dx

)n

f (x) < ∞ (A5)
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for all x > 0 and n = 0,1,2, . . . The properties of CM func-
tions are reviewed in Ref. [10]. Besides the definition, the
feature of CM functions that is particularly useful for this work
the fact that the product of two CM functions is also a CM
function. A consequence of this property that we will utilize is
that

h(x) =
[
−g(x)

d

dx

]n

f (x) n = 0,1,2, . . . (A6)

is a CM function if f (x) and g(x) are CM. The definition
Eq. (A5) allows f (x) to be a non-negative constant; we exclude
this case which eliminates the possibility that (d/dx)nf (x) in
Eq. (A5) can be zero [14, Appendix I, p. 71-72].

We now consider a CM f (x) and integrals over
0 < x < 2πm where m = 1,2,3, . . . Using the results of
Sec. A 1, we can immediately conclude that∫ 2πm

0
f (x) sin(x) dx > 0. (A7)

We now also have an analogous result for the cosine integral:∫ 2πm

0
f (x) cos(x) dx

= [f (x) sin(x)]2πm
0 −

∫ 2πm

0

df

dx
sin(x) dx (A8)

= −
∫ 2πm

0

df

dx
sin(x) dx (A9)

> 0, (A10)

where the assumption that the original integral is convergent
allows one to conclude the surface term vanishes and we have
used the fact that −df/dx is a CM function. Similar reasoning
has been used in Ref. [21] to derive sufficient conditions for a
Fourier sine or cosine transform to be positive.

APPENDIX B: COULOMB PHASE SHIFT AND h(η)

The Coulomb phase shift σ� is defined by

e2iσ� = 
(1 + � + iη)


(1 + � − iη)
= (� + iη) . . . (1 + iη)

(� − iη) . . . (1 − iη)
e2iσ0 , (B1)

with the derivative of σ� is given by

dσ�

dη
= 1

2
[�(1 + � + iη) + �(1 + � − iη)], (B2)

dσ�>0

dη
= dσ0

dη
+

�∑
m=1

m

m2 + η2
, (B3)

dσ0

dη
= 1

2
[�(1 + iη) + �(1 − iη)], and (B4)

≡ h(η) + log(η), (B5)

where � is the digamma function. Note that the final part of
Eq. (B1) and Eq. (B3) are only applicable when � is a nonneg-
ative integer. Equation (B5) serves to define, for a repulsive
Coulomb field, the auxiliary function h(η) that also arises in
the series expansion of the irregular Coulomb functions and in
effective range theory [22–24]. Note that h(η) is real when η

is real and positive and that it is also given by [22,23]

h(η) = − log η − γ + η2
∞∑

k=1

1

k(k2 + η2)
, (B6)

where γ = 0.57721566 . . . is Euler’s constant.
It appears that h(η) is a completely monotonic function of

η, but we have been unable to prove this. Using Eq. (6.3.21) of
Abramowitz and Stegun [12, p. 259] and the properties of the
digamma function, we have found the following representation
for h(η):

h(η) = I1(η) + I2(η) + e−πηI3(η), where (B7a)

I1(η) =
∫ π

0

[
1

t
− 1

2 tan(t/2)

]
e−ηt dt, (B7b)

I2(η) =
∫ ∞

π

e−ηt

t
dt, and (B7c)

I3(η) =
∫ π

0

1

2 tan(t/2)

sinh(ηt)

sinh(ηπ )
dt (B7d)

that is sufficient to demonstrate that

h(η) > 0 and
dh

dη
< 0 (B8)

for the repulsive Coulomb field. These results are useful for
determining the sign of the energy derivative of σ� and/or
h(η) in this work. To the best of our knowledge, these results
regarding the monotonic properties of σ� and h(η) have not
been noted previously. Finally, we note that for η → ∞ we
have asymptotically [12, Eq. (6.3.19), p. 259]

h(η) ∼ 1

12η2
+ 1

120η4
+ · · · , (B9)

which is consistent with the Eq. (B8).

APPENDIX C: LIMITING FORMS FOR
SMALL AND LARGE ρ

We present in Table III the leading behavior of the various
Coulomb quantities used in this work for ρ → 0 and ρ →
∞, considering η to be constant. The small-ρ forms are
deduced starting from Eqs. (14.1.3)–(14.1.23) of Abramowitz
and Stegun [12, pp. 539–540], with the Gamow factor defined
to be

C�(η) = 2�e−πη/2[
(� + 1 + iη)
(� + 1 − iη)]1/2


(2� + 2)
. (C1)

To extract ∂S�/∂E as ρ (or the radius) goes to zero, it is
necessary to consider the expansion of S� beyond the leading
term given in Table III. For � a nonnegative integer, this
results in

S� =
{

2ηρ[log(2ηρ) + 2γ + h(η)] + . . . � = 0

−� − ηρ
�

+ 1+(η/�)2

2�−1 ρ2 + . . . � > 0
, (C2)

where γ and h(η) are defined in Appendix B. The resulting
expressions for the energy dependence of the shift factor in the
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TABLE III. Limiting forms of various Coulomb quantities for small and large ρ. The complete asymptotic expansion of A2
� for large ρ is

given in the text by Eq. (78). A refined small-ρ expansion for S� is given in the text by Eq. (C2).

Quantity ρ → 0 ρ → ∞

H+
� [ρ�(2� + 1)C�(η)]−1 + . . . + i[ρ�+1C�(η) + . . .] exp(iθ�)

[
1 + η

2ρ
+ i η2+�(�+1)

2ρ
+ · · · ]

A2
� [ρ�(2� + 1)C�(η)]−2 + · · · 1 + η

ρ
+ 3η2+�(�+1)

2ρ2 + · · ·
φ� ρ2�+1(2� + 1)C2

� (η) + · · · θ� + η2+�(�+1)
2ρ

+ · · ·
P� ρ2�+1[(2� + 1)C�(η)]2 + · · · ρ − η − η2+�(�+1)

2ρ
+ · · ·

S� −� + · · · − η

2ρ
− 2η2+�(�+1)

2ρ2 + · · ·

ρ → 0 limit (with η fixed) are

∂S�

∂E
=

⎧⎨
⎩

− η2ρ
E

dh
dη

+ . . . � = 0
2μr2

h̄2(2�−1)
+ . . . � > 0

. (C3)

As discussed in Appendix B, dh/dη < 0, and consequently
∂S�/∂E > 0 in this limit. It is also interesting to note that for
� > 0 the quantity ∂S�/∂E is independent of the energy and
Coulomb field for sufficiently small radii.

The large-ρ forms are deduced from asymptotic expansions
given by Eqs. (14.5.1)–(14.5.9) of Ref. [12, pp. 539–540].
Energy derivatives of some the Coulomb quantities were
determined for the large-ρ limit and are given in Table IV. They
are useful for evaluating the surface terms of integrals that arise
in this work. In addition, one can see that ∂S�/∂E > 0 in the
large-ρ limit.

APPENDIX D: LIMITING FORMS FOR
SMALL AND LARGE E

We will first consider the case of large energies at fixed
radius, where ρ → ∞ and η → 0. Since the asymptotic for-
mulas for large ρ are still valid when η is small, the high-energy
limits can be calculated using the ρ → ∞ formulas located in
Tables III and IV of Appendix C.

For considering the low-energy limit at fixed radius, the
expansions in terms of modified Bessel functions and inverse
powers of η2 are appropriate [25,26]. We will focus our
attention on the shift factor, as the penetration factor has
been thoroughly covered elsewhere [1,27]. In this limit, it is
convenient to use the energy-independent radial coordinate x0:

x0 =
√

8ηρ =
√

8αr, (D1)

where α = ηk is likewise independent of energy. In the low-
energy limit, we have G� 	 F� and the shift factor at zero

TABLE IV. Energy derivatives of some Coulomb quantities for
large ρ.

∂A2
�

∂E
∼ ρ

2E

[− 2η

ρ2 − 6η2+�(�+1)
ρ3 + . . .

]
∂φ�

∂E
∼ ρ

2E

[
1 + η

ρ
log(2ρ) − η

ρ
− 3η2+�(�+1)

2ρ2 + · · · ] + ∂σ�

∂E

∂P�

∂E
∼ ρ

2E

[
1 + η

ρ
+ 3η2+�(�+1)

2ρ2 + · · · ]
∂S�

∂E
∼ ρ

2E

[
η

ρ2 + 4η2+�(�+1)
ρ3 + · · · ]

energy is given by the well-known result [1,6]

S� = −� − x0K2�(x0)

2K2�+1(x0)
, (D2)

where Kν are the irregular modified Bessel functions. The
energy derivative of the shift factor can be found by considering
the leading energy-dependent terms in the expansions of G�

and G′
�. The slope of the shift factor at zero energy is thus

found:

∂S�

∂E
= 2μ

h̄2α2

x3
0

192[K2�+1(x0)]2

×{6(� + 1)[K2�+1(x0)K2�+2(x0)

−K2�(x0)K2�+3(x0)] + x0[K2�(x0)K2�+4(x0)

−K2�+1(x0)K2�+3(x0)]}. (D3)

Lane and Thomas [1, p. 351] have given in their Eq. (A.25) a
similar expression, valid for � = 0 only, that is equivalent to
our result in that case. It is not at all clear that ∂S�/∂E as given
by Eq. (D3) is positive. An alternative approach is to realize
that at zero energy the wave function decays exponentially at
large radii all the way out to ∞ (physically, the classical turning
radius is infinite) and Eq. (27) can be used. This results in

∂S�

∂E
= 2μ

h̄2α2

x2
0

32

∫ ∞

x0

[
xK2�+1(x)

x0K2�+1(x0)

]2

x dx, (D4)

which clearly shows ∂S�/∂E > 0 at zero energy. The equiv-
alence of Eqs. (D3) and (D4) can be confirmed using differ-
entiation and recurrence formulas. The small radius (x0 → 0)
limits of these results, for � a nonnegative integer, are

S� =
{

x2
0

2 [γ + log(x0/2)] + . . . � = 0

−� − x2
0

8�
+ . . . � > 0

(D5)

and

∂S�

∂E
= 2μ

h̄2α2

⎧⎨
⎩

x2
0

48 + . . . � = 0
x4

0
64(2�−1) + . . . � > 0

, (D6)

which are consistent with Eqs. (C2) and (C3) when the
low-energy behavior of h(η) is taken into consideration via
Eq. (B9).
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APPENDIX E: ADDITIONAL INTEGRAL RELATIONS

Some integral expressions involving ∂S/∂E are given here.
A general class of relations may be derived by multiplying
through by an arbitrary function f before integrating to achieve
Eq. (25). This procedure results in

−E

[
f O2

ρ

∂L

∂E

]ρb

ρa

=
∫ ρb

ρa

O2

[
f − E

ρ
f ′ ∂L

∂E

]
dρ. (E1)

One choice for f is

f = e−iψ , (E2)

where ψ is defined by Eq. (29), such that f O2 = A2, f ′ =
−2if/A2, and

−E

[
A2

ρ

∂L

∂E

]ρb

ρa

=
∫ ρb

ρa

A2

[
1 + 2i

A2

E

ρ

∂L

∂E

]
dρ. (E3)

Taking the real part gives

−E

[
A2

ρ

∂S

∂E

]ρb

ρa

=
∫ ρb

ρa

[
A2 − 2E

ρ

∂P

∂E

]
dρ, (E4)

and then letting ρb → ∞ (noting that the integrand ∼1/ρ3 for
large ρ) yields a relation for ∂S/∂E:

E

[
A2

ρ

∂S

∂E

]
ρa

=
∫ ∞

ρa

[
A2 − 2E

ρ

∂P

∂E

]
dρ. (E5)

Interestingly, Eq. (49) ensures that the integrand in the right-
hand side of this equation is positive. Alternatively, noting that

dφ

dr
= P

r
and hence

∂

∂E

(
dφ

dr

)
= 1

r

∂P

∂E
, (E6)

the second term in the integrand of Eq. (E4) can be integrated
to give

E

[
−A2

ρ

∂S

∂E
+ 2

∂φ

∂E

]ρb

ρa

=
∫ ρb

ρa

A2 dρ, (E7)

which happens to be equivalent to Eq. (A.31) of Lane and
Thomas [1, p. 352]. The leading asymptotic behavior of A2 for
large ρ can be subtracted

[
−E

A2

ρ

∂S

∂E
+ 2E

∂φ

∂E
− ρ − η log(2ρ)

]ρb

ρa

=
∫ ρb

ρa

(
A2 − 1 − η

ρ

)
dρ (E8)

to allow ρb → ∞ to be taken:

[
E

A2

ρ

∂S

∂E
− 2E

(
∂φ

∂E
− ∂σ

∂E

)
+ ρ

+ η log(2ρ) + η

]
ρa

=
∫ ∞

ρa

(
A2 − 1 − η

ρ

)
dρ, (E9)

where the asymptotic forms of the functions have been used to
evaluate the surface terms at ∞.

It is also natural to investigate the integral relations aris-
ing from considering solutions O∗

1 and O2 with O2 → O1.
Assuming that O = A exp(iφ) and multiplying through by an
arbitrary function g before integrating yields:

−E

[
g

(
A2

ρ

∂S

∂E
− 2

∂φ

∂E

)]ρb

ρa

=
∫ ρb

ρa

[
gA2 − Eg′

(
A2

ρ

∂S

∂E
− 2

∂φ

∂E

)]
dρ. (E10)

These relations are not independent of those derivable from
Eq. (E1).
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