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Extrapolation of scattering data to the negative-energy region. II. Applicability of effective range
functions within an exactly solvable model
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A problem of analytical continuation of scattering data to the negative-energy region to obtain information about
bound states is discussed within an exactly solvable potential model. This work is continuation of the previous
one by the same authors [L. D. Blokhintsev et al., Phys. Rev. C 95, 044618 (2017)]. The goal of this paper is to
determine the most effective way of analytic continuation for different systems. The d + α and α + 12C systems
are considered and, for comparison, an effective-range function approach and a recently suggested � method [O.
L. Ramírez Suárez and J.-M. Sparenberg, Phys. Rev. C 96, 034601 (2017).] are applied. We conclude that the
� method is more effective for heavier systems with large values of the Coulomb parameter, whereas for light
systems with small values of the Coulomb parameter the effective-range function method might be preferable.
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I. INTRODUCTION

Asymptotic normalization coefficients (ANCs) are funda-
mental nuclear characteristics important both in nuclear reac-
tion and nuclear structure physics. They determine amplitudes
of the asymptotic forms of bound-state nuclear wave functions
in binary channels. The ANC for a virtual a ↔ b + c process
is related directly to the residue of the elastic b + c scattering
amplitude at the pole in the energy plane corresponding to the
bound state of nucleus a (see, e.g., Ref. [1]).

The ANCs naturally appear in the expressions for the cross
sections of nuclear reactions between charged particles at low
energies when, due to the Coulomb barrier, the reactions occur
at large distances between colliding nuclei [2]. Astrophysical
nuclear reactions represent the most important type of such
reactions. The role of the ANCs in nuclear astrophysics was
first discussed in Refs. [3–5], where it was emphasized that
the ANC determines the overall normalization of peripheral
radiative capture reactions (see also Refs. [6,7]). The ANC
method provides a powerful indirect technique in nuclear
astrophysics.

There are different ways to determine the ANCs from
experimental data. From the peripheral reactions the ANCs
can be extracted directly by normalizing the calculated cross
sections to the experimental data. However, it is impossible
to directly determine the ANCs from elastic scattering data,
which are measured at positive energies while the ANCs are
related to the residues of the poles of the bound states at
negative energies. Nevertheless, there is an indirect way to
determine the ANC from experiment: The ANC Ca→bc can
be determined from experimental data by extrapolating, in the
plane of the center-of-mass (c.m.) energy E, the partial-wave
amplitude of the elastic b + c scattering, obtained by the

phase-shift analysis, to the pole corresponding to the bound
state a and lying at E < 0. The conventional procedure for
such an extrapolation is the analytic approximation of the
experimental values of the effective-range function (ERF)
Kl(E) with the subsequent continuation to the pole (here l
is the orbital angular momentum). The ERF method has been
successfully employed to determine the ANCs for bound (as
well as resonant) nuclear states in a number of works (see, e.g.,
Refs. [8–10] and references therein).

The ERF is expressed in terms of scattering phase shifts.
In the case of charged particles, the ERF for the short-range
interaction should be modified. Such modification generates
additional terms in the ERF. These terms depend only on
the Coulomb interaction and may far exceed, in the absolute
value, the informative part of the ERF containing the phase
shifts. This fact hampers the practical procedure of the analytic
continuation and affects its accuracy. In Ref. [11] it was
suggested to use for the analytic continuation the quantity
�l(E) [which is defined below in Sec. II] rather than the ERF
Kl(E). Quantity �l(E), which we will call a � function, does
not contain the pure Coulomb terms. However, the validity of
employing �l(E) was not obvious, and this resulted in some
discussions. It was demonstrated in Ref. [12] that the �l(E)
function suggested in Ref. [11] can be smoothly continued
from the positive- to the negative-energy region along the real
E axis (see also Ref. [13]). In what follows, using the �l(E)
function for extrapolation to the negative-energy region to find
the ANC is referred to as a � method.

The present work can be considered as a natural devel-
opment and extension of Ref. [12] by the same authors.
Here we calculate the scattering phase shifts and the func-
tions Kl(E) and �l(E) using an analytic solution of the
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Schrödinger equation at E > 0 with an adopted potential
in the form of the square well plus the Coulomb interac-
tion. To the authors’ knowledge, the square-well potential
is the only local potential which, with the added Coulomb
interaction, permits the analytic solution of the Schrödinger
equation at any value of the orbital angular momentum. In this
approach, our results are vigorous and obtained without any
approximation. The calculated functions Kl(E) and �l(E) are
approximated by Taylor polynomials in E and extrapolated to
the negative-energy region including the bound-state poles of
the system under consideration. This procedure imitates the
approach to determining ANCs by the analytic approximation
of experimental scattering data. The approximated values of
Kl(E), �l(E), and the resulting ANCs are compared to the ex-
act values following from the exact solution of the Schrödinger
equation. This comparison allows one to evaluate the quality
of the approximation and to compare the effectiveness of the
ERF and � methods.

Note that the simplicity of our potential model is justified
by the fact that at very low energies, which we are interested
in, the wave length (the reciprocal of the relative momentum of
the interacting nuclei) becomes much larger than the radius of
the nuclear interaction potential, making the results insensitive
to the specific shape of the used potential, whether it is Woods-
Saxon, square well, δ function, or anything else.

In the present paper, the procedure described above is
applied to two different nuclear systems: The d + α system
and the α + 12C system. These systems differ in the value of
the Coulomb (Sommerfeld) parameter, which is much larger
for the latter. One more qualitative distinction between these
systems is that the d + α system has only one bound state
corresponding to the ground state of 6Li whereas the α + 12C
system possesses two bound states in the 0+ channel. One of
the main results of the present paper is the conclusion that
the � method is more effective for heavier systems with large
values of the Coulomb parameter whereas for light systems
with small values of the Coulomb parameter the ERF method
might be preferable.

The paper is organized as follows. Section II provides a brief
outline of the general formalism of the elastic scattering for the
superposition of a short-range and the Coulomb interactions,
which is necessary for the subsequent discussion. Sections III
and IV deal with the d + α and α + 12C systems, respectively.
The problem of the convergence of the approximate expres-
sions for the � function is discussed in Sec. V and in the
appendix.

Throughout the paper, we use the system of units in which
h̄ = c = 1.

II. BASIC FORMALISM

In this section, we recapitulate basic formulas which are
necessary for the subsequent discussion. The formalism has
been published in more detail in Ref. [12].

The Coulomb-nuclear amplitude of elastic scattering of
particles b and c is of the form

fNC(k) =
∞∑
l=0

(2l + 1) exp(2iσl)
exp(2iδl) − 1

2ik
Pl(cos θ ). (1)

Here k is the relative momentum of b and c, θ is the c.m.
scattering angle, σl = arg �(l + 1 + iη) and δl are the pure
Coulomb and Coulomb-nuclear phase shifts, respectively, and
�(z) is the � function.

η = ZbZce
2μ/k (2)

is the Coulomb parameter for the b + c scattering state with
the relative momentum k related to the energy by k = √

2μE,
μ = mbmc/(mb + mc), and mi and Zie are the mass and the
electric charge of particle i.

The behavior of the Coulomb-nuclear partial-wave ampli-
tude fl = [exp(2iδl) − 1]/2ik is irregular near E = 0. There-
fore, one has to introduce the renormalized Coulomb-nuclear
partial-wave amplitude f̃l [14–16]

f̃l = exp(2iσl)
exp(2iδl) − 1

2ik

[
l!

�(l + 1 + iη)

]2

eπη. (3)

Equation (3) can be rewritten as

f̃l = exp(2iδl) − 1

2ik
C−2

l (η), (4)

where Cl(η) is the Coulomb penetration factor (or Gamow
factor) determined by

Cl(η) =
[

2πη

exp(2πη) − 1
vl(η)

]1/2

, (5)

vl(η) =
l∏

n=1

(1 + η2/n2) (l > 0), v0(η) = 1. (6)

It was shown in Ref. [14] that the analytic properties of f̃l

on the physical sheet of E are analogous to the ones of the
partial-wave scattering amplitude for the short-range potential
and it can be analytically continued into the negative-energy
region.

The amplitude f̃l can be expressed in terms of the Coulomb-
modified ERF Kl(E) [14,16] by

f̃l = k2l

Kl(E) − 2ηk2l+1h(η)vl(η)
(7)

= 1

kC2
l (η)(cot δl − i)

(8)

= 1

v2
l �l(E) − ikC2

l (η)
, (9)

where

Kl(E) = k2l+1
[
C2

l (η)(cot δl − i) + 2ηh(k)vl(η)
]
, (10)

h(η) = ψ(iη) + 1

2iη
− ln(iη), (11)

�l(E) = kC2
0 (η) cot δl, (12)

and ψ(x) is the digamma function. �l(E) is the � function
introduced in Ref. [11].

It was shown in Ref. [14] that function Kl(E) defined by
(10) is analytic near E = 0 and can be expanded into Taylor
series in E. In the absence of the Coulomb interaction (η = 0),
Kl(E) = k2l+1 cot δl(k).
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If the b + c system has in the partial wave l the bound state
a with the binding energy ε = �2/2μ > 0, then the amplitude
f̃l has a pole at E = −ε. The residue of f̃l at this point is
expressed in terms of the ANC C

(l)
a→bc [15] as

resf̃l(E)|E=−ε = lim
E → −ε

[(E + ε)f̃l(E)] (13)

= − 1

2μ

[
l!

�(l + 1 + ηb)

]2[
C

(l)
a→bc

]2
, (14)

where ηb = ZbZce
2μ/� is the Coulomb parameter for the b +

c bound state a.
In what follows, the short-range nuclear interaction between

particles b and c is described by the square-well potential

V (r) =
{−V0 if 0 � r � R

0 if r > R
, (15)

where R is the radius of the square well and V0 > 0 is its depth.
The solution of the Schrödinger equation for the potential

(15) plus the Coulomb interaction results in the following
expression for the phase shift δl [12]:

cot δl =
dĜl,η(k,R)

dR
F̂l,η1 (K,R) − dF̂l,η1 (K,R)

dR
Ĝl,η(k,R)

dF̂l,η(k,R)

dR
F̂l,η1 (K,R) − dF̂l,η1 (K,R)

dR
F̂l,η(k,R)

.

(16)

Here K = √
2μ(E + V0), F̂l,η(q,r) = Fl(η,qr)/qr ,

Ĝl,η(q,r) = −Gl(η,qr)/qr , and Fl(η,ρ) and Gl(η,ρ) are
the regular and irregular Coulomb functions, respectively
[17].

Equation (16) allows one to calculate the functions Kl(E)
and �l(E) using Eqs. (10) and (12). Detailed derivation and
explicit analytic expressions for Kl(E) and �l(E) are given in
Ref. [12].

III. d + α SYSTEM

Consider the d + α system having one bound state corre-
sponding to the ground-state of 6Li with l = 0. For this sys-
tem mb = md = 1877.79 MeV, mc = mα = 3727.379 MeV,
ma = m6Li = 5601.518 MeV, ZbZc = 2, binding energy ε =
md + mα − m6Li = 1.474 MeV.

Parameters of the square well V0 = 7.400955728 MeV
and R = 3.963659401 fm were found by fitting the binding
energy and the ANC C

(0)
6Li→αd

= 2.29 fm−1/2 obtained in

Ref. [8]. For brevity ANC C
(0)
6Li→αd

will be denoted as C.

A. Approximation of the ERF for the d + α system by
the Taylor series

Consider first the approximation of the ERF K0(E) by the
Taylor series in E at E = 0. Expansion into the Taylor series
is performed using analytic expressions (10) and (16). In fact,
we limit ourselves by the first several terms of the expansion.
A polynomial obtained this way is then continued analytically
to the negative-energy region to the bound-state pole.

Two versions of the approximation are considered:

TABLE I. Approximation of K0(E) for the d + α system.

Version 1 Version 2
N ε (MeV) C (fm−1/2) ε (MeV) C (fm−1/2)

2 1.4546 2.256 1.474 2.894
3 1.4729 2.2858 1.474 2.2902
4 1.4744 2.2917 1.474 2.28997
Exact value 1.474 2.29 1.474 2.29

Version 1. Both the binding energy and the ANC are found
from the approximated form of K0(E).

Version 2. The binding energy is preset (ε = 1.474 MeV)
and only the ANC is sought.

Actually, in the second version we approximate the function
F (E) = [K0(E) − Kb]/(E + ε), where Kb = 2ηkh(η)|E=−ε

is the value of K0(E) at E = −ε. Function F (E) is finite at
E = −ε and its approximation by the Taylor series guarantees
the correct value of K0(E) at E = −ε, which is the correct
position of the pole of the scattering amplitude corresponding
to the bound state.

The results of the calculation of the binding energy (in the
first version) and the ANC are presented in Table I. In this
table, as well in all the following tables, N denotes the power
of the approximating Taylor polynomial. The exact values of
the corresponding quantities obtained by the exact calculations
within the model used are shown in the last line of Table I. One
can see that the convergence in N is quite good, especially
within the second version.

The exact function K0(E) for the d + α system and its
approximations by the Taylor polynomial of the third power
in E (N = 3) are shown in Fig. 1 for two versions of the
approximation. It is seen that N = 3 ensures a quite good
description of the exact ERF K0(E) over the wide energy
interval.

B. Approximation of the � function for the d + α system by
the Taylor series

In this subsection, we will consider the function
Re[D0(E)] = K0(E) − Re[2ηkh(η)], which is the real part of
the denominator D0(E) of the partial-wave amplitude f̃0(E)
for the d + α system. At E < 0 Re[D0(E)] = f̃ −1

0 (E) and
the condition Re[D0(E)] = 0 is the condition of a pole of
f̃0(E) corresponding to the bound state. At l = 0 Re[D0(E)]
coincides with the function �l(E) [see Eq. (12)] introduced in
Ref. [11]. Therefore, in what follows we will use the notation
�0(E) instead of Re[D0(E)].

As in the case of K0(E) (see Sec. III A), we will approximate
�0(E) by the Taylor series in E at E = 0 with the subsequent
continuation to the negative-energy region. We consider the
same two versions of the approximation as in Sec. III A; how-
ever, in the first version we now use �0(E) rather than K0(E).
In addition, in the second version we actually approximate the
function �0(E)/(E + ε).

The results of the approximation of �0(E) by the first
several terms of the Taylor series are presented in Table II. An
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FIG. 1. The K0(E) function for the d + α system. The solid
red line is the exact K0(E) function; the green dashed line is the
approximation of K0(E) by the Taylor polynomial when the binding
energy and the ANC of the bound state (d α) are not fixed (version 1);
the brown dotted line is approximation of K0 by the Taylor polynomial
of the third order when only the binding energy of (d α) is fixed
(version 2).

empty cell means that the given approximation does not lead
to the bound state. The result marked by an asterisk is related
to the fact that in the N = 3 approximation the function �0(E)
turns into zero to the right of the point E = −1.474 MeV.

The exact function �0(E) for the d + α system and its
approximations by the Taylor polynomial of the third power
in E (N = 3) are shown in Fig. 2 for two versions of the
approximation. It is seen from Table II and Fig. 2 that the
employed approximation of �0(E) is absolutely unsatisfatory.

IV. α + 12C SYSTEM WITH TWO BOUND 0+ STATES

The goal of this paper is to find out which of the two
extrapolation methods, the Coulomb-modified ERF K0(E) or
the Ramírez Suárez-Sparenberg function �0(E) [11], works
better for the α + 12C system in the l = 0 partial wave with
the ground and excited 0+ bound states. To determine it, we
use the same simple model as for the d + α system, namely

TABLE II. Approximation of �0(E) for the d + α system.

Version 1 Version 2
N ε (MeV) C (fm−1/2) ε (MeV) C (fm−1/2)

2 1.474 0.799
3 0.432 0.565 0.493∗ 0.669
4 1.474 0.087
Exact values 1.474 2.29 1.474 2.29
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FIG. 2. The �0(E) function for the d + α system. The notations
are the same as in Fig. 1 but for �0(E).

a square-well nuclear potential plus the Coulomb interaction
acting between two pointlike particlesα and 12C. In the realistic
potential approach, the wave function of the relative motion of
α + 12C has two nodes at r > 0 for the ground bound state.
In our simplified model, we use one potential supporting two
0+ bound states, the ground and the first excited ones. In this
simplified approach, the ground bound-state wave function
of the α + 12C system is nodeless at r > 0 while the wave
function of the first excited state has one node at r > 0.

For the α + 12C system, we have mb = mα =
3727.379 MeV, mc = m12C = 11174.862 MeV, ma = m16O =
14895.079 MeV, and ZbZc = 12.

We adopt the square well potential with parameters V0 =
13.70363036 MeV and R = 6.009708703 fm. The sum of this
nuclear potential and the Coulomb interaction leads to two
bound 0+ states with the binding energies ε1 = 1.113 MeV
and ε2 = 7.162 MeV. These binding energies coincide with
the experimental ones. The ANC values for such a potential
are C1 = 3218.458518 fm−1/2 and C2 = 3475.353169 fm−1/2

for the excited and ground states, respectively. Because we
use a simplified potential model these ANCs should not be
considered as realistic ones but they will help us to identify
which extrapolation method works better for the α + 12C
system.

Note that in principle one may use an alternative way to
find the parameters V0 and R, namely, by fitting them to the
value of ε1 and to the value of C1 obtained from the analysis of
experimental data, e.g., from Ref. [18]. The qualitative results
stated below do not depend on the way how the square-well
parameters are chosen.

Since the considered α + 12C system has two bound states,
the ERF K0(E), as well as function �0(E), has two poles: one
at negative energy (Ei2) and another at positive energy (Ei1).
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TABLE III. Approximation of K0(E) for the α + 12C system.

Version 1 Version 2
N ε1 (MeV) C1 (fm−1/2) ε1 (MeV) C1 (fm−1/2)

2 0.457 14361 1.113 10928
3 1.113 3090.07
4 1.042 3060.34 1.113 3230.43
5 1.122 3265.97 1.113 3217.94
6 1.1126 3215.71 1.113 3216.71
Exact values 1.113 3218.46 1.113 3218.46

The pole at negative energy leads to the change of the sign of
the partial-wave amplitude f̃0(E) in the interval between the
points corresponding to the two bound states. This guarantees
the correct signs of the residues of f̃0 at both poles E = −ε1

and E = −ε2 (see Refs. [19,20]). As is seen from Eq. (14), the
sign of both residues should be negative in order to guarantee
that the ANC is real. The pole at E > 0 is due to the Levinson
theorem. The above mentioned values of V0 and R result in
Ei2 = −4.48135 MeV and Ei1 = 25.315 MeV.

A. Approximation of the ERF for the α + 12C system: Search
for the parameters of the excited 0+ state

The approximation versions 1 and 2 are similar to those for
the d + α system. Within the version 2 the binding energy ε1

of the excited state is fixed. The presence of the ground state
and of the pole at Ei2 is not taken into account explicitly.

The results of the calculations are presented in Table III and
Figs. 3 and 4. The exact function K0(E) for the α + 12C system
in the 0+ channel is shown in Fig. 3 in a wide energy interval.
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FIG. 3. The exact K0(E) function for the system α + 12C with
two 0+ bound states. The pole at the negative energy is very narrow.
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FIG. 4. The same as in Fig. 1 but for the system α + 12C.

Note that K0(E) is not equal to zero at E = 0; however, it
is rather small: K0 = −1.609 10−6 fm−1. This fact leads to
a large value of the scattering length. In Fig. 4, we present
the exact function K0(E) and its approximation by the Taylor
polynomial of the third power in E for two versions of the
approximation. The energy interval is much more narrow than
in Fig. 3 and does not include the poles of K0(E) which cannot
be described by the Taylor polynomial approximation. It is seen
from Table III that, although the results are quite satisfactory,
the convergence to the exact values is slower than in the case
of the d + α system.

B. Approximation of the � function for the α + 12C system by
the Taylor series: Search for the parameters of the

excited 0+ state

Consider three versions of the approximation:

Version 1. Both the binding energy and the ANC are found
from the approximated form of �0(E).

Version 2. The binding energy is preset (ε1 = 1.113 MeV)
and only the ANC is sought. Function �0(E)/(E + ε1) is
approximated.

Version 3. The binding energy is preset (ε1 = 1.113 MeV)
and only the ANC is sought. Function ln(�0(E)/(E +
ε1)) is approximated by the Taylor expansion.

Using version 3 is related to the fact that the � function
changes drastically near E = 0.

The results of the calculations are presented in Table IV. The
exact�0(E) function for theα + 12C system is shown in Figs. 5
and 6 for different energy intervals. Figure 7 presents the exact
�0(E) function for the α + 12C system and its approximation
by the Taylor polynomial of the third power in E corresponding
to the aforementioned three versions of the approximation. As
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TABLE IV. Approximation of �0(E) for the α + 12C system.

Version 1 Version 2 Version 3
N ε1 (MeV) C1 (fm−1/2) ε1 (MeV) C1 (fm−1/2) ε1 (MeV) C1 (fm−1/2)

2 1.113 2813.41 1.113 3211.95
3 0.915 3296.90 1.113 3421.48 1.113 3224.88
4 1.113 3153.03 1.113 3216.54
5 1.064 3048.47 1.113 3245.73 1.113 3219.89
6 1.147 3476.67 1.113 3205.76 1.113 3217.52
7 1.100 3131.55 1.113 3226.06 1.113 3219.26
Exact values 1.113 3218.46 1.113 3218.46 1.113 3218.46

one can see from Table IV and Fig. 7, the Taylor polynomial
approximation of the �0(E) function for the α + 12C system,
in contrast to the lighter d + α system, turns out to be a quite
good approximation.

C. Approximation of the � function for the α + 12C system
by the Taylor series: Search for the parameters

of the ground 0+ state

If one intends to determine the ANC C2 for the ground 0+
state, it is necessary to explicitly include in the approximation
form of �0(E) the presence of the pole Ei2 at E < 0.

Consider two versions of the approximation:

Version 1. Approximation of the function
�0(E)(E − Ei2)/(E + ε1)(E + ε2)

Version 2. Approximation of the function
ln [−�0(E)(E − Ei2)/(E + ε1)(E + ε2)].
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FIG. 5. The exact �0(E) function for the system α + 12C with
two bound states. The pole at negative energy is located at Ei2 =
−4.48135 MeV.

Within both versions the positions of two bound states and of
the pole Ei2 are preset. The pole Ei1 lies far from the negative-
energy region and its influence can be ignored.

As before, the approximation is based on the Taylor ex-
pansion at E = 0. The results of the calculations with the two
versions of the approximation are presented in Table V and in
Fig. 8. An empty cell in the table means that the given version
of the approximation gives a wrong sign for the derivative of
�0(E) at E = −ε2 and, therefore, does not lead to a genuine
bound state. It is clear from Table V that the approximation used
here does not allow one to obtain any reasonable result for the
ANC C2 corresponding to the ground state of 16O even if one
presets explicitly the position of the pole of �0(E) at E < 0.
This is not surprising since the ground state is located far from
the point E = 0 at which the expansion in E is performed.
The situation gets much worse if one tries to determine C2 by
extrapolating the experimental data since the position of the
pole Ei2 is not known from the experiments.
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FIG. 6. The exact �0(E) function for the system α + 12C with two
bound states. The pole at positive energy is located at Ei1 = 25.315
MeV.
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FIG. 7. The �0(E) function for the α + 12C system. The solid
red line is the exact �0(E) function; the green dashed line is the
approximation of the �0(E) function by the Taylor polynomial of the
third order when the binding energy and the ANC of the bound state
(α + 12C) are not fixed; the brown dotted line is approximation of
�0(E) by the Taylor polynomial of the third order when the binding
energy of (α + 12C) is fixed while the ANC is a fitting parameter;
and the blue dash-dotted line is obtained using the approximation of
ln(�0(E)/(E + ε1)) by the third-order Taylor polynomial when the
binding energy and the ANC of the bound state (α + 12C) are not
fixed.

Note that the attempts to determine C2 by extrapolating the
function K0(E) or �0(E) from the positive to the negative
energy region were made in Refs. [13,21]. In these papers,
the parameters of the analytic approximation of K0(E) and
�0(E) were fitted to the results of the phase-shift analysis of
the elastic α + 12C scattering at low energies. However, the C2

values presented in these papers could hardly be taken seriously
for the following reasons. In Ref. [21], while continuing the
K0(E) function to the point corresponding to the ground
state, the authors ignored the presence of the excited 0+ state
which affects significantly the behavior of K0(E) at E < 0. In
Ref. [13], the excited state was taken into account; however,
the approximated analytic form of �0(E) used by the authors
ignored the existence of the pole of �0(E) at E < 0. This fact is
the reason for the wrong sign of the residue of the partial-wave
scattering amplitude f̃0 at the pole corresponding to the ground
state. It leads to an unphysical imaginary value of the ANC C2.
Furthermore, the real value of C2 presented in Ref. [13] is also
erroneous. This is due to the improper manipulation with the
absolute value sign for the residue of f̃0.

It is worth mentioning that the exact partial-wave α + 12C
scattering amplitudes, in contrast to our theoretical model,
possess a number of singularities (branching points) situated
at E < 0 between the ground and excited 0+ state poles.
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FIG. 8. The �0(E) function for the system α + 12C with two
0+ bound states. The solid red line is the exact �0(E); the
brown dotted line is obtained using approximation of the function
�0(E)(E − Ei2)/(E + ε1)(E + ε2) by the Taylor polynomial of the
third order; and the green dashed line corresponds to the approxima-
tion of the function ln [−�0(E)(E − Ei2)/(E + ε1)(E + ε2)] by the
Taylor polynomial of the third order.

These singularities are due to the following Feynman diagrams
contributing to the elastic α + 12C scattering amplitude:

(1) The loop diagram describing two-pion exchange be-
tween α and 12C.

(2) The pole diagram describing the 8Be transfer process
(or the loop diagram describing two-α transfer).

(3) The triangle diagrams describing scattering of an α
particle on virtual nucleons containing in 12C.

It is obvious that the approximation of the K0(E) or �0(E)
function by Taylor polynomials or rational functions cannot
take into account the presence of these singularities. Moreover,
we think that, even in the absence of the excited 0+ state,
the extrapolation distance (≈7 MeV) would be too large to
obtain sensible results for the ANC. In the realistic case, when
extrapolating the scattering phase shift to the ground bound

TABLE V. Approximation of �0(E) for the α + 12C system
taking into account the ground 0+ state.

Version 1 Version 2
N C1 (fm−1/2) C2 (fm−1/2) C1 (fm−1/2) C2 (fm−1/2)

2 2714.48 72.32 3204.12 1953.26
3 3496.00 3223.23 9520.82
4 3132.61 29.62 3216.19 223.77
5 3254.24 3219.81 5.6×107

Exact values 3218.46 3475.35 3218.46 3475.35
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state in the α + 12C system, one has to take into account the
singularities of the aforementioned diagrams.

V. CONVERGENCE OF THE APPROXIMATION
FOR THE � FUNCTION

The renormalized Coulomb-nuclear partial-wave scattering
amplitude f̃0(E) can be written as follows (l = 0):

f̃0(E) = 1/D0(E), (17)

where

D0(E) = K0(E) − R(E), (18)

R(E) = 2α1h(η), (19)

h(η) = 2α1[ψ(iη) − ln(iη) + 1/(2iη)], (20)

and α1 = zbzce
2μ > 0, η = α1/

√
2μE. We note that the �

function for l = 0, �0(E), which we are interested in, is
directly related to D0(E): �0(E) = Re[D0(E)].

It is known that the ERF K0(E) can be expanded in powers
of E. In order to decide on the problem of similar power
expansion and the Taylor polynomial approximation for the
whole denominator D0(E) [and hence for �0(E)], we consider
the properties of the function h(η).

Since at E → 0 η → ∞, one may use the asymptotic
expansion for ψ(iη) [22] which results in the following
expansion of h(η):

h(η) = −
∞∑

ν=1

B2ν

2ν(iη)2ν
(21)

= −
∞∑

ν=1

B2ν

2ν

(−2μE

α2
1

)ν

(22)

= −
n−1∑
ν=1

B2ν

2ν

(−2μE

α2
1

)ν

− Un(E) (23)

≡ hn(η) − Un(E), (24)

where B2ν are the Bernoulli numbers. At n = 1, the sum in (23)
is equal to zero. The form and the features of the residual term
Un(E) are considered in the appendix. In the present section,
we consider the separate terms of the expansion (23).

The series (23) can be considered as the expansion in E.
However, due to the features of the Bernoulli numbers, the
series (23) is asymptotic, that is, divergent. Nevertheless, it
is worthwhile to investigate the first few terms in (23) which
contribute to the Taylor polynomial approximation of �0(E).
The rate of convergence of the series (23) at given E is
determined by the quantity α2 = 2μ/α2

1 . As α2 gets smaller,
the convergence becomes faster.

For the d + α system, the value of α2 is rather large: α2 =
7.53 MeV−1. As a result, the approximation of h(η) by the
first terms of the series (23) is poor. This is seen in Fig. 9
which displays the real part Re[R(E)] for the d + α system.
However, for the heavier α + 12C system α2 is two orders of
magnitude smaller than for the d + α system: α2 = 0.0933
MeV−1. Therefore, for this system h(η) can be successfully
approximated by first few terms of the expansion (23) in a
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FIG. 9. The real part Re[R(E)] for the d + α system. The solid
red line is the exact result; the dashed green line is the asymptotic
expansion of Re[R(E)] up to E3.

wide energy interval. This result is illustrated in Fig. 10 which
displays the real part Re[R(E)] for the α + 12C system.

Thus, one can conclude that the Taylor polynomial ap-
proximation of the function R(E) = 2α1h(η) and hence of
the functions D0(E) and �0(E) is more effective for systems
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FIG. 10. The real part Re[R(E)] for the α + 12C system. The solid
red line is the exact result; the dashed green line is the asymptotic
expansion of Re[R(E)] up to E3.
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FIG. 11. The dependence of the �0(E) function on the charge-
scaling factor β (see the text) for d + α. Solid red line, β = 1; dashed
green line, β = 2; dotted brown line, β = 0.2; dash-dotted blue line,
β = 0.

with larger values of the product of charges ZbZce
2 and the

reduced mass μ. This inference is clearly demonstrated in
Fig. 11, which displays the calculations of �0(E) for the d + α
system obtained by substituting the quantity ZbZc by βZbZc

where the correction factor β assumes the values 0, 0.2, 1,
and 2. It is seen that the smaller β is, the less smooth is the
joining of two parts of the curves of �0(E) corresponding to
E > 0 and E < 0 at E = 0. Naturally, the effectiveness of the
Taylor polynomial approximation of the function �0(E) also
drops with decreasing β. At β = 0 (the Coulomb interaction
is switched off), the �0(E) function turns into the ERF k cot δ
and ceases to coincide with the denominator of the amplitude
f̃0(E) at E < 0.

The results obtained in this section corroborate and elu-
cidate the conclusion drawn from the results of Secs. III
and IV, namely, that the Taylor polynomial approximation of
the � function is more effective for heavier nuclear systems
with larger values of the Coulomb parameter η.

VI. CONCLUSIONS

In the present paper, within an exactly solvable model,
we have investigated the applicability of the effective range
function (ERF) and the � function suggested in Ref. [11]
for continuation of scattering data to the negative-energy
region in order to determine ANCs. The d + α and α + 12C
systems have been considered. It is demonstrated that if the
system under consideration features two bound states with
the same quantum numbers, then the ERF and � functions
have two poles: One in the positive-energy region and the
other in the negative-energy region, between the energies
corresponding to the two bound states. It is also shown that

if the system has more than one bound state with the same
quantum numbers, then the method of the continuation in
energy of the ERF or � functions practically allows one to
determine the binding energy and the ANC for the highest
state only. To determine the features of other (lower lying)
bound states, one should apply alternative methods, e.g., the
method of analytic continuation of differential cross sections
of transfer reactions to the pole in the scattering angle or find
peripheral transfer reactions populating the bound states of
interest.

It is demonstrated that the approximation of the � function
by the first several terms of its Taylor expansion can be
successfully used to determine binding energies and ANCs
for the nuclear systems with sufficiently large Z. The pro-
cedure is less effective for the systems with small Z. The
criterion for the applicability of such an approximation is
derived.

The renormalized Coulomb-nuclear amplitude f̃l(E) was
introduced in Ref. [14]. It was shown that the analytic proper-
ties of f̃l(E) on the physical sheet are similar to those of the
scattering amplitude generated by the short-range potential. On
the other hand, it was also stated [14] that f̃l(E) possesses the
essential singularity at E = 0. These two assertions contradict
each other since the scattering amplitude for the short-range
potential does not possess an essential singularity at E = 0.
It is known that an arbitrary function ϕ(z) has no definite
limit at z → z0 if z0 is a point of an essential singularity.
In the vicinity of the essential singularity, the function may
take any value. The calculations performed within the model
used in the present paper have shown that the amplitude f̃0(E)
has a definite limit at E → 0 that does not depend on the
direction from which E approaches zero. It means that the
point E = 0 is not an essential singularity point of f̃0(E).
The amplitude f̃0(E) possesses the unitary cut 0 � E < ∞
on which Im[f̃0(E)] has a discontinuity.

In the present paper, the approximate versions of the ERF
and � functions have been constructed on the basis of Taylor
expansions at zero energy. Of course, there are alternative
ways to construct the approximate forms of these functions,
e.g., by rational functions in the form of Padé approximants.
We expect that using Padé approximants should not change
the qualitative conclusions made above. The test calculations
using Padé approximants did not improve appreciably the
unsatisfactory results obtained in Sec. III B for the Taylor
polynomial approximation of the � function. Furthermore,
though all calculations were performed for l = 0, we believe
the inferences made in the present paper should be valid for
arbitrary l.
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APPENDIX

Consider in more detail the function R(E) [see Eq. (19)]
discussed in Sec. V. Using the asymptotic expansion of ψ(z)
at |z| → ∞ [22] and inserting η = α1/

√
2μE, one can write

h(η) in the form of Eq. (23), where the residual term Un(z) is
subject to

|Un(z)| � |B2n|
2n cos2n+1(arg(z)/2)|z|2n

, | arg(z)| < π. (A1)

For positive energies (E > 0), z = iη = iα1/
√

2μE. There-
fore, arg(z) = π/2. Then, taking into account cos(π/4) =
1/

√
2, we can write

|Un(E)| �
√

2|B2n|2n

2n

(
2μE

α2
1

)n

. (A2)

For negative energies (E < 0), z = iη = α1/
√

2μ|E|. There-
fore, arg(z) = 0. Then, using cos(0) = 1, we have

|Un(E)| � |B2n|
2n

(
2μ|E|

α2
1

)n

. (A3)

If the series (23) were convergent, then at n → ∞ Un(z) → 0.
However, the series (23) is asymptotic and the residual term
behaves differently. With increasing n, |Un(E)| decreases but
beginning with some n it starts to grow unrestrictedly. The
corresponding value of n depends on E. It is useless to increase
this value of n since at this value the partial sum of the series
(23) is the best approximation of the exact value of h(η). It
is natural to set this value equal to the maximal value of n at
which the following condition holds:

∣∣∣∣Un+1(E)

Un(E)

∣∣∣∣ < 1. (A4)

Evaluation of the residual term allows one to evaluate n by
setting Un(E) equal to its maximal value. Such evaluation is

very strict; nevertheless it makes finding the upper boundary
for n possible.

For positive energies the condition (A4) takes the form

2n|B2n+2|
(n + 1)|B2n|

(
2μE

α2
1

)
< 1. (A5)

For negative energies Eq. (A4) becomes

n|B2n+2|
(n + 1)|B2n|

(
2μ|E|

α2
1

)
< 1. (A6)

Condition (A5) is more strict than (A6). If Eq. (A5) holds for
some values of n and E > 0, then condition (A6) also holds for
the same n but for E′ = −E < 0. Therefore, in what follows,
we will use the more strict condition (A5) to analyze specific
systems.

The maximal value of n at given E and, vice versa, the
maximal value of E at given n depend on the quantity α2 =
2μ/α2

1 . As α2 gets smaller, n becomes larger for given E or
E becomes larger for given n. This means that the smaller α2

is, the better the exact function h(η) is approximated by the
function hn(η) [(see Eq. (24), which is the partial sum of the
series (23)].

For the d + α system α2 = 7.53 MeV−1. Let us approxi-
mate the function R(E) by the Taylor polynomial of the second
power in E, that is, by the first three terms of the sum (23).
In that case n = 4. The maximal value of energy En > 0, at
which the condition (A5) holds, is determined by the equation

En = 1

α2

(n + 1)|B2n|
2n|B2n+2| . (A7)

At n = 4 Eq. (A7) results in E4 = 0.036532 MeV. Thus the
energy interval, in which the employed approximation can
satisfactorily describe the exact function R(E), is extremely
narrow and is not seen in Fig. 9. At the same time, for
the α + 12C system α2 = 0.0933 MeV−1 and E4 = 2.9460
MeV. Therefore, the favorable energy interval is by two
orders broader than for the d + α system, which results in
the successful Taylor polynomial approximation of R(E) (see
Fig. 10).
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