
PHYSICAL REVIEW C 97, 024339 (2018)

New local mass relation for isobaric analogue states and isospin-nonconserving forces
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In this paper a new local mass relation is constructed for isobaric analogue states of four relating neighboring
nuclei. The standard deviation from a linear fit of experimental data is 20–70 keV. The systematics of the local
mass relation is discussed in terms of an empirical Coulomb energy formula and the isobaric multiplet mass
equation. The local relation for nuclei in the pf shell is studied in the framework of the microscopic shell model.
The results demonstrate the key roles played by the Coulomb interaction and an effective isospin-nonconserving
nucleon-nucleon interaction in our new mass relation.
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I. INTRODUCTION

Nuclear mass (or alternatively nuclear binding energy) is
of great importance in nuclear physics [1,2]. Nuclear mass
measurements challenge various nuclear models and provide
us with important information of nucleon-nucleon interactions,
shell evolution, quantum phase transition, nucleon pairing,
and nuclear clustering. Accurate mass measurements and
theoretical predictions are key inputs for theoretical studies
on the origin of heavy elements in nuclear astrophysics.

Great efforts have been devoted to describing and predicting
nuclear masses across the nuclide chart. Here, we mention pop-
ular global mass models, such as the Duflo-Zuker model [3],
the Skyrme-Hartree-Fock-Bogoliubov theory [4], the finite-
range droplet model [5], and the improved Weizsäcker-Skyrme
model [6], and accurate local mass relations, such as the
famous Garvey-Kelson relations [7–11], the Audi-Wapstra
extrapolations [12,13], and the local mass relations associated
with proton-neutron interactions [14–17].

From another perspective, one achieves satisfactory mass
predictions for atomic nuclei with mass number A < 80 based
on the Coulomb displacement energies (CDE) [18–25], viz.,
the difference between the binding energies of mirror nuclei,

ECDE(A,T ) = B(A,Tz = −T ) − B(A,Tz = T ),

where B(A,Tz = −T ) is the binding energy of the proton-
rich nucleus and B(A,Tz = T ) is the binding energy of the
neutron-rich nucleus. B is taken to be positive, and thus ECDE

is negative. Using the isobaric multiplet mass equation (IMME)
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[26], CDE is given by 2bT , where b is a coefficient determined
by a global fitting to the experimental CDE data at an accuracy
of ∼100 keV [22] or calculated using the nuclear shell model at
an accuracy of 30–40 keV for a very limited number of nuclei
[18,22]. In Ref. [21] Cole used an empirical Coulomb energy
formula to calculate CDE for nuclei in the 0d3/2 and 0f7/2 shells
with a standard deviation �125 keV. In Refs. [23,24] CDE
was obtained by the Skyrme Hartree-Fock calculation with
consideration of an isospin-nonconserving (INC) interaction,
and the calculation is able to reproduce the experimental CDE
for all but the lightest nuclei with a root-mean-square deviation
of ∼100 keV.

In this paper we construct a new local mass relation
for isobaric analogue states of four neighboring nuclei. The
accuracy of our new mass relation is 20–70 keV. This paper is
organized into five sections. In Sec. II, we discuss a procedure
of parametrization and error evaluation, and present the new
local mass relation. In Sec. III, we study the local mass relation
in terms of a Coulomb energy formula and the IMME. In Sec.
IV, we study the local mass relation for nuclei in the pf shell
in the framework of the shell model; the effects of the Coulomb
interaction and INC interactions are discussed. In Sec. V, we
summarize our results.

II. NEW LOCAL MASS RELATION

A. Parametrization and error evaluation

As we study nuclear masses, it is economic to begin with the
procedure of parametrization and error evaluation. We denote
experimental mass data of isobaric analogue states by Mi and
experimental uncertainty by σi , where i is an abbreviation
of proton number Z, mass number A, and isospin T ; i =
1,2, . . . ,n, and n is the number of data. We denote a mass
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formula by fi = f (i; p1,p2, . . . ,pt ), where p1,p2, . . . ,pt are
independent parameters to be fixed.

In this paper we use the weighted standard deviation
(SD), i.e.,

σSD =
√

n

n − t
·
∑n

i wi(Mi − fi)2∑n
i wi

. (1)

The weight, wi , is defined by

wi = 1

σth
2 + σi

2
, (2)

where σth is the model error, which represents the deviation of
the present formula from “the exact theory”. In Refs. [5,27] σth

is obtained by decoupling the experimental uncertainty from
variance using the maximum-likelihood estimation,

σth
2 =

∑n
i wi

2[(Mi − fi)2 − σi
2]∑n

i wi
2

. (3)

By solving Eqs. (2) and (3) iteratively, we obtain wi and
σth. Then we determine the parameters, p1,p2, . . . ,pt , by
minimizing the SD in Eq. (1), namely we solve the following
equations:

∂

∂pj

n∑
i

wi(Mi − fi)
2 = 0, j = 1,2, . . . ,t. (4)

After obtaining p1,p2, . . . ,pt , we substituted them into Eq. (3)
and solve Eqs. (2) and (3) again. The above steps are iterated
until wi , σth, σSD, and p1,p2, . . . ,pt are converged.

B. Local mass relation

We construct a new local mass relation for isobaric analogue
states of four neighboring nuclei:

ε(Z,A,T1,T2) ≡ B(Z,A,T1) − B(Z − 1,A,T1)

−B(Z,A + 1,T2) + B(Z − 1,A + 1,T2)

= −M(Z,A,T1) + M(Z − 1,A,T1)

+M(Z,A + 1,T2) − M(Z − 1,A + 1,T2),

(5)

where B(Z,A,T1) is binding energy of the T = T1 isobaric
analogue states in the nucleus with proton number Z and mass
number A, and M(Z,A,T1) is the corresponding mass excess.
For short we call the nucleus with proton number Z and mass
number A as the “reference nucleus” in Eq. (5). Masses of T =
1/2 isobaric analogue states are ground-state masses, which
are taken from the experimental data in the 2012 atomic mass
evaluation table (AME2012) [13]. Masses of isobaric analogue
states with T � 1 are taken from the 2014 evaluated isobaric
analogue state database (IAS2014 for short) [28]. Since the
AME2012 and IAS2014 databases were published, new mass
measurements were performed for the ground states of 44V,
46Cr, 48Mn, 50Fe, 54Ni, 79Y, 81Zr, 83Nb, 52Co, 56Cu, 82Zr, and
84Nb at the HIRFL-CSR facility [29–32]. The adopted values
are shown in Table I.

A schematic diagram of ε(Z,A,T1,T2) is shown in Fig. 1.
Let us exemplify this with a simple case [shown in Fig. 2(a)]:

TABLE I. New experimental data of ground-
state mass excesses (in keV). Here, all the states
of the odd-mass nuclei have T = 1/2, and all the
states of the even-mass nuclei have T = 1. The
label “*” means the mass was measured recently.

Nucleus Mass excess

44Vg −23818(20)a

46Crg −29471(11)b

48Mng −29299(7)b

50Feg −34477(6)b

54Nig −39278(4)b

79Yg −57818(79)c

81Zrg −57460(94)c

83Nbg −57556(151)c

52Cog −34361(8)*d

56Cug −38643(15)*a

82Zrg −63631(11)*c

84Nbg −61219(13)*c

aReference [29].
bReference [30].
cReference [31].
dReference [32].

the reference nuclei of ε are odd-proton-even-neutron nuclei
with A − 2Z = N − Z = −1, T1 = 1/2, and T2 = 1. In the
right-hand side of Eq. (5), the first two terms represent the
ground-state energy difference between the reference nucleus
and its mirror nucleus, and the last two terms represent
the T = 1 isobaric-analogue-state energy difference between
the odd-odd N = Z nucleus and its adjoining neutron-rich
even-even nucleus with mass number A + 1. Because isobaric
analogue states have almost identical structures, their nuclear
mean fields must be very close to each other. Therefore
the above procedure cancels charge-independent two-body
interactions as well as nuclear mean-field contributions, thus

FIG. 1. The schematic diagram of the local mass relation,
ε(Z,A,T1,T2). The nucleus with solid circles in green is the reference
nucleus which has proton number Z and mass number A. The plus
and minus signs are consistent with those for mass excesses in Eq. (5).
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FIG. 2. ε derived from nuclear mass data in the AME2012, IAS2014, and Table I versus mass number A (with A > 16); the samples are
separated into 4n groups. In each panel the values in the bracket are (A − 2Z,T1,T2). The solid curves in red are plotted using linear fitting (the
standard deviations are denoted by σSD); the dotted curves in green are plotted using the Coulomb energy formula; the dashed curves in blue
are plotted using the IMME.

isolating the contribution of charge-violating interactions (e.g.,
the Coulomb energy). Absolute values of ε should be small. In
Sec. III we shall show that ε can be approximately explained
by the double difference of the Coulomb energies.

We show the results of ε for the following four cases:
(A − 2Z,T1,T2) = (−1,1/2,1), (−2,1,1/2), (0,1,3/2), and
(−1,3/2,1). Separating the reference nuclei into four groups:
A = 4n, 4n + 1, 4n + 2, and 4n + 3 (it is also called “4n
groups”), we present ε versus mass number A (with A > 16)
in Fig. 2. The absolute values of ε are smaller than 200 keV.
Results of linear fittings and the corresponding SDs are also
given in Fig. 2. One sees the SD in Figs. 2(a), 2(e), 2(g), and 2(h)
are very small (<30 keV). Such high accuracy of the local mass
realtion provides us with a powerful tool to predict unknown
masses near the N = Z line, especially for proton-rich nuclei.

III. MACROSCOPIC PROPERTIES

The Coulomb interaction plays a dominant role in the
energy difference between isobaric analogue states. In order
to understand the local mass relation, the empirical Coulomb
energy formula is assumed [33]:

Ec(Z,A) = [a1Z
2 + a2Z

4/3 + a3(1 − (−)Z)]
e2

R(A)
, (6)

where a1Z
2 is the direct term; a2Z

4/3 is the exchange term;
a3(1 − (−)Z) is the pairing term; a1, a2, and a3 are parameters;
R(A) is the nuclear radius. In this paper we use the diffuseness
modified root-mean-square radius equation [34],

R(A) =
√

3

5

[
(r0A1/3)2 + 7

3
π2a0

2

]
(7)

with r0 = 1.15 fm and a0 = 0.35 fm.
We fit a1, a2, and a3 to experimental data of Coulomb

displacement energies (CDE). The procedure is as follows.
Using atomic masses in the AME2012, IAS2014, and Table I,

we obtain 103 CDE data. Assuming the CDE is produced by
the Coulomb energy, we obtain

ECDE ≈ −Ec(Z,A) + Ec(A − Z,A)

= −[a1(Z2 − (A − Z)2) + a2(Z4/3 − (A − Z)4/3)

+ a3((−)A−Z − (−)Z)]
e2

R(A)
. (8)

The parameters a1, a2, and a3 are used to fit the 103 CDE data
using the above equation with the parametrization procedure
discussed in Sec. II A. Taking e2 = 1.44 fm MeV, we obtain
a1 = 0.465, a2 = −0.474, and a3 = −0.104 with an SD of
257 keV. We note that the magnitude of the exchange term in
this paper is relatively larger than that in Ref. [33].

Substituting the Coulomb energy for the mass excess in
Eq. (5), the local mass relation is given by the double difference
of the Coulomb energies, i.e.,

ε(Z,A,T1,T2) ≈ −Ec(Z,A) + Ec(Z − 1,A)

+Ec(Z,A + 1) − Ec(Z − 1,A + 1). (9)

The right-hand side of the above equation is independent
of isospins T1 and T2. The result of Eq. (9) is presented as
dotted curves in green in Fig. 2. The double difference of the
Coulomb energies has a very small value, and it approximately
agrees with the data of ε. This means most of the Coulomb
energies is canceled out in the local mass relation. The residual
fluctuation can be further explained by microscopic shell-
model calculations with isospin-nonconserving interactions as
well as the Coulomb interaction (to be discussed in Sec. IV).

In Figs. 2(g) and 2(h) one sees a systematical odd-even
staggering effect: the data of ε are systematically smaller than
the double difference of the Coulomb energies in Fig. 2(g), and
the opposite happens in Fig. 2(h). This effect coincides with the
so-called 4n-group odd-even staggering effect in the isobaric
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multiplet mass equation (IMME). The IMME is defined by

MIMME(A,T ,Tz) = a(A,T ) + b(A,T )Tz + c(A,T )Tz
2, (10)

where Tz ≡ A/2 − Z, and the coefficients a, b, and c are
interpreted as the isoscalar, isovector, and isotensor parts of
the nuclear Hamiltonian. Substituting the IMME for the mass
excess in Eq. (5), we have

ε(Z,A,T1,T2) ≈ −MIMME

(
A,T1,

A

2
− Z

)
+ MIMME

(
A,T1,

A

2
− Z + 1

)

+MIMME

(
A + 1,T2,

A + 1

2
− Z

)
− MIMME

(
A + 1,T2,

A + 1

2
− Z + 1

)
,

= b(A,T1) − b(A + 1,T2) + [c(A,T1) − c(A + 1,T2)](A − 2Z + 1) − c(A + 1,T2). (11)

The isoscalar term is canceled out in the relation. The global
formulas of the coefficients b and c are given by

b = Mn − M1H − 720 × Sb × (A − 1)A−1/3 + Cb,
(12)

c = 3 × (260 × Sc × A−1/3 + Cc),

where Sb, Sc, Cb, and Cc are parameters to be determined
by fitting mass data of isobaric analogue states. The adopted
values are shown in Tables 1 and 2 in Ref. [28]. It is important to
note that Sb, Sc, Cb, and Cc are determined for the 4n groups,
respectively, due to a well-pronounced odd-even staggering
effect [28,35,36].

The result of Eq. (11) is presented as dashed curves in blue
in Fig. 2. The prediction of the IMME agrees with the odd-even
staggering in Figs. 2(g) and 2(h). However, the global trends
of the IMME result is not very good, e.g., sizable deviations
are observed in the cases of Figs. 2(b) and 2(f), due to the error
(∼100 keV) of the global formula for the coefficient b [22,28].

IV. SHELL MODEL CALCULATION

In last section, we have studied the local mass relation in
terms of the IMME, which does not discriminate between the
Coulomb interaction and isospin-nonconserving (INC) inter-
actions. In this section, we study the mass relation microscopi-
cally. For nuclei in the pf shell, this is carried out by the nuclear
shell model with the KB3G interaction [37], the Coulomb
interaction, and INC interactions. The IMME coefficients b
and c are also studied through the same procedure.

The modern effective Coulomb interaction, VCoul, used in
the shell-model calculation for nuclei in the pf shell contains
three dominant terms [38]:

(a) The first term is Coulomb matrix elements obtained in
the spherical harmonic oscillator basis.

(b) The second term is a monopole correction of the
Coulomb energy due to the change of nuclear radius and/or
deformation, whose contribution to the energy difference
between isobaric analogue states is approximately proportional
to the average proton plus neutron occupancies in the 1p3/2

orbit (denoted by 〈m1p3/2〉) [38,39]:

�ECm = ECm(Z,A) − ECm(Z − 1,A)

≈ − (Z − 1)

20

(
41

A

)1/3

αr〈m1p3/2〉,

where αr is a parameter, and ( 41
A

)
1/3

is a mass-dependent factor.
In Refs. [39–41] one sets αr = 300 ∼ 400 keV; in this work
we set αr = 300 keV. It should be noticed that �ECm cannot
be derived by modifying the single-particle energy in the shell-
model calculation.

(c) The third term consists of two single-particle correc-
tions: one is the energy correction of the proton orbits due to
the monopole Coulomb interaction in the core, which varies
with the square of the orbital momentum l2 [40,42]; the other
is the relativistic electromagnetic spin-orbit splitting, which is
described using the Larmor-Thomas precession [33,43]. See
Eq. (22) and Table 3 in Ref. [38] for the formulas.

Although the effective Coulomb interaction plays an im-
portant role in energy differences between isobaric analogue
states, shell-model calculations provide inaccurate results.
Thus INC nucleon-nucleon interactions are indispensable.
An INC nucleon-nucleon interaction generally contains two
terms: an isovector term V

(1)
INC and an isotensor term V

(2)
INC.

Assuming that 0f7/2 configurations are dominant in the nuclear
wave functions, the INC interaction in the 0f7/2 orbit can be
obtained:

(a) The isovector term of the INC interaction is defined by

V
(1)

INC =
∑
Jm

β
(1)
J

2

(
AJ

m,ππ

†
AJ

m,ππ − AJ
m,νν

†
AJ

m,νν

)
,

AJ
m,ππ

† = 1√
2

(
aπ0f7/2

† × aπ0f7/2
†)J

m
,

AJ
m,νν

† = 1√
2

(
aν0f7/2

† × aν0f7/2
†)J

m
,

where β
(1)
J are the two-body matrix elements. V (1)

INC makes a sig-
nificant contribution to mirror-excitation-energy differences.
In Ref. [44] β

(1)
J are optimized by fitting mirror-excitation-

energy differences of yrast states for nuclei in the pf shell
with A = 42−54, after considering the effective Coulomb
interaction. We simply adopt those values.

(b) For the isotensor term of the INC interaction, we take a
schematic form given in Ref. [40]:

V
(2)

INC = β
(2)
J=0

6

(
AJ=0

ππ

†
AJ=0

ππ + AJ=0
νν

†
AJ=0

νν − 2AJ=0
πν

†
AJ=0

πν

)
,

AJ=0
πν

† = (
aπ0f7/2

† × aν0f7/2
†)J=0

,
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FIG. 3. The local mass relation ε calculated by the shell model
with effective interactions for nuclei in the pf shell. The values
in the brackets are (A − 2Z,T1,T2). VCoul is the effective Coulomb
interaction. V (1)

INC and V
(2)

INC are the isovector and isotensor terms of the
INC interaction, respectively.

where the two-body matrix element β
(2)
J=0 = 100 keV. V

(2)
INC

makes a significant contribution to triplet-excitation-energy
differences between isobaric analogue states. In Refs. [40,44],
V

(1)
INC and V

(2)
INC were optimized to describe excitation-energy

differences. Here, we show that they also present good agree-
ment with the local mass relation.

We study the local mass relation for the reference nuclei
in the pf shell with 41 � A � 52, for two cases: (A −
2Z,T1,T2) = (−1,1/2,1) and (−2,1,1/2). ε is derived using
Eq. (5) in which the isobaric-analogue-state energies are
calculated by the shell model. The NushellX shell-model code
is used [45], with the KB3G interaction [37], VCoul, V

(1)
INC, and

V
(2)

INC. The level energies are obtained by diagonalizing the
Hamiltonians.

In Fig. 3 one sees ε obtained by the shell model with
the original KB3G interaction is equal to zero, since there is

FIG. 4. IMME coefficients b and c for nuclei in the pf shell. In (a)
and (b) the coefficient b is presented for T = 1/2 and T = 1 isobaric
analogue states, respectively; in (c) the coefficient c is presented for
T = 1 isobaric analogue states. The shell-model results are obtained
using the KB3G interaction, the Coulomb interaction, and the INC
interaction.

no energy difference between isobaric analogue states under
an isospin-conserving Hamiltonian. The Coulomb and INC
interactions induce nonzero ε values.

For the case of (A − 2Z,T1,T2) = (−1,1/2,1) in Fig. 3(a),
one sees that the experimental data of ε show a local odd-even
staggering behavior, i.e., ε for the reference nuclei with A =
43,47,51 are larger than those with A = 41,45,49. Similarly,
for the case of (−2,1,1/2) in Fig. 3(b), the experimental
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data of ε for the reference nuclei with A = 44,48,52 are
larger than those with A = 42,46,50. The average value of
ε calculated with the effective Coulomb interaction is close
to the average value of the experimental data, but the local
odd-even staggering behaviors are not reproduced by the
Coulomb interaction. Considering the isovector and isotensor
INC interactions, the resulting ε are in good agreement with
the experimental data.

We study the IMME coefficients b and c [see Eq. (10)] for
nuclei in the pf shell with 41 � A � 53, using the shell model.
It could be conjectured by intuition that the isovector part of the
Coulomb interaction and the isovector INC interaction might
be responsible for the coefficient b, and that the isotensor part
of the Coulomb interaction and the isotensor INC interaction
might be responsible for the coefficient c. In Fig. 4 one sees
b and c obtained by the shell model are close to those derived
by the experimental mass data. The dominant contribution to
b and c comes from the Coulomb interaction. The odd-even
staggering effect is found in the coefficient b for the T = 1/2
isobaric analogue states [see Fig. 4(a)] and in the coefficient c
for the T = 1 isobaric analogue states [see Fig. 4(c)]. Both the
Coulomb interaction and the INC interaction contribute to this
odd-even staggering behavior. This result can be understood
as a nuclear pairing effect [46], which is as follows. Due to
the strong charge-independent pairing interaction, the J = 0
pair correlation is very strong in wave functions of low-lying
states. The two-body matrix elements with J = 0, for both the
Coulomb and INC interactions, have the largest absolute val-
ues, and thus the energy shift caused by these two interactions
exhibits an odd-even staggering behavior.

V. SUMMARY

In this paper, we propose a new local mass relation,
ε(Z,A,T1,T2), for isobaric analogue states between four neigh-
boring nuclei. We find remarkably good systematics of the local
mass relation. The standard deviation from a linear fit through
the data points is 20–70 keV. This accurate relation provides a
new approach to predict nuclear masses with N close to Z.

We study ε in terms of an empirical Coulomb energy
formula and the isobaric multiplet mass equation (IMME).
The double difference of the Coulomb energies between four
neighboring nuclei has a very small value, and it approximately
agrees with the experimental data of ε. This means that
in the local mass relation, it cancels mean-field energies,

charge-independent two-body interactions, and most of the
Coulomb energy. The residual fluctuation is due to micro-
scopic quantum effects of charge-violating interactions. For the
case of (A − 2Z,T1,T2) = (−1,3/2,1), there is an odd-even
staggering effect: ε for the reference nuclei with A = 4n + 1
is systematically smaller than that with A = 4n + 3. The
empirical Coulomb energy formula cannot explain this effect.
We find the odd-even staggering of ε coincides with the so-
called 4n-group odd-even staggering in the IMME coefficients.

We have investigated ε for nuclei in the pf shell with
41 � A � 52, in the framework of the microscopic shell model
with the KB3G interaction, the effective Coulomb interaction,
and an effective INC interaction. The effective INC interaction
in the shell model was used to explain the excitation-energy
differences between isobaric analogue states [44]. In this work
we show that the effective INC interaction also presents good
agreement with the mass (binding-energy) differences. Our
results show that both the isovector and isotensor terms of
the INC interaction, as well as the Coulomb interaction, are
required to reproduce the local mass relation. We study the
IMME coefficients b and c through the same procedure. The
dominant contribution to b and c comes from the Coulomb
interaction, and both the Coulomb interaction and the INC
interaction contribute to the odd-even staggering of the IMME
coefficients (due to a pairing effect), which leads to the odd-
even staggering of ε.

It is worth noting that as one approaches the drip lines,
where weakly bound states or resonance states may come in,
coupling to continuum might disrupt the accuracy of this local
mass relation.
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