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We construct a nuclear interaction in chiral effective field theory with explicit inclusion of the �-isobar �(1232)
degree of freedom at all orders up to next-to-next-to-leading order (NNLO). We use pion-nucleon (πN ) low-energy
constants (LECs) from a Roy-Steiner analysis of πN scattering data, optimize the LECs in the contact potentials
up to NNLO to reproduce low-energy nucleon-nucleon scattering phase shifts, and constrain the three-nucleon
interaction at NNLO to reproduce the binding energy and point-proton radius of 4He. For heavier nuclei we use
the coupled-cluster method to compute binding energies, radii, and neutron skins. We find that radii and binding
energies are much improved for interactions with explicit inclusion of �(1232), while �-less interactions produce
nuclei that are not bound with respect to breakup into α particles. The saturation of nuclear matter is significantly
improved, and its symmetry energy is consistent with empirical estimates.
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I. INTRODUCTION

In recent years, ab initio calculation of atomic nuclei
with predictive power have advanced from light [1–4] to
medium-mass nuclei [5–9]. Such calculations are only as good
as their input, i.e., nucleon-nucleon (NN) and three-nucleon
(NNN ) interactions, therefore the quest for more accurate
and more precise nuclear potentials is an ongoing endeavor
at the forefront of research [10–20]. Here, potentials from
chiral effective field theory (χEFT)—based on long-ranged
pion exchanges and short-ranged contact interactions—play a
dominant role [21,22], because they are expected to deliver
accuracy (via fit to data) and precision (via increasingly higher
orders in the power counting). As it turns out, however, state-of-
the-art χEFT potentials that are accurate for the lightest nuclei
with masses A = 2,3 vary considerably in their saturation
point for nuclear matter [14] and in their binding energy for
heavier nuclei [20,23,24].

This sensitivity of the saturation point to the details of
the χEFT interaction is not well understood [25] and also
puzzling from an EFT perspective. A practical approach to this
dilemma consists of constrainingχEFT potentials to reproduce
experimentally determined binding energies and charge radii
of nuclei as heavy as oxygen [18]. In this work, we will follow a
different approach and explicitly include the � isobar �(1232),
abbreviated � in the following, as a low-energy degree of
freedom in addition to pions (π ) and nucleons (N ). We recall
that the �-N mass-splitting δ ≡ M� − MN ≈ 293 MeV is
roughly twice the pion mass (Mπ ∼ 140 MeV) and well below
the expected breakdown scale of χEFT potentials [21,22].
Furthermore, the � also couples strongly to the πN system.
For these reasons, the early chiral NN interactions [26–28]
included the � degree of freedom. Indeed, van Kolck [26] as
well as Bernard et al. [29] showed that the low-energy constants
(LECs) of the πN interaction in a �-less χEFT receive a

substantial contribution via resonance saturation. As nuclear
interactions from χEFT with and without �’s have a similar
structure otherwise, only little effort was invested in producing
quantitative �-full χEFT potentials. We refer the reader to the
reviews [21,22] for extensive discussions of this topic.

Recently, Piarulli et al. [30] produced minimally nonlocal
χEFT NN potentials at next-to-next-to-next-to leading order
(N3LO), with �’s included up to next-to-next-to leading order
(NNLO), using values for the subleading πN LECs c1,c2,c3,c4

from Ref. [31]. Dropping the nonlocal terms led to the local
potentials of Ref. [32]. Two different approaches augmented
these local potentials with NNN forces up to NNLO. The cor-
responding diagrams of the NNN force, some NN diagrams,
and the most relevant LECs are shown in Fig. 1. Logoteta
et al. [33] adjusted the LECs cD and cE of the short-ranged
NNN terms to reproduce the saturation point of nuclear matter.
However, they did not report results for few-nucleon systems.
In contrast, Piarulli et al. [34] adjusted cD and cE to reproduce
properties of nuclear systems with mass number A = 3. Their
quantum Monte Carlo calculations yielded accurate results for
spectra of light nuclei up to 12C. We note that the potentials by
Logoteta et al. [33] and Piarulli et al. [34] employ values for
cD and cE that differ in signs and magnitudes.

In this paper we present a systematic construction and
comparative analysis of nonlocal �-full and �-less χEFT
potentials at LO, NLO, and NNLO, and report results for light-
and medium-mass nuclei, and infinite nucleonic matter. We
constrain the relevant short-ranged LECs using experimental
data from nuclear systems with mass numbers A = 2,4 and use
πN LECs determined in a recent high-precision analysis [37]
based on the Roy-Steiner equations [38]. We do not include any
additional contact operators beyond NNLO in Weinberg power
counting. We find that the resulting �-full potentials yield
accurate charge radii and much improved binding energies
for medium mass nuclei, and reproduce the saturation point
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FIG. 1. Schematic figure of relevant diagrams that enter in �-full
χEFT at leading order (LO), next-to-leading order (NLO), and next-
to-next-to-leading order (NNLO). The leading πN and πN� axial
couplings are denoted by gA and hA, respectively. Note that there are
no � contributions at LO. At NLO, the NN contact interactions also
remain unchanged. However, the leading-orderNNN interaction, i.e.,
the well-known Fujita-Miyazawa term [35], appears at this order;
see also Ref. [36]. The � contributions to the NNN interaction at
NNLO vanish because of the Pauli principle or are suppressed and
demoted to a higher chiral order. In addition to the subleading πN

LECs c1,c2,c3,c4, the NNN diagrams contain two additional LECs:
cD and cE .

of symmetric nuclear matter within estimated EFT-truncation
errors. Furthermore, estimates of the EFT-truncation errors
furnish a discussion of the improved convergence rate of the
�-full χEFT expansion compared to the �-less theory.

II. OPTIMIZATION OF INTERACTIONS

To isolate the effects of the � isobar in the description
of the saturation properties of nucleonic matter we compare
our results with �-less χEFT potentials at LO, NLO, and
NNLO. Other than the inclusion of the � isobar, the �-full
and the �-less interactions are constructed following identical
optimization protocols. For the description of the interaction
we build on work [26,31,36,39,40] and treat the �-N mass
difference δ ≡ M� − MN as an additional small scale. A
power counting for this approach is provided by the so-called
small-scale expansion [39]. This is identical to the conventional
heavy-baryon formulation of χEFT which is already used
for including the nucleon mass scale without any � isobars.
The �-less pion exchanges in the NN sector up to NNLO
are given in Ref. [16]. The expressions for the NN contact
potentials at LO and NLO are given in, e.g., Ref. [22], and the
� contributions to the leading and subleading 2π exchanges
in the NN potential are from Ref. [31]. Charge-independence

breaking terms are included in the LO contact LECs as well
as the one-pion exchange. Following Ref. [41] we remove
all contributions that are proportional to the subleading πN�
coupling b3 + b8 by renormalizing the πN� axial coupling hA

and the subleading πN couplings c2,3,4. We follow Siemens
et al. [37] and use hA = 1.40, gA = 1.289, and the central
Roy-Steiner values of the πN LECs for the �-full and �-less
potentials up to third order. We recall that �-less χEFT
potentials often employ πN LECs with values that differ
from what is found in πN scattering, because the absence
of �’s strongly renormalize the πN couplings c2,3,4 in the
three-nucleon sector [42]. The �-full theory is more consistent
in this regard and the ci’s appear to be more natural in size.

The expressions for the three-nucleon diagrams at NNLO
are from Ref. [11]. The NLO NNN force in the �-full theory
is given by the well-known Fujita-Miyazawa term [35]. This
topology is identical in structure to the �-less 2π -exchange
NNN interaction when using the resonance-saturation values
for the relevant πN LECs,

c�
3 = −2c�

4 = 4h2
A

9δ
= −2.972246 GeV−1.

To construct quantitative �-full χEFT potentials we need
to determine the numerical values of the LECs in the LO
and NLO contact potentials and the cD and cE terms in the
NNN interaction at NNLO. To optimize the contact LECs we
use a Levenberg-Marquardt algorithm with machine-precise
derivatives from automatic differentiation [20]. The objective
function for the LO and NLO contact LECs consists of the sum
of squared differences between the theoretical partial-wave NN
scattering phase shifts and the corresponding values from the
Granada analysis [43] up to 200-MeV scattering energy in the
laboratory system. At LO, we only use phase shifts up to 1 MeV.
The neutron-neutron LEC C̃

(nn)
1S0

is constrained to reproduce

the effective range expansion in the 1S0 channel. At NNLO
we use the same optimization algorithm to find the cD and
cE LECs that simultaneously reproduce the binding energy
and point-proton radius of 4He. Although correlated, these
A = 4 observables provide enough information to identify
a unique minimum in the cD-cE plane that is sufficient for
the purpose of comparing the effects in nuclei and nucleonic
matter from the � isobar. An extended regression analysis
or Bayesian inference approach including additional data
from many-nucleon systems or three-nucleon scattering would
generate interactions for use in detailed analyses of atomic
nuclei or model selection. In this work we focus on the effects
of the � isobar in nucleonic matter.

To regulate the the interactions we use the usual nonlocal
regulators,

f (p) = exp

[
−

(
p2

�2

)3
]
,

f (p,q) = exp

[
−

(
4p2 + 3q2

4�2

)3
]
,

in the NN and NNN interactions, respectively. Here, p and
q denote the Jacobi momenta in the two-body system and
spectator nucleon, respectively, and � is the momentum cutoff.
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TABLE I. Numerical values of the LECs for �-full χEFT potentials with a momentum cutoff � = 450 MeV at LO, NLO, and NNLO.
The πN LECs c1,2,3,4 are taken from the Roy-Steiner analysis in Ref. [37], and for consistency we use hA = 1.40, gA = 1.289, and Fπ =
92.2 MeV.

LEC LO(450) �NLO(450) �NNLO(450) LO(500) �NLO(500) �NNLO(500)

c1 – – −0.74 – – −0.74
c2 – – −0.49 – – −0.49
c3 – – −0.65 – – −0.65
c4 – – +0.96 – – +0.96
C̃

(nn)
1S0

−0.112 927 −0.310 511 −0.338 023 −0.108 522 −0.310 256 −0.338 223

C̃
(np)
1S0

−0.112 927 −0.310 712 −0.338 139 −0.108 522 −0.310 443 −0.338 320

C̃
(pp)
1S0

−0.112 927 −0.309 893 −0.337 137 −0.108 522 −0.309 618 −0.337 303

C̃3S1
−0.087 340 −0.197 951 −0.229 310 −0.068 444 −0.191 013 −0.221 721

C1S0
– +2.391 638 +2.476 589 – +2.395 375 +2.488 019

C3S1
– +0.558 973 +0.695 953 – +0.539 378 +0.675 353

C1P1
– +0.004 813 −0.028 541 – +0.015 247 −0.012 651

C3P0
– +0.686 902 +0.645 550 – +0.727 049 +0.698 454

C3P1
– −1.000 112 −1.022 359 – −0.951 417 −0.937 264

C3P2
– −0.808 073 −0.870 203 – −0.793 621 −0.859 526

C3S1−3D1
– +0.362 094 +0.358 330 – +0.358 443 +0.354 479

cD – – +0.790 – – −0.820
cE – – +0.017 – – −0.350

The nonlocal regulator acts multiplicative, i.e.,

VNN (p′,p) → f (p′)VNN (p′,p)f (p),

VNNN (p′,q ′; p,q) → f (p′,q ′)VNNN (p′,q ′; p,q)f (p,q).

To explore the sensitivity of the results with respect to
changes in the cutoff � we employ two common choices,
namely � = 450 MeV and � = 500 MeV. To regularize the
2π exchanges in conjunction with nonlocal regulation we use
the standard spectral-function regularization (SFR) [44] with a
cutoff �̃ = 700 MeV throughout. It should also be pointed out

that recent work, e.g., Refs. [45–47], indicates that a carefully
selected local regulation of the long-ranged 2π exchanges ren-
der SFR redundant and yields an improved analytical structure
of the scattering amplitude. However, the overall existence
of such scheme dependencies [48] will persist as long as the
chiral interactions cannot be order-by-order renormalized; see,
e.g., Ref. [49] for a recent analysis. The numerical values
of the employed πN LECs and the optimized short-ranged
LECs for the �-less as well as the �-full potentials are
given in Tables I and II. For the masses of the pions (π±,0),
proton, neutron, nucleon (p,n,N ), and � we use the following

TABLE II. Numerical values of the LECs for �-less χEFT potentials with a momentum cutoff � = 500 MeV at LO, NLO, and NNLO.
The πN LECs c1,3,4 are taken from the Roy-Steiner analysis in Ref. [37], and for consistency we use gA = 1.289, and Fπ = 92.2 MeV.

LEC LO(450) NLO(450) NNLO(450) LO(500) NLO(500) NNLO(500)

c1 – – −0.74 – – −0.74
c3 – – −3.61 – – −3.61
c4 – – +2.44 – – +2.44
C̃

(nn)
1S0

−0.112 927 −0.149 559 −0.152 421 −0.108 522 −0.148 625 −0.152 130

C̃
(np)
1S0

−0.112 927 −0.150 034 −0.152 630 −0.108 522 −0.149 167 −0.152 327

C̃
(pp)
1S0

−0.112 927 −0.149 336 −0.151 775 −0.108 522 −0.148 236 −0.151 463

C̃3S1
−0.087 340 −0.152 884 −0.166 118 −0.068 444 −0.147 784 −0.158 592

C1S0
– +1.438 619 +2.391 093 – +1.479 889 +2.394 670

C3S1
– −0.684 095 +0.446 631 – −0.692 660 +0.426 020

C1P1
– +0.305 070 +0.150 981 – +0.304 204 +0.160 280

C3P0
– +1.207 031 +0.909 408 – +1.225 764 +0.949 224

C3P1
– −0.386 920 −0.967 768 – −0.385 154 −0.923 166

C3P2
– −0.167 769 −0.696 173 – −0.137 914 −0.681 166

C3S1−3D1
– +0.132 948 +0.372 585 – +0.133 834 +0.368 968

cD – – +1.790 – – +0.400
cE – – +0.130 – – −0.270
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values (in MeV): Mπ± = 139.57018, Mπ0 = 134.9766, Mp =
938.272046, Mn = 939.565379, MN = 938.918267, and
M� = 1232, respectively.

The statistical error from the Roy-Steiner analysis of the
πN scattering data, documented in Ref. [37], as well as
uncertainties because of the fit of the contact potentials, are
not considered any further in this work. When contrasted with
the much larger systematic uncertainties from the truncation
of the EFT, such statistical errors presently play a lesser role
[20,50,51]. It is important to note that although the πN LECs
are extracted from πN data using a high-precision Roy-Steiner
analysis, the corresponding LECs in the �-full sector are less
precise because of the large uncertainty in the underlying
determination of hA.

To provide a crude estimate of the EFT-truncation uncer-
tainty we follow Refs. [17,52] and write the EFT expansion
for an observable X as X = X0

∑∞
n=0 anQ

n. Here X0 is the
scale of the observable, given, e.g., by the LO prediction,
an are dimensionless expansion coefficients (with a1 = 0 in
Weinberg power counting), and Q ≡ p/�b is the ratio of the
typical momentum p and the breakdown momentum �b. The
application of Bayes theorem with boundless and uniform
prior distribution of the expansion coefficients an leads to an
expression for the truncation error at order NjLO (j = 0: LO,
j = 1: NLO, j = 2: NNLO) according to

σX(NjLO) = X0Q
j+2max(|a0|,|a1|,...,|aj+1|); (1)

see Eq. (36) of Ref. [52]. This estimate is in semiquantitative
agreement with a Bayesian uncertainty quantification of the
truncation error. The uncertainty at LO is further constrained
to at least the size of the contribution of the higher chiral
orders. For the breakdown scale �b, we start from Ref. [17]
but use a more conservative estimate of �b = 500 MeV.
We also estimate the typical momentum scale for bound
state observables as p ∼ mπ , and employ p ∼ pF (the Fermi
momentum) for infinite nucleonic matter, whereas for NN
scattering we extract the momentum scale max(prel,mπ )/�.
We disregard detailed numerical factors in the various possible
definitions of the relevant momentum scales for bound states
because the estimate in Eq. (1) is only valid up to factors of
order unity.

In Figs. 2, 3, and 4 we compare the quality of the NN
scattering phase shifts of the �-full and �-less interactions
with cutoff � = 450 MeV. The results for the peripheral waves
agree well with published interactions that were analyzed in
the Born approximation [31]. The dashed lines show the �-less
results, order by order from red to green to blue. The full lines
show the �-full results, and we remind the reader that LO is
not affected by the � (see Fig. 1).

Clearly, in several partial waves the �-full χEFT inter-
actions exhibit a faster order-by-order convergence than the
corresponding �-less formulations. Somewhat surprisingly,
the �NNLO results at higher scattering energies, in particular
for 1S0 and selected peripheral waves, such as 1D2, are slightly
less accurate than the corresponding �-less order. A more
involved optimization strategy, such as Bayesian parameter
estimation, could further illuminate this point. Nevertheless,
the Granada phase shifts fall on the envelope of the estimated
truncation errors and the results therefore seem reasonable.
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FIG. 2. Neutron-proton scattering phase shifts for the contact
partial waves using the �-full and �-less χEFT potentials with
nonlocal cutoff � = 450 MeV. All phases are compared to the results
from the Granada phase shift analysis [43]. The bands correspond to
the order-by-order EFT truncation error in the �-full approach, as
described in the main text.

Although not shown, the computed phase shifts for the � =
500 MeV interactions are very similar and exhibit the same
features.

Tables III and IV summarize our results for selected
bound-state observables in A � 4 nuclei computed with a
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FIG. 3. Neutron-proton scattering phase shifts for selected pe-
ripheral partial waves using the �-full and �-less χEFT potentials
with nonlocal cutoff � = 450 MeV. All phases are compared to
the results from the Granada phase shift analysis [43]. The bands
correspond to the order-by-order EFT truncation error in the �-full
approach, as described in the main text.
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FIG. 4. Proton-proton scattering phase shifts for the contact
and selected peripheral partial waves using the �-full and �-less
χEFT potentials with nonlocal cutoff � = 450 MeV. All phases are
compared to the results from the Granada phase shift analysis [43].
The bands correspond to the order-by-order EFT truncation error in
the �-full approach, as described in the main text.

Jacobi-coordinate version [53] of the no-core shell model
(NCSM) [3,4]. All calculations are converged in 41 and 21
major oscillator shells with h̄	 = 36 MeV for A = 3 and
A = 4, respectively. The charge radius and binding energy
of 4He were used to constrain the LECs cD and cE of the
short-ranged three-nucleon force whereas the NCSM results
for A = 2,3 nuclei are predictions. At NNLO, all results except
the binding energy of 2H, agree with the experimental values
within the estimated EFT-truncation errors. The computed
point-proton radii were transformed to charge radii using a
standard expression; see, e.g., Ref. [18].

III. PREDICTIONS FOR MEDIUM MASS NUCLEI AND
NUCLEONIC MATTER

In this section we present results for selected finite nuclei
and infinite nucleonic matter. For nucleonic matter we present
results for both �-less and �-full interactions, while for finite
nuclei we limit the discussion to the �-full interactions because
the �-less interactions produce nuclei that are not bound with
respect to breakup into α particles. The computed binding
energies and radii of finite nuclei are consistent with our results
for the saturation point in symmetric nuclear matter.

A. Finite nuclei

The many-body calculations for finite nuclei are performed
with the coupled-cluster (CC) method [5,55–57]. We employ
the translationally invariant Hamiltonian,

H = T − Tcm + VNN + VNNN. (2)

Here, T denotes the total kinetic energy and Tcm the kinetic
energy of the center of mass. As the Hamiltonian (2) does not
reference the center-of-mass coordinate, the ground-state wave
function is a product of an intrinsic and a Gaussian center-
of-mass wave function [8,58–61]. The CC method yields a
similarity transformed Hamiltonian whose ground state is the
product state corresponding to a closed-shell nucleus. In the
coupled-cluster singles and doubles (CCSD) approximation,
typically accounting for about 90% of the correlation energy,
the ground state is orthogonal to all one-particle–one-hole
(1p-1h) and 2p-2h excitations. In addition to the CCSD ap-
proximation we include leading-order 3p-3h excitations per-
turbatively by employing the �-CCSD(T) method [59,62,63].
This approximation typically captures about 99% of the cor-
relation energy. We employ a model space of 15 oscillator
shells with h̄	 = 16 MeV, and a cutoff E3max = 16h̄	 for the
maximum excitation energy of three nucleons interacting via
the three-nucleon potential VNNN . This potential enters the CC
calculations in the normal-ordered two-body approximation
[64,65] in the Hartree-Fock basis.

TABLE III. Binding energies (E) in MeV, charge radii (Rch) in fm, for 2,3H and 3,4He at LO, NLO, and NNLO with � = 450 MeV, with
and without the � isobar and compared to experiment. For the ground state of 2H we also present the quadrupole moment (Q) in e fm2 and the
D-state probability (PD) in %. Experimental charge radii are from Ref. [54]. Estimates of the EFT truncation errors are given in parenthesis,
and at LO we report the truncation error belonging to the �-full expansion.

LO(450) NLO(450) �NLO(450) NNLO(450) �NNLO(450) Expt.

E(2H) 2.01(15) 2.02(12) 2.10(5) 2.14(3) 2.16(2) 2.2245
Rch(2H) 2.16(16) 2.167(16) 2.156(7) 2.1511(44) 2.1486(19) 2.1421(88)
PD(2H) 7.15(3.51) 3.43(1.02) 3.63(97) 3.70(28) 3.74(27) –
Q(2H) 0.322(41) 0.276(13) 0.277(11) 0.277(3) 0.277(3) 0.27a

E(3H) 10.91(2.38) 8.54(65) 8.65(62) 8.56(18) 8.53(17) 8.48
Rch(3H) 1.52(23) 1.70(5) 1.72(6) 1.74(1) 1.74(2) 1.7591(363)
E(3He) 9.95(2.21) 7.78(60) 7.85(58) 7.78(16) 7.73(16) 7.72
Rch(3He) 1.66(32) 1.91(7) 1.94(8) 1.96(2) 1.97(2) 1.9661(30)
E(4He) 39.60(11.3) 30.10(2.62) 29.32(2.83) 28.30(72) 28.29(78) 28.30
Rch(4He) 1.37(30) 1.59(9) 1.63(7) 1.68(3) 1.67(2) 1.6755(28)

aCD-Bonn value [22].
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TABLE IV. Binding energies (E) in MeV, charge radii (Rch) in fm, for 2,3H and 3,4He at LO, NLO, and NNLO with � = 500 MeV, with
and without the � isobar and compared to experiment. For the ground state of 2H we also present the quadrupole moment (Q) in e fm2 and the
D-state probability (PD) in %. Experimental charge radii are from Ref. [54]. Estimates of the EFT truncation errors given in the parenthesis,
and at LO we report the truncation error belonging to the �-full expansion.

LO(500) NLO(500) �NLO(500) NNLO(500) �NNLO(500) Expt.

E(2H) 2.04(16) 2.04(12) 2.12(5) 2.16(3) 2.18(2) 2.2245
Rch(2H) 2.15(16) 2.164(16) 2.153(7) 2.149(4) 2.1459(19) 2.1421(88)
PD(2H) 7.80(3.97) 3.55(1.17) 3.82(1.09) 3.93(32) 3.97(30) –
Q(2H) 0.317(42) 0.273(12) 0.276(11) 0.275(3) 0.276(3) 0.27a

E(3H) 10.47(1.97) 8.42(56) 8.91(43) 8.49(16) 8.50(12) 8.48
Rch(3H) 1.54(21) 1.71(5) 1.71(5) 1.75(1) 1.75(1) 1.7591(363)
E(3He) 9.50(1.80) 7.66(51) 8.11(40) 7.72(14) 7.70(11) 7.72
Rch(3He) 1.68(30) 1.93(7) 1.92(7) 1.97(2) 1.98(2) 1.9661(30)
E(4He) 37.00(8.69) 29.22(2.15) 30.70(2.38) 28.31(60) 28.31(65) 28.30
Rch(4He) 1.39(28) 1.60(7) 1.62(6) 1.68(2) 1.67(2) 1.6755(28)

aCD-Bonn value [22].

To assess the impact of the � isobar in finite nuclei we
calculated the binding energies and charge radii for 4He,
16O, and 40Ca order-by-order, i.e., at LO, NLO, and NNLO.
Figure 5 shows the results using the �-full interactions with a
momentum cutoff � = 450 MeV. The ground-state energies
are E(16O) = −108.8(11.4), −120.3(6.4), and −117.0(1.8)
MeV and E(40Ca) = −216(97), −312(52), and −309(14)
MeV at LO, NLO, and NNLO, respectively. The charge radii
are Rch(16O) = 1.96(0.76), 2.63(0.36), and 2.73(0.10) fm and
Rch(40Ca) = 2.29(1.25), 3.41(0.61), and 3.55(0.17) fm at LO,
NLO, and NNLO, respectively. Before we analyze the results,
we estimate the systematic uncertainties from the truncation
of the EFT. Again we follow Refs. [17,66], use Eq. (1), and set
the momentum scale p = mπ for our low-energy observables.
The predicted charge radii are accurate at each order within

−11
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FIG. 5. Ground-state energy (negative of binding energy) per
nucleon and charge radii for selected nuclei computed with coupled
cluster theory and the �-full potential (� = 450 MeV). For each
nucleus, from left to right as follows: LO (red triangle), NLO (green
square), and NNLO (blue circle). The black bars are data. Vertical bars
estimate uncertainties from the order-by-order EFT truncation errors
σ (LO), σ (NLO), and σ (NNLO). At NLO and NNLO we estimate a
conservative 95% confidence interval, i.e., 1.96 × σ . See the text for
details.

uncertainties. Already at NLO, which is independent of the
subleading 2π -exchange LECs ci , we obtain an accurate
description of both radii and binding energies of 4He, 16O,
and 40Ca. At NNLO, the charge radii also exhibit a first
sign of convergence in terms of the chiral expansion. Binding
energies exhibit a nearly identical order-by-order increase in
precision but somewhat underbind nuclei at NNLO. These
results demonstrate that the � isobar can play an important
role also in low-energy nuclear structure and nuclear saturation
[14,50].

The � degree of freedom also impacts the stability of nuclei
with respect to breakup into alpha particles. At LO, 16O and
40Ca are not stable with respect to alpha emission. Similar
results were observed in pionless EFT [67–69] and nuclear
lattice EFT [25]. However, the � modifies the 2π exchanges
between nucleons, and we observe that the �-full interactions
at NLO and NNLO yield nuclei that are stable with respect to
alpha emission. This is in stark contrast to results we obtained
here using the �-less NLO and NNLO interactions at cutoff
� = 450 MeV, and to those of Ref. [20].

Table V summarizes binding energies, radii, and also the
neutron skins of nuclei with closed subshells up to 48Ca. Note
that the lack of a spin-orbit (LS) force at LO results in energy
degeneracies that hamper CC calculations of non-LS-closed
nuclei. Therefore, we can obtain EFT truncation errors only
for 16O and 40Ca using Eq. (1). For 48Ca we predict a neutron
skin of Rskin = 0.15 fm at �NLO and �NNLO, consistent
with the recent ranges 0.14–0.20 fm and 0.12–0.15 fm from
Ref. [70] and Ref. [7], respectively.

Figure 6 shows the charge form factor at �NLO and
�NNLO, compared to NNLOsat [18] and data. The charge
form factor is obtained by a Fourier transform of the intrinsic
charge density [7,72], and agrees with data for momentum
transfers up to about q ≈ 2.5 fm−1. Also for this quantity,
the �NLO results indicate an improved convergence of chiral
expansion compared to the �-less formulation.

We also computed spectra of various nuclei. These explo-
rations exhibited mixed results: While the low-lying states in
17O were in good agreement with data, 25O is bound at �NNLO
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TABLE V. Binding energies (E) (in MeV), charge radii (in fm), proton point radii (in fm), neutron point radii (in fm), and neutron skin (in
fm) for 8He, 16,22,24O, and 40,48Ca at �NLO and �NNLO, and compared to experiment.

E Rch Rp Rn Rskin

�NLO �NNLO Expt. [71] �NLO �NNLO Expt. [54] �NLO �NNLO �NLO �NNLO �NLO �NNLO

8He 27.5 27.0 31.40 1.90 1.97 1.924(31) 1.77 1.85 2.63 2.70 0.85 0.85
16O 120.3 117.0 127.62 2.63 2.73 2.699(5) 2.49 2.61 2.47 2.58 −0.02 −0.03
22O 146.2 145.4 162.04 2.66 2.77 2.54 2.66 2.88 3.00 0.34 0.34
24O 152.2 151.6 168.96 2.70 2.81 2.59 2.71 3.11 3.22 0.52 0.51
40Ca 312.2 309.1 342.05 3.41 3.55 3.478(2) 3.31 3.45 3.26 3.40 −0.05 −0.05
48Ca 373.4 373.8 416.00 3.45 3.56 3.477(2) 3.36 3.47 3.51 3.62 0.15 0.15

with respect to 24O by about 0.5 MeV, and the Jπ = 2+
state in 24O is too low. We believe that these shortcomings
should not distract from the main results reported in this work:
accurate saturation properties at NLO in the �-full χEFT.
We speculate that finer details such as spectra will require
us to go to higher order in the NN interaction (as was done,
e.g., in Ref. [34] by including N3LO contacts), or to vary the
�-full πN couplings within their somewhat more generous
uncertainty limits because of the somewhat poorly known
πN� coupling hA, or to also use data of heavier nuclei in the
optimization of the interaction. The interactions constructed in
this work serve as excellent starting points for such endeavors.

B. Nucleonic matter

We turn to the CC calculations of nuclear matter using �-
full and �-less interactions up to NNLO. We follow Ref. [73]
and employ a Hamiltonian H = T + VNN + VNNN . The basis
is a discrete lattice in momentum space corresponding to
periodic boundary conditions in a cubic box of length L in
position space, and the discrete lattice momenta are given by
2πh̄ni/L, with ni = 0, ± 1, . . . ± nmax, and i = x,y,z. We
used nmax = 4 as the maximum number of lattice points. The
CC calculations were carried out at the doubles excitation
level (2p-2h) with perturbative triples (3p-3h) corrections
[CCD(T)]. Because of translational invariance, there are no

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
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|F
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)|2

NNLOsat

ΔNLO

ΔNNLO

Experiment

FIG. 6. Elastic charge form factor of 48Ca from NNLOsat (gray
dash-dotted), �NLO (green dashed), and �NNLO (blue solid line)
compared to experimental data (black).

1p-1h excitations. We use “closed-shell” lattice configurations
with 66 neutrons for neutron matter, and 132 nucleons for
symmetric nuclear matter. These nucleon numbers exhibit only
small finite-size effects [73,74]. The CCD(T) calculations were
performed with the normal-ordered two-body approximation
for the NNN interaction [64,65], i.e., the three-nucleon force
enters the normal-ordered Hamiltonian as 0-body, 1-body, and
2-body interactions; summing over 3, 2, and 1 particles in the
reference state, respectively. All results are well converged for
nmax = 4 at all considered densities, i.e., ρ � 0.2 fm−3. To
gauge the quality of the normal-ordered two-body approx-
imation, we also included the “residual” NNN interaction
(i.e., those that generate 3p-3h excitations when acting on the
reference) in perturbation theory. We found that the residual
NNN contribution is negligible for neutron matter, and small
(0.2–0.3 MeV per nucleon) in symmetric nuclear matter. This
suggests that the normal-ordered two-body approximation for
the three-nucleon force is sufficiently precise for the �-full
interactions considered in this work.

In Fig. 7 we compare the results for the energy per
nucleon at different densities in symmetric nuclear matter
and pure neutron matter using �-full and �-less interactions
with a momentum cutoff � = 450 MeV at LO, NLO, and
NNLO. The saturation points in symmetric matter at NLO and
NNLO shift towards considerably more realistic values upon
inclusion of the �. This observation is consistent with our
results for finite nuclei. For the EFT truncation uncertainty
we use Eq. (1), a relevant momentum scale p = pF , and
the breakdown momentum �b = 500 MeV. The uncertainties
also make the accelerated convergence and consistency of the
�-full expansion more apparent. We note that our breakdown
scale �b is somewhat conservative. For �b � 650 MeV the
truncation-error bands of the �-full and �-less NNLO(450)
interactions no longer overlap in the region of the empirical
saturation density. We also note that nuclear matter does not
saturate at LO in the range of densities we studied, and we
remind the reader once more that the � does not enter at this
chiral order.

Figure 8 shows the difference between the equations of
state for neutron matter and symmetric nuclear matter for
the � = 450 MeV cutoff. At the saturation density (ρ0),
indicated as vertical lines for the different orders, this yields
the symmetry energy (S0). Our results are ρ0 = 0.18(1) fm−3,
22.8 � S0 � 36.5 MeV, and 46 � L � 65 MeV at �NLO,
and ρ0 = 0.165(1) fm−3, 23.6 � S0 � 33.3 MeV, and
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FIG. 7. Energy per nucleon (in MeV) of symmetric nuclear matter (upper row) and pure neutron matter (lower row) up to third order in
χEFT without (left column) and with (right column) explicit inclusion of the � isobar in χEFT. All interaction employ a momentum cutoff
� = 450 MeV. Shaded areas indicate the estimated EFT-truncation errors, and the (square) diamond marks the saturation point in symmetric
nuclear matter for (�NLO) �NNLO. The black rectangle indicates the region E/A = −16 ± 0.5 MeV and ρ = 0.16 ± 0.01 fm−3.

32 � L � 67 MeV at �NNLO. The estimated EFT truncation
error for ρ0 is very small at �NNLO because its central
value and lower and upper bounds have essentially the same
saturation point. The estimated EFT truncation error for S0 is
the maximum difference between the energies per particle in
neutron matter and symmetric nuclear matter, at the saturation
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FIG. 8. The symmetry energy as a function of the density for
�NLO (green), and �NNLO (blue) with �-full interaction at cutoff
of 450 MeV, with uncertainties shown as shaded areas.

point. This uncertainty also decreases with increasing order.
Finally, the estimated uncertainty in the slope (L) of the
symmetry energy is taken from the ranges of slopes of S0

at its upper and lower values. It is large even at �NNLO
and reflects that the slope in neutron matter exhibits a greater
variance at �NNLO than at �NLO; see Fig. 7. We note that our
predictions for the symmetry energy and its density derivative
at �NLO and �NNLO are consistent with the recent estimates
of Refs. [75,76].

IV. SUMMARY

We presented results for selected finite nuclei and infinite
nucleonic matter using optimized interactions from χEFT
with explicit �-isobar degree of freedom. We optimized both
�-full and �-less interactions order by order in the power
counting up to NNLO, for two different cutoffs, and with πN
LECs from a recent Roy-Steiner analysis of πN scattering.
The NN contact potentials up to NNLO were adjusted to
NN phase shifts, while the short-ranged parts of the NNN
interactions were constrained by energy and radius data on 4He.
We emphasize that the only differences between the �-full
and �-less interactions are because of the explicit inclusion
of the � isobar. In a detailed comparison, we found that radii
in nuclei up to 48Ca are accurate within EFT-truncation error
estimates, and that binding energies—while improving order

024332-8



� ISOBARS AND NUCLEAR SATURATION PHYSICAL REVIEW C 97, 024332 (2018)

by order in precision—somewhat underbind heavier nuclei.
The saturation point in nuclear matter is consistent with data
within EFT error estimates. Our results also show that the
inclusion of � isobars in the nuclear interaction can address the
long-standing problem regarding nuclear saturation. This work
therefore provides a valuable starting point for constructing
more refined �-full χEFT interactions, also at higher chiral
orders, with improved uncertainty estimates.
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