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The nodal structure of the density distributions of the single-particle states occupied in rod-shaped, hyper-
and megadeformed structures of nonrotating and rotating N ∼ Z nuclei has been investigated in detail. The
single-particle states with the Nilsson quantum numbers of the [NN0]1/2 (with N from 0 to 5) and [N,N − 1,1]�
(with N from 1 to 3 and � = 1/2, 3/2) types are considered. These states are building blocks of extremely
deformed shapes in the nuclei with mass numbers A � 50. Because of (near) axial symmetry and large elongation
of such structures, the wave functions of the single-particle states occupied are dominated by a single basis state
in cylindrical basis. This basis state defines the nodal structure of the single-particle density distribution. The
nodal structure of the single-particle density distributions allows us to understand in a relatively simple way the
necessary conditions for α clusterization and the suppression of the α clusterization with the increase of mass
number. It also explains in a natural way the coexistence of ellipsoidal mean-field-type structures and nuclear
molecules at similar excitation energies and the features of particle-hole excitations connecting these two types
of the structures. Our analysis of the nodal structure of the single-particle density distributions does not support
the existence of quantum liquid phase for the deformations and nuclei under study.

DOI: 10.1103/PhysRevC.97.024329

I. INTRODUCTION

Recent years have witnessed the revival of interest (both
experimental and theoretical) in the study of cluster and
extremely deformed structures in light nuclei (see Refs. [1–
3,3–9] and references quoted therein). Many of these structures
are described in terms of clusters, the simplest one being
the α particle [10,11]. Cluster and similar models provide
important insight into cluster dynamics of nucleus. However,
the initial assumptions about clusters represent a limitation of
this type of models and many shell model configurations are
beyond their reach. It is also important to remember that the
cluster description does not correspond to clearly separated
α particles but generates the mean-field states largely by
antisymmetrization [11].

Alternative descriptions of exotic cluster configurations
are within the framework of density functional theory (DFT)
[4,12,13]. This type of model does not assume the existence of
cluster structures but allows simultaneous treatment of clus-
ter and mean-field-type states [4,12–16]. In this framework,
the formation of clusters proceeds from microscopic single-
nucleon degrees of freedom via many-body correlations. Let us
mention some recent studies of cluster and extremely deformed
structures in the DFT framework. A linear chain of three
α clusters, leading to “rod-shaped” nucleus and suggested
about 60 years ago [17], was recently studied in the cranked
relativistic mean field (CRMF) theory in Ref. [18]; its density
distribution is presented in Fig. 1(a). This exotic structure
(“Hoyle” state) plays a crucial role in the synthesis of 12C from
three 4He nuclei in stars [19]. Another example of rod-shaped
nucleus is linear chain configuration of four α clusters in 16O.

Recently, the relationship between the stability of such states
and angular momentum was investigated using the Skyrme
cranked Hartree-Fock (HF) method in Ref. [20] and CRMF
approach in Ref. [16]. The cranked Skyrme HF framework was
employed for the study of the stability of rod-shaped structures
in highly excited states of 24Mg in Ref. [6].

However, the phenomenon of clusterization is not limited
to the α particles. Larger nuclei could play a role of building
blocks of the clustered configurations. In particular, the nuclear
configurations consisting of the N = Z clusters with no or
extra few valence nucleons could play an important role in
the nuclei near the N = Z line [10]. For example, the wave
function of the superdeformed (SD) [2,2]1 band in 32S contains
a significant admixture of the molecular 16O + 16O structure
[11,21]. Extremely deformed structures such as super-, hyper-
(HD), and megadeformed (MD) configurations as well as
nuclear molecules have been systematically studied in the
rotating A = 28–50 N ≈ Z nuclei in the CRMF framework
(Refs. [9,22]). A number of the configurations with cluster
structures have been found in these calculations. Figures 1(b)–
1(f) show some examples of such structures with different
pattern of density distribution. The best example of nuclear
molecule is the MD [421,421] configuration in 42Sc [Fig. 1(f)]
followed by the MD [42,42] configuration in 40Ca [Fig. 1(e)]
and the MD [31,31] configuration in 36Ar [Fig. 1(d)]. These
three configurations show pronounced necks. On the other
hand, the HD [2,2] configuration in 28Si shows the clusteri-
zation at spin zero but with a less pronounced neck [Fig. 1(b)].

1The notation of the configurations is discussed in Sec. II.
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FIG. 1. Total neutron densities [in fm−3] of specified configurations in 12C, 28Si, 36Ar, 40Ca, and 42Sc at indicated spin values. The plotting
of the densities starts with yellow color at 0.001 fm−3. The densities presented in panels (b)–(f) are based on the results of the calculations of
Ref. [9].

The rotation somewhat hinders these features and suppresses
the neck in this configuration (see Fig. 1(c) and Ref. [22]).

In the DFT framework, the formation of clusters proceeds
from microscopic single-nucleon degrees of freedom via
many-body correlations. Although this fact is wildly recog-
nized, in reality very little attention has been paid to the detailed
study of the role of the single-particle states in clusterization. In
that context, mostly the impact of the underlying single-particle
and shell structure on the clusterization has been investigated.
For example, the impact of underlying single-particle structure
on the transition from spheroidal superdeformed configura-
tions to doubly spherical configurations, which are analogs of
cluster configurations, and the connection between the magic
numbers at both shapes has been investigated in Ref. [23].
Even less attention has been paid to the structure of the single-
particle wave functions and related single-particle densities and
their impact on clusterization in the DFT framework. To our
knowledge, this has been discussed only in two publications.
The formation of the total density of 8Be nucleus from single-
particle densities of occupied states has been discussed in
Ref. [12]. The contribution of the single-particle densities of
the [220]1/2 states into buildup of the ground state densities
of 20Ne has been presented in Ref. [4].

To address this gap in our knowledge of clusterization,
we perform systematic investigation of the densities of the
single-particle states and their nodal structure in clustered and
extremely deformed configurations of theN = Z 12C, 28Si, and
40Ca nuclei. The selection of these nuclei is dictated by several
factors. First, typical single-particle orbitals, which play a role
at hyper- and megadeformation in the N ≈ Z nuclei with Z =
6–24, have to be considered. Second, the impact of reasonable
changes of the nucleonic potential in axial and radial directions
on the nodal structure of single-particle density distributions
have to be investigated. Since nucleonic potential depends

on total nucleonic density, this is achieved by considering
nuclei which differ substantially in that respect. Note that the
single-particle densities bear a clear fingerprint of underlying
single-particle wave functions. Third, such choice of nuclei
allows us to see the significance of the impact of lowering of
the position of the single-particle orbital in nucleonic potential
on the single-particle density distributions. In this paper, we
consider rotating and nonrotating nuclei and define which
single-particle states favor the α clusterization, which states
suppress this type of clusterization, and which particle-hole
excitations are important for the creation of nuclear molecules.

The difficulty in investigating cluster and extremely de-
formed states at spin zero is that they are generally unbound and
lie at high excitation energies at low spins [10,24]. Moreover,
they are either formed on the shoulder or in very shallow
minima of potential energy surfaces [12,25]; thus, they are
inherently unstable. The high density of nucleonic configu-
rations at these energies and possible mixing among them is
another factor hindering their experimental observation. As
shown in Ref. [9], the rotation could help to overcome these
obstacles. This is because extremely deformed configurations
are favored by rotation at high spins (Refs. [9,25,26]) so that
only such states could be populated above some specific spin
values in the mass region of interest [9].

In the present paper, the analysis is performed within the
framework of covariant density functional theory (CDFT) [27].
It provides a fully self-consistent description of many nuclear
phenomena. The CDFT well describes the experimental proton
density distributions in spherical nuclei [28,29], the defor-
mations of superdeformed nuclei [30–33], and charge radii
[34–36] across the nuclear chart. In addition, it provides a
good description of the changes in deformation and charge
radii with the change of the configuration and particle number.
These two facts strongly suggest that the CDFT properly
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reproduces the single-particle density contributions on which
these observables depend.2 This is an important factor in the
context of the present investigation since the total density
distribution (which could point either to α clusterization or
nuclear molecule) is built as a sum of the single-particle
density distributions of occupied single-particle states. Note
also that covariant (relativistic) energy density functionals
(CEDFs) show more pronounced clusterization of the density
distribution as compared with nonrelativistic ones because of
deeper single-nucleon potentials [4].

The studies of the single-particle densities in the present
paper are also related to the general problem of the nucleon
localization in finite nuclei. This problem was considered in
Refs. [15,37,38]; however, only total nucleon densities were
used in the discussion of the localization. It was described in
terms of different parameters reflecting different aspects of
nuclear many-body problem. The α parameter representing
the ratio of the spatial dispersion of the wave function to
the average internucleon distance has been introduced in
Ref. [37]. This parameter generally increases with the number
of nucleons. Based on that, it was concluded that cluster states
are more easily formed in light nuclei and that the transition
from localized clusters to quantum liquid state occurs for
nuclei with A ≈ 30. An alternative localization measure has
been employed in Refs. [15,38]. It is defined as a conditional
probability of finding a nucleon within a distance δ from a
given nucleon at point r with the same spin and isospin. This
measure has been applied both to light and very heavy nuclei.

The paper is organized as follows. Section II describes the
details of the calculations. The basic features of the nodal
structure of the single-particle wave function (and thus of
its density distribution) in the case of extremely elongated
prolate shapes are discussed in Sec. III. Sections IV, V, and VI
analyze the densities and their nodal structures obtained in the
CDFT calculations for the single-particle states occupied in
rod-shaped structure of 12C, hyperdeformed band of 28Si, and
megadeformed structure of 40Ca. Section VII summarizes the
general features of the nodal structure of the single-particle
density distributions and analyzes how they affect the α
clusterization and the formation of nuclear molecules. Finally,
Sec. VIII summarizes the results of our work.

II. THE DETAILS OF THE CALCULATIONS

The calculations are performed in the cranked relativistic
mean field (CRMF) framework [27,30] using the NL3* CEDF
[39]. Note that one-dimensional rotation is along the x axis
in this framework. The pairing is neglected in the calculations
since it has very little impact on the configurations of interest
[9]. The CRMF equations are solved in the basis of an
anisotropic three-dimensional harmonic oscillator in Cartesian
coordinates; for details see Refs. [30,40]. The truncation of
basis is performed in such a way that all states belonging
to the major shells up to NF = 14 fermionic shells for the

2Note that at present there is no experimental technique which would
allow to measure the density distribution of specific single-particle
orbital (and thus its localization).

Dirac spinors and up to NB = 20 bosonic shells for the meson
fields are taken into account. This truncation scheme provides
sufficient numerical accuracy (see Ref. [25] for details).

The calculated configurations are labeled by shorthand
[n1(n2)(n3),p1(p2)(p3)] labels, where n1, n2 and n3 (p1, p2 and
p3) are the number of neutrons (protons) in the N = 3 intruder,
N = 4 hyperintruder andN = 5 megaintruder orbitals. If some
of these orbitals are not occupied, the respective numbers are
omitted in the configuration labels.

To give a full three-dimensional representation of the single-
particle density distributions, they are plotted in the figures
below in the xz and yz planes at the positions of the Gauss-
Hermite integration points in the y and x directions closest
to zero. The density cross section in the xy plane is taken at
the Gauss-Hermite integration point in the z coordinate which
gives the largest density. The numerical values of these x and
y coordinates are given in figure captions, while the value
of the z coordinate is shown in middle panels of the figures
which present single-particle density distributions. Note that
some graphical results of the calculations are provided in the
Supplemental Material with this article [41].

III. THE NODAL STRUCTURE OF THE
SINGLE-PARTICLE WAVE FUNCTION

Considering that the structures under investigation are
characterized by the extreme prolate deformation and near
axial symmetry (see Ref. [9]), the expansion of the wave
functions of the single-particle states in terms of quantum
numbers specific for asymptotic Nilsson quantum numbers
(see Sec. 8.2 of Ref. [42]) is the most appropriate. Thus, the
wave function �[Nnz�]� of the single-particle state denoted by
the Nilsson quantum number3 [Nnz�]� is expanded into the
basis states |N ′n′

z�
′�′〉 by

�[Nnz�]� =
∑

N ′,n′
z,�

′,�′
cN ′n′

z�
′�′ |N ′n′

z�
′�′〉. (1)

Here, the basis states are characterized by principal quantum
number N ′, the number n′

z of nodes in the axial direction (z
direction) and the projections of orbital (�′) and total (�′)
single-particle angular momenta on the axis of symmetry. The
sum in Eq. (1) runs over all allowable combinations of the
quantum numbers N ′,n′

z,�
′, and �′.

Since the single-particle density ρ[Nnz�]� of the Nilsson
state [Nnz�]� is given by

ρ[Nnz�]� =
∑

N ′,n′
z,�

′,�′
c2
N ′n′

z�
′�′ 〈N ′n′

z�
′�′|N ′n′

z�
′�′〉,

(2)

the weights c2
N ′n′

z�
′�′ define the contributions of the basic states

|N ′n′
z�

′�′〉 into the single-particle density.

3We use here the standard notation in which the single-particle states
are labeled by the asymptotic quantum numbers [Nnz�]� (Nilsson
quantum numbers) of the dominant component of the wave function.
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TABLE I. The squared amplitudes c2
N ′n′

z�
′�′ of three largest components of the wave functions of the single-particle states occupied in the

megadeformed [42,42] configuration of 40Ca. The states are shown from the bottom of nucleonic potential in the same sequence as they appear
in the routhian diagram of this configuration [see Fig. 1(b)]. The results are shown at no rotation (�x = 0.0 MeV) and at rotational frequency
�x = 1.8 MeV which corresponds to spin I = 25h̄. If not indicated otherwise, the orbitals have signature r = −i. Note that the [550]1/2 state
is not occupied in this configuration.

State �x [MeV] Wave function

[000]1/2 0.0 92.7% |000,1/2〉 + 6.7% |220,1/2〉 + 0.4% |200,1/2〉
1.8 90.4% |000,1/2〉 + 8.7% |220,1/2〉 + 0.3% |200,1/2〉

[110]1/2 0.0 89.6% |110,1/2〉 + 9.6% |330,1/2〉 + 0.4% |101,1/2〉
1.8 87.3% |110,1/2〉 + 9.6% |330,1/2〉 + 1.3% |101,3/2〉

[220]1/2 0.0 85.1% |220,1/2〉 + 6.5% |000,1/2〉 + 6.2% |440,1/2〉
1.8 73.2% |220,1/2〉 + 8.9% |000,1/2〉 + 6.9% |440,1/2〉

[101]3/2 0.0 92.9% |101,3/2〉 + 6.7% |321,3/2〉 + 0.3% |301,3/2〉
1.8 82.9% |101,3/2〉 + 9.4% |321,3/2〉 + 3.4% |101,1/2〉

[330]1/2 0.0 75.7% |330,1/2〉 + 8.5% |110,1/2〉 + 6.8% |321,1/2〉
1.8 65.5% |330,1/2〉 + 8.9% |101,1/2〉 + 5.8% |101,3/2〉

[211]3/2 0.0 92.5% |211,3/2〉 + 6.9% |431,3/2〉 + 3.6% |202,3/2〉
1.8 78.4% |211,3/2〉 + 7.2% |431,3/2〉 + 6.1% |220,1/2〉

[101]1/2 0.0 90.2% |101,1/2〉 + 5.0% |330,1/2〉 + 4.4% |321,1/2〉
1.8 76.7% |101,1/2〉 + 7.2% |321,1/2〉 + 6.5% |330,1/2〉

[211]1/2 0.0 81.4% |211,1/2〉 + 9.6% |431,1/2〉 + 5.2% |440,1/2〉
1.8 65.3% |211,1/2〉 + 22.1% |440,1/2〉 + 5.4% 431,3/2〉

[211]1/2 0.0 81.4% |211,1/2〉 + 9.6% |431,1/2〉 + 5.2% |440,1/2〉
(r = +i) 1.8 82.9% |211,1/2〉 + 6.8% |431,1/2〉 + 3.2% |211,3/2〉
[321]3/2 0.0 85.7% |321,3/2〉 + 6.1% |101,3/2〉 + 6.0% |541,1/2〉

1.8 57.6% |321,3/2〉 + 9.1% |330,1/2〉 + 7.1% |312,5/2〉
[440]1/2 0.0 77.4% |440,1/2〉 + 10.7% |211,1/2〉 + 4.1% |660,1/2〉

1.8 36.0% |440,1/2〉 + 20.3% |431,1/2〉 + 15.3% |211,1/2〉
[440]1/2 0.0 77.4% |440,1/2〉 + 10.7% |211,1/2〉 + 4.1% |660,1/2〉
(r = +i) 1.8 63.3% |440,1/2〉 + 15.2% |431,3/2〉 + 6.0% |220,1/2〉
[550]1/2 0.0 79.3% |550,1/2〉 + 6.8% |541,1/2〉 + 6.7% |770,1/2〉

1.8 46.9% |550,1/2〉 + 23.9% |541,3/2〉 + 5.9% |770,1/2〉

The nodal structure of the single-particle wave function
�[Nnz�]� and thus of its density distribution is defined by the
spatial part of the wave function. The spatial parts of the basis
states are expressed in cylindrical (r,φ,z) coordinates in the
following way (see Ref. [43] and Sec. 8.2 of Ref. [42])

|N ′n′
z�

′〉 ∼ Hn′
z

(
z

bz

)
L

|�′|
n′

r

(
r2

b2
⊥

)(
r

b⊥

)|�′|

e
− 1

2

(
z2

b2
z
+ r2

b2⊥

)
ei�′φ, (3)

where H and L are the Hermite and associated Laguerre poly-
nomials. The bz and b⊥ are oscillator lenghts in axial and radial
directions and n′

r is the number of radial nodes. The condition
N ′ = n′

z + 2n′
r + |�′| defines the possible combinations of the

quantum numbers n′
r , n′

z, and �′ and thus the nodal structure
of the density distribution of the basis state.

The nodal structure in the axial direction of the wave
function [Eq. (3)] and thus of related single-particle density
distribution is defined by the zeros of the Hermite poly-
nomials. In general, the nodal structure of density distri-
bution in radial direction is defined by zeros in associated
Laguerra polynomials and in the ( r

b⊥
)|�

′| term. It turns out
that all basis states (see Table I), providing the most important
contributions to the wave functions of the single-particle states

of interest, have nr = 0 for which L
|�′|
0 ( r2

b2
⊥

) = 1. With a single
exception, these states also have only two possible values of
�′, namely 0 and 1. Thus, for these states the node at the
axis of symmetry (r = 0) emerges only at �′ = 1 from the
( r
b⊥

)|�
′| term. As a result, when considering the pattern of

the density distribution, only two types of the basis states are
important, namely the |N,N,0〉 and |N,N − 1,1〉 states. The
density distributions of the basis states with |NN0〉 will be
axially symmetric with the maximum of density located at the
axis of symmetry. The basis states with |N,N − 1,1〉 structure
will have a zero density at the axis of symmetry.

However, as follows from Eq. (1), the basis states are
expected to be mixed in the structure of the single-particle wave
function. As a result, the single-particle wave functions may
not have a well-pronounced nodal structure specific for basis
states. However, a number of factors leads to the reduction of
such mixing in extremely deformed structures of light nuclei.
First, the quality of asymptotic quantum numbers is improving
with the increase of the elongation of the nuclear system (see
Sec. 8.2 in Ref. [42]). In addition, such mixing depends on
the energy distance between the basis states and the number
of possible counterparts with which appreciable mixing could
take place. At the bottom of nucleonic potential, these energy
distances are large and the number of counterparts is quite
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FIG. 2. Neutron single-particle energies (routhians) in the self-consistent rotating potential as a function of the rotational frequency �x .
They are given along the deformation path of the rod-shaped structure in 12C and yrast MD configuration [42,42] in 40Ca. Long-dashed,
solid, dot-dashed, and dotted lines indicate (π = +,r = +i), (π = +,r = −i), (π = −,r = +i), and (π = −,r = −i) orbitals, respectively.
At �x = 0.0 MeV, the single-particle orbitals are labeled by the asymptotic quantum numbers [Nnz�]� (Nilsson quantum numbers) of the
dominant component of the wave function. Solid circles indicate the occupied orbitals. Large shell gaps are indicated in the right panel.

limited (see Fig. 2). This leads to appreciable suppression of
the mixing.

This is illustrated in Table I, in which the weights c2
N ′n′

z�
′�′

of the three largest components of the wave functions of the
single-particle states occupied in the megadeformed [42,42]
configuration of 40Ca are presented. One can see that the
single-particle wave functions are dominated by a single,
very large component which in turn will define the spatial
distribution of the single-particle density. This domination is
especially pronounced at no rotation and for the single-particle
orbitals located at the bottom of the nucleonic potential. Note
that the [440]1/2 and [211]1/2 orbitals with r = −i strongly
interact in substantial frequency range near �x ∼ 1.8 MeV
[see Fig. 2(b)]. This leads to an increase of the fragmentation
of the wave function of these two states at �x = 1.8 MeV
(Table I). However, such interaction is absent in the [440]1/2
and [211]1/2 orbitals with r = +i. As a result, their wave
functions are substantially less fragmented (Table I).

It is interesting to compare the level of the fragmentation
of the single-particle wave functions presented in Table I
with the ones obtained in the calculations for other nuclei.
Unfortunately, as a rule the studies within the cranking models
based on different frameworks do not show detailed informa-
tion on the structure of the single-particle wave functions.
To our knowledge, there are only two exceptions which
provide some hints on the fragmentation of the single-particle
wave functions and their evolution with rotational frequency.
The superdeformed bands in 32S and neighboring odd-mass
nuclei have been studied in cranking Skyrme Hartree-Fock
approach in Ref. [44]. The analysis of single-particle routhian
diagrams presented in this paper indicate the change of the
dominant components of the single-particle wave functions
with rotational frequency for appreciable number of routhians
which do not undergo unpaired band crossing. On the contrary,
the rotation does not change the dominant components of the
single-particle wave functions of the above mentioned type of

the routhians shown in Table I. The substantial fragmentation
of the single-particle wave functions has also been seen in the
CRMF calculations of the yrast hyperdeformed configuration
in 124Xe [25]. Thus, the level of the fragmentation of the
single-particle wave functions shown in Table I is on average
substantially lower than the one seen in these two examples.

IV. ROD-SHAPED STRUCTURE IN 12C

One of the examples of the cluster structures is the linear
chain of three α particles in 12C [10]. These rod-shaped
structures in rotating 12C and neighboring nuclei have been
investigates in the framework of cranked relativistic mean
field theory in Ref. [18]. The total neutron density distribution
for this configuration in 12C is presented in Fig. 1(a) and its
routhian diagram is shown in Fig. 2(a). The proton and neutron
single-particle states with structure [000]1/2, [110]1/2, and
[220]1/2 of both signatures are occupied in this configuration.
Note that proton routhians are very similar to neutron ones;
however, they are less bound (by roughly 8 MeV) because of
the Coulomb interaction.

Single-particle density distributions of these states are
shown in Fig. 3. One can see that they are almost axially
symmetric (see density cross sections in the xy plane, which
is perpendicular to the symmetry axis z). The density distribu-
tions for opposite signatures of the specific orbital are almost
the same. The same is also true for single-particle density
distributions for the proton and neutron states with the same
structure. Thus, it is sufficient to consider only neutron states
with signature r = +i as it is done in Fig. 3.

The density distributions of these states are almost axially
symmetric with the maximum of density inside of each cluster
located at the axis of symmetry. This is because their wave
functions do not have nodes in radial direction. However, they
show different nodal structure along the axis of symmetry since
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FIG. 3. The single-neutron density distributions due to the occupation of the indicated Nilsson states with signature r = −i in the rod-shaped
configuration of 12C. The color map shows the densities as multiplies of 0.001 fm−3. The plotting of the densities starts with yellow color at
0.001 fm−3. The results of the calculations are shown at rotational frequency �x = 3.2 MeV which corresponds to spin I = 8.77h̄. For each
state, the cross sections in the yz and xz planes are plotted at x = 0.234 fm and y = 0.234 fm, respectively. The shape and size of the nucleus
are indicated by black solid line, which corresponds to total neutron density line of ρ = 0.001 fm−3. In addition, the current distributions jn(r)
produced by these states are shown by arrows. The currents in panels (a), (d), and (g) are plotted at arbitrary units for better visualization. The
currents in other panels are normalized to the currents in above mentioned panels by using factor F .

nz is changing from 0 in the [000]1/2 state via 1 in the [110]1/2
state to 2 in the [220]1/2 state.

The density distribution of the [000]1/2 state, which is
emerging from spherical 1s1/2 subshell, is the ellipsoid of
revolution with the maximum of the density located at the
center of nucleus. The density distribution of the [110]1/2
state, emerging from the spherical 1p1/2 subshell, is formed
by two spheroids located symmetrically with respect of z = 0.
The [220]1/2 orbital, emerging from spherical 1d5/2 subshell,
shows three spheroidal clusters in density distribution; one of
them is located at the center of nucleus and two others are
symmetrical with respect of it. Among these states, the highest
localization of the wave function is seen in the [000]1/2 state.
With increasing principal quantum number N (and the number
of density clusters) the localization of the wave function and the
maximum density in the center of the density cluster decreases.

The asymptotic Nilsson labels are quite good approximate
quantum numbers at the extreme deformations of interest (see
also the discussion in Sec. 8.2 of Ref. [42]). For example,

the lowest state in the routhian diagram has the structure
96.0%|000,1/2〉 + 3%|200,1/2〉 + 0.5%|220,12〉 + · · ·
at rotational frequency �x = 0.0 MeV. Here and below,
we show only three largest squared components (in
the format c2

N ′n′
z�

′�′%|N ′n′
z�,′�′〉) of the single-particle

wave function. The rotation only somewhat modifies the
structure of its wave function which at �x = 3.2 MeV
has the structure 92.5%|000,1/2〉 + 3.0%|200,1/2〉 +
2.8%|220,1/2〉 + · · · for the r = −i branch. The
same is true for other states of interest. The lowest
negative-parity state has the structure 94.6%|110,1/2〉 +
4.0%|310,1/2〉 + 0.4%|101,1/2〉 + · · · and 87.1%|110,
1/2〉 + 3.4%[310,12〉 + 3.1%|101,3/2〉 + · · · (for the
r = −i branch) at �x = 0.0 and �x = 3.2 MeV, respectively.
The lowest N = 2 state has the structure 89.7%|220,1/2〉 +
5.8%|420,1/2〉 + 1.5%|211,1/2〉 + · · · and 72.3%|220,
1/2〉 + 8.9%|211,1/2 > +6.6%|211,3/2〉 + · · · (for the
r = −i branch) at �x = 0.0 and �x = 3.2 MeV, respectively.
Two general trends in the structure of the wave function
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FIG. 4. The same as Fig. 3 but for the [330]1/2(r = −i) orbital in the HD [2,2] configuration of 28Si. The densities in the yz and xz planes
are taken at x = 0.326 fm and y = 0.326 fm, respectively. Top and bottom panels show the results at �x = 0.0 MeV and �x = 1.8 MeV,
respectively.

are clearly seen on these examples. These are the increase
of the fragmentation of the wave function (with related
decrease of the dominant component of the wave function)
with the raise of the position of the single-particle state with
respect of the lowest state in the nucleonic potential and
with increasing rotation of the nucleus. The first effect brings
the state of interest into the region of increased density of
the single-particle states and thus to the region where the
interactions of the states are more abundant. The second is a
consequence of the Coriolis interaction.

V. THE HYPERDEFORMED [2,2] CONFIGURATION IN 28Si

Next, we consider the hyperdeformed [2,2] configuration
in 28Si. The structure of this nucleus has been studied in detail
in Ref. [22], where it was shown that this configuration is
calculated at relatively low excitation energy at spins above
10h̄. Its total neutron density distribution is shown at spins
I = 0h̄ and I = 12h̄ in Figs. 1(b) and 1(c). The HD [2,2]
configuration shows clear signatures of clusterization, which
are especially pronounced at I = 0h̄ [Fig. 1(b)]. Although the
rotation somewhat hinders these signatures [Fig. 1(c)], they are
still present at I = 12h̄.

The length of the rod-shaped structure in 12C and the HD
[2,2] configuration in 28Si is almost the same in the axial (z)
direction. However, the density of the HD [2,2] configuration
is broader in the radial direction as compared with the one seen
in rod-shaped structure of 12C. As follows from the discussion
below, these differences are traced back mainly to the density
distributions of the orbitals by which these two configurations
differ.

The [000]1/2, [110]1/2, and [220]1/2 states are occupied
both in the HD configuration of 28Si and rod-shaped structure
of 12C. Their density distributions and nodal structure are very

similar in both nuclei (compare Fig. 3 with Figs. 1, 2, and
3 in the Supplemental Material [41]). However, the density
distributions of these states in the HD [2,2] configuration
of 28Si are slightly less elongated in the axial direction and
somewhat more stretched out in radial direction as compared
with the ones in the rod-shaped structure of 12C. This is a
consequence of two facts. First, the difference in total density
distributions [rod shape in 12C versus ellipsoid like in 28Si,
Figs. 1(a)–1(c)] affects the nucleonic potential. The sizes of
the nuclei and thus of nucleonic potentials have also an impact.
The charge radii of 12C and 28Si in the ground state are ∼2.8 fm
and ∼3.15 fm, respectively (see Fig. 23 in Ref. [35]). However,
these differences are compensated to a degree by the fact
that these states are located deeper in the nucleonic potential
of 28Si (at single-particle energies εi = −50.22,−40.20, and
−26.56 MeV at �x = 0.0 MeV for the [000]1/2, [110]1/2,
and [220]1/2 states, respectively) as compared with the ones
in 12C [Fig. 2(a)], which leads to their smaller effective radius
as compared with the radius of the ground state.

In addition, the Nilsson [101]3/2, [330]1/2, [211]3/2, and
[101]1/2 orbitals are occupied in this configuration [see
Fig. 2(b)]. Their density distributions are presented in Figs. 4, 5,
and 6 as well as in Fig. 4 of the Supplemental Material [41] at no
rotation (�x = 0.0 MeV) and at rotational frequency �x = 1.8
corresponding to spin I ∼ 12h̄. The density distributions of
these single-particle orbitals are characterized by different
nodal structure.

The density distribution of the [330]1/2 orbital is similar in
structure to the one seen for the [NN0]1/2 orbitals in 12C
and 28Si: There are four density clusters located along the
axis of symmetry with the maximum of the density in each
cluster located at the axis of symmetry. The largest clusters
with the highest density in the center are located in the polar
region.
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FIG. 5. The same as Fig. 4 but for the [101]1/2(r = ±i) orbitals. The top panels show the results for the (r = −i) orbital at �x = 0.0 MeV.
Because the density distributions in both signatures of the [101]3/2 orbital are identical at �x = 0.0 MeV, the results for the [101]3/2(r = +i)
orbital are not shown here. Middle and bottom panels show the densities and currents at �x = 1.8 MeV for the [101]1/2(r = −i) and
[101]1/2(r = +i) orbitals, respectively.

The orbitals with the Nilsson labels [101]3/2, [101]1/2, and
[211]3/2 belong to the group of the states, the wave functions
of which are dominated by the basis states of the |N,N − 1,1〉
type (see Table I). These basis states produce zero density at
the axis of symmetry (see Sec. III). Significant reduction of
the density on approaching the axis of symmetry is seen in
the density distributions of these Nilsson states (see Figs. 5
and 6 in the paper and Fig. 4 in the Supplemental Material
[41]). However, not always do we see zero density at or close
to the axis of symmetry. This is due to two reasons. First,
there are the contributions into the wave functions emerging
from the basis states of the |NN0〉 type (see Table I) which
build the density at the axis of symmetry. Second, because of
calculational features the plots are made at the cross sections
which are located slightly off the axis of symmetry.

The [101]1/2 [Figs. 5(a)–5(c)] and [101]3/2 (Figs. 4(a)–4(c)
in the Supplemental Material [41]) Nilsson states show very
similar density distributions of doughnut type in which the
maximum of the density is located in the equatorial plane.
These two states at spin 0 differ only in the orientation of
the single-particle spin along the symmetry axis, which has
only moderate impact on the density distribution. As a result,

their densities are similar at spin 0 (compare Figs. 5(a)–5(c)
with Figs. 4(a)–4(c) in the Supplemental Material [41]); minor
differences are due to different single-particle energies and
different projections � of the total single-particle angular
momentum on the axis of symmetry which leads to the
interaction of the single-particle states within the groups with
different � (see Table I).

The wave function of the [211]3/2 Nilsson state is domi-
nated by the |211,3/2〉 basis state, the density of which has
one node in the radial direction and two nodes in the axial
direction. As a result, the density distribution of this Nilsson
state is the combination of two circular axially symmetric
density rings located symmetrically with respect of equatorial
plane [Figs. 6(a)–6(c)].

As illustrated in Table I, the rotation leads to the modifica-
tion of the structure of the wave function, typically reducing
the weight of its dominant component. Its impact depends
on the state. For some states, these modifications are rather
small; for others they may be substantial. In general, the
impact of the rotation on the single-particle densities can be
characterized (i) by the change of their nodal structure, (ii)
by the degree of delocalization of the wave function, and (iii)
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FIG. 6. The same as Fig. 4 but for the [211]3/2(r = −i) orbital.

by the change of their azimuthal dependence. For the states
in the HD [2,2] configuration of 28Si, the nodal structure
of the single-particle density distributions is not affected by
rotation. The rotation leads to some delocalization of the wave
function which reflects itself in some increase of the space
of the nucleus occupied by the particle [with related decrease
of average density] and by some decrease of the maximum
density in the density cluster [compare Figs. 4(a)–4(c) and
Figs. 4(d)–4(f); compare upper, middle, and bottom rows of
Fig. 5 and of Fig. 4 in the Supplemental Material [41]; and
compare upper and bottom rows in Fig. 6 and in Figs. 1, 2,
and 3 of the Supplemental Material [41]). The changes in
the azimuthal distribution of the densities induced by rotation
are rather small for the [NN0]1/2 Nilsson states (see Fig. 4
and Figs. 1, 2, and 3 in the Supplemental Material [41]). On
the other hand, they are quite substantial for the [101]1/2
(Fig. 5) and [101]3/2 (Fig. 4 in the Supplemental Material
[41]) states. This is a consequence of the fact that the rotation
leads to a different redistribution of the neutron matter for
the r = ±i branches of the single-particle, orbital resulting
in an asymmetric doughnut density distributions in which

the density depends on azimuthal angle. For example, the
matter is moved away from the xz plane in the ±y directions
for the [101]1/2(r = −i) orbital [compare upper and middle
panels of Fig. 5]. For the [101]1/2(r = +i), this redistribution
proceeds from the yz plane in the ±x direction [compare
upper and bottom panels of Fig. 5]. Similar effect is also seen
for the [101]3/2(r = ±i) states (Fig. 4 in the Supplemental
Material [41]), but here it is inverted for (r = ±i) signatures
as compared with the case of the [101]1/2(r = ±i) states. It is
interesting that for the [101]1/2 and [101]3/2 states the rotation
leads to the increase of maximum density in density cluster.

The observed features of the single-particle density distribu-
tions allow us to understand in a simple way the transition from
the rod-shaped total neutron density in 12C to the ellipsoid-
like density distribution with two-pronounced clusters in 28Si
(Fig. 1). In 28Si, six neutrons in the [000]1/2, [110]1/2, and
[220]1/2 orbitals build the density distribution which is quite
similar (slightly shorter in axial direction and slightly wider in
radial direction) to the one seen in the rod-shaped structure of
12C [compare Fig. 7(b) with Fig. 7(a)]. Thus, the “rod-shape”
cluster structure of 12C (but with less pronounced central
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FIG. 7. Total neutron densities produced by six neutrons occupying the lowest orbitals of the nucleonic potential, namely, [000]1/2, [110]1/2,
and [220]1/2 in considered configurations of 12C, 28Si and 40Ca. The plotting of the densities starts with yellow color at 0.001 fm−3.
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FIG. 8. The same as Fig. 3 but for the [312]3/2(r = −i) orbital in the MD [42,42] configuration of 40Ca at rotational frequency �x = 1.8
MeV corresponding to spin I = 25h̄. The densities in the yz and xz planes are taken at x = 0.329 fm and z = 0.329 fm, respectively.

cluster) is still present in the HD [2,2] configuration of 28Si. The
addition of two neutrons into the [330]1/2 orbital will lead to
some increase of the elongation of this substructure. However,
the addition of six neutrons into the [101]1/2, [101]3/2, and
[221]3/2 orbitals will lead to buildup of the density at the
radial coordinate away from the axis of symmetry located
not far away from the equatorial plane. While the orbitals
of the [NN0]1/2 type show the clusterization of the wave
function with substantial concentration of the density in at
least one density cluster, the occupation of the [101]1/2,
[101]3/2, and [221]3/2 orbitals with single radial node, leading
to either doughnut or double axial ring structures, acts against
α clusterization. This is because they occupy substantial space
of the nucleus and are characterized by low density, which
even at its maximum is only slightly more than half of the
maximum of the density seen in the density clusters produced
by the orbitals of the [NN0]1/2 type. In addition, there is no a
center of the density distribution in the [101]1/2, [101]3/2, and
[221]3/2 orbitals which could be associated with α particles.

VI. MEGADEFORMED [42,42] CONFIGURATION IN 40Ca

Megadeformed [42,42] configuration in 40Ca becomes yrast
in the CRMF calculations at spin I = 23h̄ [9]. It is more
elongated with a narrower neck than the HD [2,2] configuration
in 28Si [compare Fig. 1(e) with Figs. 1(b) and 1(c)]. Despite
these differences, the nodal structure of the densities of the
single-particle states occupied below the N = 14 shell gap and
their pattern of density distribution is the same for these two
configurations in two nuclei (compare Figs. 4, 5, and 6 in the
paper and Fig. 4 in the Supplemental Material [41] with Figs. 5
and 6 in the Supplemental Material [41]). Thus, we focus in this
section on the [211]1/2, [321]3/2, and [440]1/2 states which
are located above the N = 14 shell gap and which are occupied
in the MD [42,42] configuration of 40Ca (Fig. 2).

In analogy to the case of the [101]1/2 and [101]3/2 states
(see discussion in Sec. V), the density distributions of the
[211]3/2 and [211]1/2 states are very similar at no rotation
(compare Fig. 6 with Fig. 7 in the Supplemental Material
[41]). The rotation affects the wave functions of the (r = ±i)
branches of the [211]1/2 state in different ways (see Table I).
The wave function of the r = +i orbital is only weakly
affected by rotation so apart from the modification of azimuthal
dependence, the nodal structure of its density distribution is the
same as the one at no rotation (compare upper and bottom rows

of Fig. 7 in the Supplemental Material [41]). On the contrary,
at �x = 1.8 MeV the r = −i orbital is strongly mixed with
substantial admixture of the |440,1/2〉 basis state (Table I).
This leads to the emergence of the additional density cluster at
axis of symmetry near z ∼ ±6 fm (see middle row of Fig. 7 in
the Supplemental Material [41]).

The wave function of the [321]3/2 state is dominated by the
|321,3/2〉 basis state which has one node in radial direction and
two nodes in axial direction. As a result, the density distribution
of this state is given by three density rings (Fig. 8); one is
located in the equatorial plane and other two symmetrically
with respect of this plane. At no rotation, these rings are almost
axially symmetric. The rotation induces the dependence of the
density on the azimuthal angle (azimuthal asymmetry); this is
clearly seen in Fig. 8. For the r = −i branch of this state, the
density is mostly localized around the xz plane and its vicinity
(Fig. 8). The situation becomes reversed for the r = +i branch,
for which most of the density becomes localized around the yz
plane and its vicinity.

Figure 9 displays the single-particle densities of the
[440]1/2(r = ±i) orbitals and illustrates the impact of state
mixing on the single-particle densities. The wave function of
the (r = +i) branch is dominated by the basis |440,1/2〉 state
(Table I). As a consequence, its density distribution closely
follows that expected for the [NN0]1/2 states, namely, five
density clusters (which is a consequence of four (nz = 4)
nodes in axial direction for the |440,1/2〉 basis state) with the
maximum of the density in each of them at the axis of symmetry
(the consequence of no node in radial direction). The density
distribution of the (r = −i) branch is different since it is built
from three spheroidal clusters (one at center and two in the
polar regions) separated by the ring structure. The latter comes
from substantial admixture of the |221,1/2〉 basis state, which
has this kind of density distribution [see, for example, Fig. 6
and bottom row in Fig. 5 of the Supplemental Material [41] as
well as the discussion of the [221]3/2 state in 28Si (Sec. V)].

VII. MAIN CONSEQUENCES OF THE NODAL
STRUCTURE OF THE SINGLE-PARTICLE WAVE

FUNCTIONS

The analysis of the results of the CRMF calculations
performed for extremely elongated shapes including hyper-
deformed ones in 28Si, megadeformed shapes in 40Ca, and
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FIG. 9. The same as Fig. 8 but for the [440]1/2(r = ±i) orbitals at �x = 1.8 MeV. Top and bottom panels show the results for the (r = −i)
and (r = +i) branches, respectively. Note that the density distribution at �x = 0.0 MeV is very similar to what is seen in bottom panels.

rod-shaped structures in 12C reveals the following general
features:

(1) The buildup of such shapes from individual contribu-
tions of particles is defined by two groups of the single-
particle states in the light nuclei with mass number
A up to around 50. The states with the [NN0]1/2
structure belong to the first group.4 The second group
is represented by the states with the [N,N − 1,1]1/2
and [N,N − 1,1]3/2 structures; note that the spatial
distribution of the wave function (density) almost does
not depend on � and is almost entirely defined by
[N,N − 1,1].

(2) With relatively few exceptions, the wave functions of
the single-particle states occupied in such extremely
deformed shapes are dominated by a single basis state.
This is because the mixing of the basis states is sup-
pressed at the bottom of nucleonic potential since the
energy distances between the basis states which could
mix are large and the number of possible counterparts
with which appreciable mixing could take place is
limited. Indeed, the fragmentation of the wave function
(with related decrease of the dominant component of
the wave function) typically increases with the raise of
the position of the single-particle state with respect of
the lowest state in the nucleonic potential.

4Low-energy structures in relatively light nuclei can be described in
terms of molecular bonding [10]. For covalent bonding, a negative-
parity orbital perpendicular to the α-α axis is called a π orbital,
whereas a σ orbital denotes a positive-parity orbital parallel to the
α-α direction. Thus, the [101]3/2 and [220]1/2 Nilsson states are the
examples of the π and σ orbitals, respectively.

(3) As a consequence, the nodal structure of the wave
function (and thus of density distribution) of the
single-particle state is defined solely by the nodal
structure of the dominant basis state. However, the
nodal structure of the density distribution of these basis
states is determined by their quantum numbers. As
a result, three basic types of single-particle density
distributions, namely, spheroidal/elipsoidal, doughnut,
and ring shapes, play an important role in forming the
nuclear shapes at large elongation.
(a) The density distributions of the Nilsson states with

[NN0]1/2 quantum numbers are nearly axially
symmetric with N + 1 spheroidal- and elipsoidal-
like density clusters the maximum of the density
of which is located at the axis of symmetry. With
the exception of the N = 0 case, the clusters with
highest densities are located in polar regions of the
nuclei. This structure of the density distribution
is the consequence of the nodal structure of the
dominant basis state: No nodes in radial direction
and nz = N nodes in axial direction.

(b) The doughnut shapes are formed by the [N01]�
states since the densities of their dominant basis
states have one node in the radial direction and no
nodes in the axial direction.

(c) Finally, the states with the structure [N,N − 1,1]�
form multiply (two for nz = 1 and three for nz = 2)
ring shapes for N = 2 and 3.

(4) Another source of increased fragmentation of the
single-particle wave function is the Coriolis interac-
tion. It leads to some reduction of the weight of
the dominant basis state in the single-particle wave
function and to some delocalization of single-particle
density. However, even with these effects accounted for,
the single-particle states of interest for the rotational
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frequencies under study are dominated by a single basis
state and their density distributions have the same nodal
structure as the one at no rotation. Note that the rotation
introduces some azimuthal dependence of the density
distribution; this effect is especially pronounced for the
states of the [N,N − 1,1] type.

(5) The localization of the single-particle wave function
strongly depends on its nodal structure. Only the states
with low number of nodes in axial direction and with
no nodes in radial direction could be well localized.
The highest localization of the wave function is reached
for the lowest states of the [NN0]1/2 type with N =
0,1, and 2; that is a reason why these states are so
important in α clusterization. Subsequent increase of
N and/or the number of the nodes in radial direction
substantially decreases the level of the localization of
the wave function. The rotation also reduces somewhat
the localization of the wave function.

The structure of the clusters forming the nucleus is fre-
quently defined in the DFT framework by comparing the
density distributions of possible clusters with total density
of the nucleus. Although some useful information can be
obtained in that way, especially with the use of the localization
functions defined in Refs. [15,38], such an approach has its
own limitations. This measure of localization is inherently
defined for total quantities because the nucleon localization
function considers the conditional probability of finding a
nucleon within a distance δ from a given nucleon at point
r with the same spin σ and isospin τ [15,38,45]. Thus, it
cannot be applied to the single-particle quantities. As a result,
the present analysis suggests an alternative way in which the
single-particle densities forming the total density of the nucleus
and its constituent clusters are compared. Since single-particle
densities bear a clear mark of the underlying single-particle
wave functions, such way of the comparison can provide a
microscopic understanding on how the nucleus is formed from
the clusters. The work on that type of the analysis is in the
progress and the results will be presented in a forthcoming
publication.

A. Nodal structure of the single-particle densities
and the transition to liquid phase

The analysis of Ref. [37] based on the consideration of
total nucleonic densities and harmonic oscillator potential has
suggested that the nuclei heavier than A ∼ 30 consist of largely
delocalized nucleons. As a result, the transition from coexisting
cluster and mean-field states to a Fermi liquid state should
occur for nuclei with A ≈ 20–30 [37]. Note that for solid phase
the nuclear configurations are characterized by the situation in
which each particle is localized with respect of its neighbours
[46]. On the contrary, the individual particles are delocalized
in a quantum liquid [46,47]. By definition, the quantum liquid
is a many-body system whose behaviour is defined by the
effects of both quantum mechanics and quantum statistics [48].
The latter enters into the game through the requirement of
the indistinguishability of the constituent particles [48], which
defines the type of quantum statistics (Fermi or Bose). This

requirement cannot be satisfied in finite nuclei if the occupied
states are localized and have different spatial distributions.

The analysis of the single-particle densities performed in
the present paper suggests that the transition to quantum liquid
does not happen in the considered nuclei. Although with the in-
crease of particle number the occupation of the single-particle
orbitals with lower level of localization becomes dominant,
none of these states can be described as delocalized. They still
preserve their nodal structure and typically occupy less than
half of the volume of the nucleus.

B. α clusterization and its evolution with particle number

The observed features of the single-particle density distribu-
tions emerging from the nodal structure of the wave functions
allow us to understand in a relatively simple way the necessary
conditions for α clusterization. Two factors play an important
role here: the degree of the localization of the wave function
and the type of the density clusters formed by single-particle
orbital. It is clear that for the α clusterization the single-particle
density clusters should be compact (well localized) and should
have spheroidal or slightly elipsoidal density distribution and
overlap in space. These conditions are satisfied only for the
lowest states of the [NN0]1/2 type with N = 0,1, and 2
which are active in the α-cluster structures of very light nuclei
[4,10,18,23,49]. With increasing particle number, the orbitals
with doughnut- and multiple-ring-type density distributions
become occupied. These states are substantially less localized;
the maximum of the density in such structures is typically
much smaller than the maximum of the density in the lowest
[NN0]1/2 orbitals. In addition, such density distributions
(doughnuts and rings) are incompatible with α clusters.

Based on these considerations it is clear that α clustering
in highly elongated nuclear structures for typical deformations
considered here should be an important mode only in very
light nuclei in which the states of the [NN0]1/2 type are
occupied. Although the α-cluster substructures still survive
in heavier nuclei (Fig. 7), their contribution to the total wave
function of the nucleus is expected to decrease as compared
with light nuclei with increasing mass number because of
increased contribution of the single-particle structures with
ring- and doughnut-type density distributions. This trend is
similar to the one obtained in antisymmetrized molecular
dynamics calculations of Ref. [11].

C. Building nuclear molecules by means of particle-hole
excitations

The coexistence of ellipsoidally shaped structures and nu-
clear molecules in the same nucleus has been seen in the CRMF
calculations of Ref. [9] for similar elongations of nuclear
shape. It turns out that the configurations of these two types
of the shapes are connected by characteristic particle-hole
excitations. A specific feature of the nuclear molecules is the
existence of two fragments connected by the neck. The MD
configurations [31,31] in 36Ar, [42,42] in 40Ca, and [421,421]
in 42Sc [Figs. 1(d)–4(f)] are the examples of nuclear molecules
[9]. To build nuclear molecules from typical elipsoidal density
distributions, one has to move the matter from the neck
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(equatorial) region into the polar regions of the nucleus. This
can be achieved by specific particle-hole excitations5 removing
particles from (preferentially) doughnut-type orbitals or from
the orbitals which have a density ring in a equatorial plane into
the orbitals (preferentially of the [NN0]1/2 type) which build
the density mostly in the polar regions of the nucleus.

The results presented in Ref. [9] give a number of examples
of such particle-hole excitations leading to the transitions from
ellipsoidal nuclear shapes to nuclear molecules. One such an
example is the transition from the HD [4,4] configuration
in 36Ar, which has ellipsoidal density distribution (see Fig.
24(b) in Ref. [9]), to the MD [31,31] configuration which is
an example of a nuclear molecule [see Fig. 24(c) in Ref. [9]
and Fig. 1(d) in the present paper]. This transition involves
the proton and neutron particle-hole excitations from the
3/2[321] orbital (which has triple-ring density distribution)
into the [440]1/2(r = −i) orbital. Another example is the
transition from the [41,41] configuration in 42Sc, which has
ellipsoidal density distribution (see Fig. 8(a) in Ref. [9]),
to the MD [421,421] configuration, which is a very good
example of a nuclear molecule [Fig. 1(f)]. This transition is
achieved in proton and neutron subsystems by the particle-
hole excitations from the [202]5/2 (which has doughnut-
type density distribution) and [321]3/2 (which has triple-ring
density distribution) orbitals into the [440]1/2(r = +i) and
[550]1/2(r = +i) orbitals. The latter orbitals have the largest
and most dense clusters in the polar regions of the nucleus (see
Fig. 9 and Fig. 8 in the Supplemental Material [41]).

D. The currents and rigid rotation of the system

Figure 10 compares microscopically calculated kinematic
moments of inertia J (1) with the rigid-body moments of inertia

5Note that particle-hole excitations are a powerful tool of the mod-
ification of the density distribution in finite nuclei. For example, they
can substantially modify the radial dependence of matter distribution
in spherical nuclei [50] or introduce a deformation into nuclear system
[42].

Jrig for the configurations under study. J (1) is calculated fully
self-consistently via

J (1)(�x) = J

�x

, (4)

where J is the expectation value of the total angular momentum
along the x axis and �x is rotational frequency along the same
axis. In the CRMF framework, J is defined as a sum of the
expectation values of the single-particle angular momentum
operators ĵx of the occupied states

J =
∑

i

〈i|ĵx |i〉. (5)

Note that the effects of the time-odd mean fields, which
are extremely important for the moments of inertia (see
Refs. [51,52]), are included fully self-consistently in the CRMF
calculations.

The rigid-body moment of inertia Jrig is obtained in one-
dimensional cranking approximation with the rotation defined
around the x axis from the calculated density distribution ρ(r)
by

Jrig =
∫

ρ(r)(y2 + z2)d3r. (6)

An interesting feature of the rotating bands in the nuclei
under consideration is the fact that their microscopic kinematic
moment of inertia J (1) changes very little with the increase
of rotational frequency. Indeed, the variation of J (1) over
calculated rotational frequency is only 0.47%, 2.4%, and
0.4% of its total value in rotational bands of 12C, 28Si, and
40Ca, respectively.6 The rigid-body moment of inertia is rather
close to the microscopic one; it deviates from J (1) by −5.3%
(+7.8%), −6.9% (−7.8%), and −3.0% (+1.3%) of the J (1)

value at the lowest (highest) calculated frequencies for the
rotational bands of 12C, 28Si, and 40Ca, respectively. Note that
similar analysis for the hyperdeformed bands in the Z = 40–58
region shows that microscopic and rigid-body moments of
inertia differ typically by less than 5% [52]. This difference
is bigger in 12C and 28Si, most likely due to smaller number of
the single-particle orbitals involved as a result of which their
individual features still play a prominent role in the definition
of the total properties of the configuration. In any case, these
differences between microscopic and rigid-body moments of
inertia are significantly smaller than those expected in normal-
deformed bands (see Ref. [52]). Thus, the bands under study
behave in a first approximation like rigid rotors.

The microscopic origin of these features can be traced back
to underlying shell structure. Indeed, the analysis within the
periodic orbit theory [53] for superdeformed rotational bands
shows that the single-particle orbitals that cause shell structure
of prolate superdeformed nuclei do not carry rotational flux
if the axis of rotation is perpendicular to the symmetry axis.
Therefore, the moments of inertia of such rotational bands

6This is not general feature since the kinematic moments of
inertia show pronounced variations in a number of configurations
(see Fig. 35 in Ref. [9]).
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FIG. 11. Total neutron currents jn(r) in the yz plane plotted at x = 0.234 fm, x = 0.326 fm, and x = 0.329 fm for the considered
configurations in 12C, 28Si, and 40Ca, respectively. They are given at spin values indicated in Fig. 1. The currents in panel (a) are plotted at
arbitrary units for better visualization. The currents in other panels are normalized to the currents in above mentioned panels by using factor F .

should be equal to the rigid-body value [53]. Based on general
arguments, this conclusion has to be valid also for prolate
hyperdeformed and megadeformed bands. Such conclusion is
supported by our microscopic calculations which show that the
calculated moments of inertia of extremely deformed rotational
bands are typically within 5% of the rigid-body value in the
medium mass nuclei [52] and close to this value in light nuclei
(as defined in the present paper).

The distributions of the total neutron currents in the yz plane
are shown in Fig. 11. They are defined as [52]

jn(r) =
N∑

i=1

[ψi(r)]†α̂ψi(r), (7)

where ψi(r) are the single-neutron wave functions. Thus,
total current is built as a sum of the individual currents
[ψi(r)]†α̂ψi(r) of the occupied orbitals. These individual
currents are shown in the figures with single-particle density
distributions (see Figs. 3, 4–6, 8, and 9 and the figures in
the Supplemental Material [41]). Note that the yz plane is
perpendicular to the axis of the rotation. As a result, in general
the currents in this plane are substantially larger than the ones
in the xz and xy planes and they show the vortices. Note that
the localization, the strength, and the structure of the current
vortices created by a particle in a specific single-particle state
depend on its nodal structure (for more details, see Secs.
V in Refs. [52] and [54] and Sec. III C in Ref. [55]). All
single-particle states are characterized by the weak current
in the surface area and neither of them shows the current
distribution expected for rigid rotation.

It is well known that there are no currents in the intrinsic
frame if the rigid nonspherical body rotates uniformly (rigid
rotation) (see Secs. IV A–V in Ref. [56]). The presence of
strong current vortices in Fig. 11 demonstrates the dramatic
deviation of the currents from rigid rotation. This is despite the
fact that the moments of inertia of considered configurations
are close to the rigid-body value. This fact underlines the
importance of quantum mechanical treatment of the currents.

The experimental data on the moments of inertia can be
easily extracted from the rotational sequences of observed
states. However, the discussion in this section as well as the
results obtained within periodic orbit and cranked relativistic

mean field theories in Refs. [52,53] show that the closeness of
experimental moment of inertia to the rigid-body value is not
a sufficient indicator of the rigid-body rotation. To confirm or
reject such an interpretation, one should measure the currents
but they are not experimentally accessible quantities.

VIII. CONCLUSIONS

In conclusion, the nodal structures of the density distri-
butions of the single-particle states occupied in extremely
deformed structures (such as rod-shaped, hyper- and megade-
formed ones) of nonrotating and rotating N ∼ Z nuclei have
been investigated in detail. Such structures are either axial or
nearly axial in the CRMF calculations and they are present in
light nuclei with Z = 4–24 [9,16,18,22]. This simplifies the
situation and with relatively few exceptions the wave func-
tions of the single-particle states occupied in such extremely
deformed shapes are dominated by a single-basis state. As a
consequence, the nodal structure of the wave function (and thus
of the density distribution) of the single-particle state is defined
solely by the nodal structure of this dominant basis state, the
structure of which is given by the Nilsson label [Nnz�]�. Two
types of the states, namely, [NN0]1/2 (with N from 0 to 5)
and [N,N − 1,1]1/2 (N,N − 1,1]3/2) (with N from 1 to 3)
define the features of extremely deformed configurations in the
nuclei under study.

For extremely deformed shapes in the A � 50 nuclei con-
sidered here, the nodal structure of the single-particle states
does not depend on the nucleonic configuration (occupation
of the single-particle states) or rotation. The only exception
is the case of strong interaction of two single-particle states
with the same parity and signature which leads to the mixing
of the wave functions of interacting orbitals and thus of their
single-particle densities. However, this happens rarely and in
limited rotational frequency range.

The observed features of the single-particle density dis-
tributions emerging from the nodal structure of the wave
functions allow us to understand in a relatively simple way the
necessary conditions for α clusterization and the suppression
of the α clusterization with the increase of mass number.
In addition, it allows us to understand the coexistence of
ellipsoidal mean-field-type structures and nuclear molecules
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at similar excitation energies and the features of particle-hole
excitations connecting these two types of the structures.

Our investigation shows that although with increasing the
particle number the occupation of the single-particle orbitals
with low level of localization of the single-particle densities
becomes dominant, the states sitting deep in the nucleonic
potential still remain well localized. In addition, neither of
the occupied states lose their nodal structure and become

delocalized. Thus, for the deformations and nuclei under study,
no transition to quantum liquid phase has been observed.
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