Resonances in ¹⁶**B**

H. T. Fortune

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

(Received 4 December 2017; published 22 February 2018)

Using information from nearby nuclei and a simple model, I estimate that the lowest resonance in ¹⁶B should have $J^{\pi} = 2^{-}$ and the structure ${}^{17}C(1/2^+) \times (p_{3/2})^{-1}$, and not 0^{-} , as previously supposed. If the 2^{-} is not the ground state, it should be very close in energy.

DOI: 10.1103/PhysRevC.97.024328

I. INTRODUCTION AND HISTORY

Ten states should exist at relatively low excitation energy in ¹⁶B. These arise from couplings of a $1p_{3/2}$ proton hole to the $3/2^+$ ground state (g.s.) and $1/2^+$, $5/2^+$ excited states of ¹⁷C at 0.22 and 0.33 MeV, respectively. These are indicated in Table I. A longstanding puzzle is why only one or two of them have been observed.

Very little information is available concerning ¹⁶B. Kryger et al. [1] confirmed earlier suggestions [2,3] that it has no bound states. Using the ${}^{14}C({}^{14}C, {}^{12}N){}^{16}B$ reaction, Kalpachieva *et al.* [4] reported two resonances in ¹⁶B: a narrow one at threshold [E = 40(40) keV] and one at E = 2.40 MeV with a width of 0.15 MeV. The peak near threshold in this reaction is in a region of the spectrum that contains two unidentified peaks in the same reaction with a ¹²C target. Reference [4] states "Between the two ¹⁴B states at 8.03 MeV and 10.15 MeV the lowest-lying ¹⁶B peak can be identified [see Fig. 10(b)]." My point is that in just this region in the spectrum with a ${}^{12}C$ target, there are two unidentified peaks. I know from personal experience that impurities in a ¹²C target are not usually a problem, but to what do these counts belong? With the ¹²C target, these two unidentified peaks (or count-rate fluctuations?) are considerably weaker than the three strong ¹⁴B peaks. With the ¹⁴C target, the supposed ¹⁶B(g.s.) is only slightly weaker than the ¹⁴B peaks. A suggestion worth pursuing might be the possibility that the two unidentified peaks with the ¹²C target and the supposed ${}^{16}B(g.s.)$ seen with the ${}^{14}C$ target might be due to an impurity that is present in both targets, but to a much lesser extent in the ¹²C target than in the ¹⁴C one. Slightly different locations might be explained by the slight difference in angular range in the two spectra. So, it is possible that this peak does not correspond to a state in ${}^{16}B$. If the g.s. is indeed 0^- , as mentioned below, I think it is extremely unlikely that it would have been selectively populated in this heavy-ion reaction.

This reaction on a ¹²C target did not populate the 2⁻ ground state (g.s.) of ¹⁴B, but did populate a 4⁻/2⁻ doublet near 2.1 MeV in ¹⁴B. The authors explained that the weak population of the ¹⁴B ground state is understood from a consideration of the reaction mechanism, which favors large angular momentum transfers. The 4⁻ and second 2⁻ states have a predominant structure of a neutron in the 1*d*_{5/2} orbital, whereas the 2⁻ g.s. primarily contains a 2*s*_{1/2} neutron. Based on this argument,

Kalpachieva *et al.* suggested 4^- for the state near threshold. They did not rule out the possibility of a 2^- state nearby. They pointed out the obvious discrepancy between the experimental level energies and the theoretical predictions—most of the theoretical levels were not observed.

Lecouey *et al.* [5] used proton removal from a secondary beam of ¹⁷C to investigate ¹⁶B. They reported a narrow resonant structure at $E = 85 \pm 15$ keV above the ¹⁵B + *n* threshold, with a width of $\Gamma \ll 100$ keV. They interpreted the small width as indicating $\ell = 2$ decay. They suggested a dominant structure of ¹⁷C(3/2⁺) × (1p_{3/2})⁻¹, with $J^{\pi} = 0^{-}$ to 3⁻ for the structure they observed. They stated that "...the relatively high energies of the bound excited states in ¹⁵B suggest that the feature observed here does not arise from the decay of a high-lying level in ¹⁶B to a bound excited state in ¹⁵B." Shell-model calculations carried out within the *s*-*p*-*sd*-*fp* model space predicted 0⁻ for the g.s. of ¹⁶B. Given the kinematics of the heavy-ion reaction discussed above, I think it is very unlikely that a 0⁻ state would have been selectively populated in that reaction [4].

Spyrou *et al.* [6] performed an experiment with a secondary ¹⁹C beam to investigate ¹⁸B. With the same experimental setup and procedure, they repeated the ¹⁶B experiment with a ¹⁷C beam and reported a narrow ¹⁶B resonance at E = 60(20) keV. The supposed 2.4-MeV resonance has never been confirmed, and no other resonances in ¹⁶B have been suggested.

Several shell-model calculations have been performed for ¹⁶B. The first was by Poppelier et al. [7]. Their four lowest states were 0^- g.s., followed by 2^- , 3^- , and 4^- at 0.95, 1.10, and 1.55 MeV, respectively. Lecouey et al. [5], in a full sp-sd-fp space, found a 0⁻ g.s., followed by 3⁻, 2⁻, and 4⁻ states at 0.649, 0.943, and 1.389 MeV, respectively. Dufour and Descouvement [8] computed levels of ${}^{16}B$ in a ${}^{15}B + n$ model, in which they coupled a single neutron to various states of ¹⁵B. This is not a natural basis, because all the low-lying states of ¹⁵B contain at least two neutrons in the sd shell, and coupling an sd-shell neutron to them could run afoul of the Pauli Principle. Nevertheless, they found a slightly bound (E =-0.012 MeV) 1⁻ g.s., followed by 0⁻, 2⁻, and 3⁻ states at 0, 0.24, and 1.03 MeV, respectively. Their 0⁻ state had the structure ${}^{15}B(5/2^-) \times d$, and hence a very small spectroscopic factor for decay to ${}^{15}B(g.s.)$. Because the 5/2⁻ state of ${}^{15}B$ is primarily ${}^{16}C(2^+) \times (1p_{3/2})^{-1}$, and the 0⁻ of ${}^{16}B$ is mostly

TABLE I. Low-lying states in 17 C and corresponding $1 p_{3/2}$ hole states in 16 B.

¹⁷ C core		16 B = 17 C × $\pi (1p_{3/2})^{-1}$	
J^{π}	$E_{\rm x}$ (MeV)	J^{π}	
$3/2^{+}$	0.0	03-	
$1/2^{+}$	0.22	1-, 2-	
$5/2^{+}$	0.33	$1^{-}-4^{-}$	

 ${}^{17}C(3/2^+) \times (1p_{3/2})^{-1}$, except for the problem with the Pauli Principle, the dominant structure of the 0⁻ state of Ref. [8] is realistic.

Despite the preference in previous calculations for the 0^- resonance to be the g.s. or very low lying, I expect the g.s. of ¹⁶B will turn out to be 2^- , or the 2^- will be very close to the g.s. In what follows, I make use of the systematic behavior in nearby nuclei in order to make predictions about ¹⁶B.

II. CALCULATIONS AND RESULTS

A well-known phenomenon in light nuclei is the decrease of the $2s_{1/2}$ single-particle energy (spe), relative to that for $1d_{5/2}$, as one moves from ¹⁷O toward smaller A nuclei. In a potential model with a finite diffuse well, the effect is attributed to the difference in radial wave functions for $\ell = 0$ and 2. In

TABLE II. Excitation energies (MeV) of $1/2^+$ and $5/2^+$ states in relevant nuclei.

Nucl.	J^{π}	E_{x}
¹⁹ O	5/2+	0
	$1/2^+$	1.471
¹⁷ O	5/2+	0
	$1/2^+$	0.871
¹⁷ C	$1/2^{+}$	0.220
	5/2+	0.331
¹⁶ N	2-	0
	3-	0.298
	d centroid	0.174
	0^{-}	0.120
	1-	0.397
	s centroid	0.328
¹⁵ C	$1/2^{+}$	0
	5/2+	0.740
^{14}B	2-	0
	1-	0.654(9)
	s centroid	0.245
	3-	1.38(3)
	2^-	1.86(6)
	4-	2.04(5)
	1-	unknown
	d centroid	~ 1.78

FIG. 1. Excitation energy differences $E(1/2^+)-E(5/2^+)$ vs A for *sd* (upper) and $(sd)^3$ (lower) nuclei, with linear trend lines. Open circles are resulting predictions for ^{14,16}B.

a shell-model description in which the spe's are independent of A, the behavior results from changes in particle-hole matrix elements as the number of 1p-shell holes is changing. In any case, the phenomenon is well understood. The aim here is to use this behavior to make predictions for ¹⁶B, about which very little is known.

FIG. 2. (Top) Parent states in ${}^{15}C$ and ${}^{15}C \times p^{-1}$ multiplets in ${}^{14}B$. (Bottom) Parent states in ${}^{17}C$ and ${}^{17}C \times p^{-1}$ multiplets in ${}^{16}B$.

FIG. 3. Combination of shell-model [5] and present predictions.

Energies of relevant $1/2^+$ and $5/2^+$ states in nearby nuclei are listed in Table II. Whenever the core has odd A, the sp, s, and d states will be multiplets, and I have used the (2J + 1)-weighted excitation energies for them. Resulting energy differences between $2s_{1/2}$ and $1d_{5/2} sp$ states are plotted vs A in Fig. 1. A linear dependence is apparent. I can then use this fit to predict the difference for ¹⁴B. The prediction is -1.52 MeV. The centroid of the 2^- , 1^- doublet in ¹⁴B is 0.245 MeV. For the d multiplet of levels, the energy of the 1^- state is not known. The centroid of the other three states is 1.78 MeV. Because of its low J, the 1⁻ energy will not change this number very much. Thus the experimental centroid energy difference in ${}^{14}B$ is about -1.5 MeV, to be compared with the linear-fit prediction of -1.52 MeV. The energies of the parent states in ¹⁵C and the ¹⁵C $\times p^{-1}$ states in ¹⁴B are depicted in the top portion of Fig. 2.

I have performed the same analysis for the $1/2^+$ and $5/2^+$ states in $(sd)^3$ nuclei, and those differences are also plotted in Fig. 1. The lines are observed to be virtually parallel, so that the prediction for ¹⁶B is -0.90 MeV. Thus, in ¹⁶B, the expectation from the present analysis is that the *s* doublet in ¹⁶B will be below the *d* multiplet by about 0.9 MeV.

The $(sd)^3$ space also contains a $3/2^+$ state, whose structure is a combination of d^3 and $d_2^2 s$. In ¹⁹O, its excitation energy is 0.096 MeV, and it is the g.s. of ¹⁷C. Thus, the $1/2^+$ state is 1.376 MeV above $3/2^+$ in ¹⁹O. With the $1/2^+$ state 0.22 MeV above $3/2^+$ in ¹⁷C, the energy difference goes from 1.376 to 0.22 from A = 19 to A = 17. A linear behavior from ¹⁹O to ¹⁷C to ¹⁶B thus indicates that the $1/2^+$ doublet centroid in ¹⁶B will be about 0.36 MeV below the centroid of the $3/2^+$ multiplet. The energies of the parent states in ¹⁷C and the ¹⁷C $\times p^{-1}$ states in ¹⁶B are depicted in the bottom portion of Fig. 2.

Of course, all three multiplets contain 1^- and 2^- states, so that some configuration mixing might be expected to occur. Nevertheless, some of the lowest resonances in ¹⁶B should

FIG. 4. Possible reaction mechanism for populating states in ${}^{16}B$ based on $1/2^+$ and $5/2^+$ states of ${}^{17}C$.

have the dominant configuration of three *sd*-shell neutrons coupled to $1/2^+$. The structure of this s doublet is ${}^{17}C(1/2^+) \times (p_{3/2})^{-1}$, and these states would not have been likely to have been formed in a reaction starting with ${}^{17}C$ in its ground state.

Support for the present suggestion can be found in ¹⁸B, where the g.s. has been reported to be 2⁻ (or 1⁻) and to have an *s*-wave decay to ¹⁷B(g.s.) [6]. This state was formed in proton removal from a secondary beam of ¹⁹C, whose g.s. is $1/2^+$, with the dominant structure d^4s . The 2⁻ (1⁻) g.s. of ¹⁸B would then be ¹⁹C(1/2⁺) × ($p_{3/2}$)⁻¹. The 2⁻ g.s. of ¹⁴B is primarily of the structure ¹⁵C(1/2⁺) × ($p_{3/2}$)⁻¹. These comparisons reinforce the expectation that the g.s of ¹⁶B will be 2⁻ and have the dominant structure of ¹⁷C(1/2⁺) × ($p_{3/2}$)⁻¹.

I now address the question of the absolute energy of this 2⁻ state. In Fig. 3, I have plotted the energies of the lowest states of each $J^{\pi} = 0^{-}-3^{-}$ from the shell-model calculation [5]. The centroid of these four states is 0.95 MeV above the predicted 0⁻ energy. I have aligned this centroid with my 0⁻-3⁻ centroid. The 1⁻, 2⁻ centroid should be 0.36 MeV below this, as depicted in Fig. 2. If the 1⁻, 2⁻ energy difference in ¹⁶B is the same as in ¹⁴B (0.654 MeV), then the 2⁻ state would be 0.245 MeV below this centroid. This analysis puts this 2⁻ state 0.35 MeV above the shell-model 0⁻ state. Because each multiplet contains a 2⁻ state, mixing among them will lower the energy of the lowest one. The simple model contains only one 0⁻ state, so this effect will not be present there. Thus, if the 2⁻ state is not the g.s., it should be very close.

One possibility for making this state might be to start with ¹⁶C and make use of the reaction pictured in Fig. 4, in which *n* addition to the *sd* shell is followed (or preceded) by *p* removal from the 1*p* shell. As depicted, the first step will primarily populate the $1/2^+$ and $5/2^+$ states of ¹⁷C, because the $3/2^+$ state has nearly a vanishing spectroscopic factor to ¹⁶C(g.s.). Such a reaction would be expected to populate both the 1^- , 2^- doublet and the 1^- to 4^- multiplet of states. One candidate for a target to be used in such an experiment is ¹³C.

III. SUMMARY

To conclude, I suggest that the g.s. of ¹⁶B should have $J^{\pi} = 2^{-}$ and the dominant structure ¹⁷C(1/2⁺) × (1 $p_{3/2}$)⁻¹. If it is not the g.s., it should be very close in energy. Such a state would not have been expected to be populated in proton removal from the 3/2⁺ gs. of ¹⁷C, or in the reaction ¹⁴C(¹⁴C, ¹²N)¹⁶B.

- R. A. Kryger, A. Azhari, J. Brown, J. Caggiano, M. Hellström, J. H. Kelley, B. M. Sherrill, M. Steiner, and M. Thoennessen, Phys. Rev. C 53, 1971 (1996).
- [2] J. D. Bowman, A. M. Poskanzer, R. G. Korteling, and G. W. Butler, Phys. Rev. C 9, 836 (1974).
- [3] M. Langevin et al., Phys. Lett. B 150, 71 (1985).

- [4] R. Kalpakchieva et al., Eur. Phys. J. A 7, 451 (2000).
- [5] J.-L. Lecouey et al., Phys. Lett. B 672, 6 (2009).
- [6] A. Spyrou et al., Phys. Lett. B 683, 129 (2010).
- [7] N. A. F. M. Poppelier, L. D. Wood, and P. W. M. Glaudemans, Phys. Lett. B 157, 120 (1985).
- [8] M. Dufour and P. Descouvemont, Phys. Lett. B 696, 237 (2011).