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Radial overlap correction to superallowed 0+ → 0+ β decay reexamined
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Within the nuclear shell model, we investigate the correction δRO to the Fermi matrix element due to a mismatch
between proton and neutron single-particle radial wave functions. Eight superallowed 0+ → 0+ β decays in the sd

shell, comprising 22Mg, 26mAl, 26Si, 30S, 34Cl, 34Ar, 38mK, and 38Ca, are reexamined. The radial wave functions are
obtained from a spherical Woods-Saxon potential whose parametrizations are optimized in a consistent adjustment
of the depth and the length parameters to relevant experimental observables, such as nucleon separation energies
and charge radii, respectively. The chosen fit strategy eliminates the strong dependence of the radial mismatch
correction to a specific parametrization, except for calculations with an additional surface-peaked term. As an
improvement, our model proposes a new way to calculate the charge radii, based on a parentage expansion which
accounts for correlations beyond the extreme independent-particle model. Apart from the calculations with a
surface-peak term and the cases where we used a different model space, the new sets of δRO are in general
agreement with the earlier result of Towner and Hardy [Phys. Rev. C 66, 035501 (2002)]. Small differences of
the corrected average F t value are observed.

DOI: 10.1103/PhysRevC.97.024324

I. INTRODUCTION

The superallowed nuclear β decay between 0+, T = 1
isobaric analog states has long been known as a sensitive
tool to probe the fundamental symmetries underlying the
standard model of electroweak interaction. According to the
conserved vector current (CVC) hypothesis, the corrected F t
value or equivalently the vector coupling constant GV must
be nucleus independent. If CVC holds, those constants can
be used to extract |Vud |, the absolute value of the up-down
element of the Cabibbo-Kobayashi-Maskawa (CKM) quark-
mixing matrix. This value, combined with the complementary
experimental data on |Vus | and |Vub|, the other top-row matrix
elements, provides the most accurate test of the unitarity of
the CKM matrix (see Ref. [1] for details and the present
status).

Nowadays, 14 transitions ranging from 10C to 74Rb are
known experimentally with a precision of 0.1% or better,
therefore we must consider all kinds of side effects of this
order of magnitude before deducing the F t value. All previous
investigations (Ref. [1] and references therein) indicate that the
current uncertainty on |Vud | is dominated by a set of theoretical
corrections aimed to account for the radiative effects and
the isospin-symmetry breaking in nuclear states. The latter
is strongly structure dependent and has the greatest effect on
reducing the scatter in the F t values.

Since superallowed 0+ → 0+ β decay is governed uniquely
by the vector part of the electroweak current, the corrected F t
value can be deduced from the expression [2]

F t = f t(1 + δ′
R)(1 + δNS − δC)

= K

2G2
V

(
1 + �V

R

) = const, (1)

where K is a combination of fundamental constants
K =2π3h̄ ln 2(h̄c)6/(mec

2)5 = (8120.2716 ± 0.012) × 10−10

GeV−4 s, and f t is the product of the statistical rate function
(f ) [3] and the partial half-life (t). The radiative corrections
are separated into three parts [1]: �V

R = 2.361(38)% is
nucleus independent, δ′

R depends on the atomic number of
daughter nucleus, and δNS is nuclear-structure dependent.
The correction due to the isospin-symmetry breaking, δC , is
defined as the deviation of the realistic Fermi matrix element
squared from its isospin-symmetry value,

|MF |2 = ∣∣M0
F

∣∣2
(1 − δC), (2)

with |M0
F | = √

T (T + 1) − TziTzf = √
2 for the T = 1 case.

Over the past 40 years, various theoretical approaches
have been applied to get δC . Figure 1 shows the results of
calculations performed within different microscopic models
for a large ensemble of emitters. Towner and Hardy [2,4,5]
use the shell model with radial wave functions derived from
a Woods-Saxon (WS) potential. Some time ago, Ormand and
Brown [6,7] performed shell-model calculations using Skyrme
Hartree-Fock (HF) radial wave functions (see also our recent
study in Ref. [8]). The obtained corrections are systematically
smaller than those obtained from WS wave functions. Spin
and isospin projected HF calculations based on two different
parametrizations of the Skyrme energy density functional have
been realized by Satula et al. [9]. Except for a few cases, their
values for light and medium-mass nuclei are on average of the
same order of magnitude as those found within the shell-model
approach. For A = 34 emitters, Satula et al. obtain quite large
corrections compared to the shell model. However, at the same
time they assign large theoretical uncertainties on those values,
so the agreement roughly holds. Another approach in which
random-phase approximation (RPA) correlations have been
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FIG. 1. Isospin-symmetry breaking correction δC obtained from
different models: shell model with WS radial wave functions (SM-
WS) [2,4,5], shell model with HF wave functions (SM-HF) [6,7],
J (T )-projected HF theory with two different Skyrme functionals (SV-
DFT and SHZ2-DFT) [9], relativistic RPA (RHF-RPA and RH-RPA)
[10], isovector monopole resonance theory (IVMR) [11], and the
Damgaard model [12].

added to a relativistic Hartree or Hartree-Fock (HF) calculation
was used by Liang et al. [10]. In addition, Auerbach [11] uses a
model where the main isospin-symmetry-breaking effects are
attributed to the isovector monopole resonance. The last two
results are again systematically lower than the shell-model or
J (T )-projected HF values. For completeness, we show also an
earlier estimation of the correction using perturbation theory
on the basis of individual harmonic-oscillator wave functions
by Damgaard [12]. It is clear that all these calculations have a
significant spread in the obtained values of δC , thus raising the
question of credibility of the results.

The values for δC tabulated by Towner and Hardy in Ref. [1]
excellently support both the CVC hypothesis over the full range
of Z values and the top-row unitarity of the CKM matrix.
However, this agreement is not sufficient to reject the other
calculations, since these aspects of the standard model have
to be confirmed experimentally. The validity of CVC does not
constrain the absolute F t value. The disagreement between
model predictions and the importance of the issue motivated
us to reexamine this correction in a consistent approach based
on the nuclear shell model.

Within the shell model, the eigenproblem is solved by con-
struction and diagonalization of the Hamiltonian matrix using
a Slater determinant spherical harmonic-oscillator basis. The
eigenstates are thus given in terms of linear combinations of
many-body basis states. In order to describe isospin-symmetry
breaking effects, the many-body Hamiltonian should contain
Coulomb and charge-dependent terms of nuclear origin. If
the eigenproblem is solved in a sufficiently large A-body
basis of many harmonic-oscillator shells, the eigenvectors
can be used to compute a realistic Fermi matrix elements,
as, for example, has been done for 10C in the no-core shell
model with 3N forces included [13]. However, for heavier
nuclei, calculations are feasible only in restricted model spaces,
containing one or two harmonic-oscillator shells beyond a
closed-shell core. Effective isospin-nonconserving interaction
introduces the isospin-symmetry breaking in the mixing of

various harmonic-oscillator configurations within the model
space. In addition, calculation of transition matrix elements
involves radial integrals which should be computed using real-
istic spherically symmetric proton and neutron wave functions,
obtained from a finite-range potential with a Coulomb term.
The protons in a parent nucleus are less bound than the neutrons
in a daughter nucleus because of the Coulomb repulsion. Since
the model space is restricted to a single oscillator shell, in
practice the only way to deal with the problem is to replace the
harmonic-oscillator radial wave functions by single-particle
wave functions obtained from a realistic spherically symmetric
mean-field potential. This accounts for the isospin-symmetry
breaking effects beyond the valence space. Thus, there are
two sources of the deviation of the Fermi matrix element
from its model-independent value: one is from the effective
charge-dependent Hamiltonian and the other is from the radial
mismatch of proton and neutron single-particle wave functions.
It will be shown below that, within the first-order perturbation
theory, the correction δC can be expressed as a sum of two
terms corresponding to the two sources of isospin-symmetry
breaking mentioned above.

The present study focuses on the radial mismatch between
proton and neutron single-particle wave functions, which
represents the main contribution to the nuclear structure
correction to the Fermi matrix element. Currently, two types
of a mean-field potential are considered in this respect. The
first one is the phenomenological WS potential including a
central, a spin-orbit, and an electrostatic repulsion term. A
series of calculations using this potential has been carried
out by Towner and Hardy [2,4]. These authors adjusted case-
by-case the depth of the volume term or added an additional
surface-peak term to reproduce experimental proton and neu-
tron separation energies. In addition, they adjusted the length
parameter of the central term to fix the charge radii of the
parent nuclei. The second type of a mean-field potential is
that obtained from self-consistent HF calculations using a
zero-range Skyrme force, as was first proposed by Ormand
and Brown in 1985 [14] and refined in the subsequent papers
[6,7].

The results obtained from both types of mean-field potential
are equivalently in good agreement with the CVC hypothesis;
however, the δC values from Skyrme-HF calculations are con-
sistently smaller than those obtained from the WS calculations.
This discrepancy was thought to be due to the insufficiency of
the Slater approximation for treating the Coulomb exchange
term. Towner and Hardy highlighted that the asymptotic
limit of the Coulomb potential in the Slater approximation is
overestimated by one unit of Z. To retain this property, they
proposed a modified HF protocol [5], namely they performed
a single calculation for the nucleus with (A − 1) nucleons
and (Z − 1) protons and then used the proton and the neutron
eigenfunctions from the same calculation to compute the radial
overlap integrals. Their result leads to a significant increase of
the corresponding correction to the Fermi matrix element and
provides a better agreement with the values obtained with WS
radial wave functions. However, we warn that such a method
is rooted in Koopman’s theorem, which is not fully respected
by the HF calculations, in particular with a density-dependent
effective interaction.
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In the present paper, we propose a comprehensive and
detailed study of the radial-overlap correction to superallowed
0+ → 0+ β-decay matrix elements using the nuclear shell
model with WS single-particle wave functions. A special em-
phasis is given on the choice of the WS potential parametriza-
tion and optimization procedure. We limit ourselves to the sd-
shell nuclei, for which very precise shell-model wave functions
are available. Once the method is established, we plan to extend
this study to heavier emitters, using large-scale shell-model
diagonalization and modern effective interactions.

The article is organized as follows. The general formalism
is given in Sec. II. Section III discusses the selection of a WS
potential parametrization. In Sec. IV, we carry out a simplified
calculation of radial-overlap correction to the Fermi matrix
element in the closure approximation. The sensitivity to the
parameters and the adjustment procedure is investigated. In
Sec. V, we present our final results, obtained from a full
parentage expansion for both the radial-overlap correction
andcharge radii of the parent nuclei. The charge radii are
computed using two different methods with respect to the
treatment of closed-shell orbits. In Sec. VI, we use the obtained
results to get the weighted averages of the F t values for
six sd-shell emitters for which the measured f t values have
attained the level of precision currently required for the tests
of the standard model. In Sec. VII, the sets of radial-overlap
corrections are tested against the experimental data, under the
assumption that the CVC hypothesis is valid. Comparisons
with the previously published values are made. The summary
and concluding remarks are given in Sec. VIII.

II. GENERAL FORMALISM

Within the nuclear shell model, the Fermi matrix element
for the superallowed β+ decay can be expressed [2,14] as

MF = 〈ψf | t+ |ψi〉 , (3)

where t+ is the isospin raising operator and |i〉 and |f 〉 denote
the initial and the final nuclear states, respectively. In the
second quantization, and using the proton-neutron formalism,
we can expand this matrix element in terms of one-body
transition densities and single-particle matrix elements as

MF =
∑

α

〈f | a†
αn

aαp
|i〉 〈αn| t+ |αp〉 . (4)

In this equation the operator aα destroys a nucleon in quantum
state α whereas the operator a†

α creates a nucleon in that
state, with α standing for the whole set of spherical quantum
numbers, α = (nα,lα,jα,mα); the labels n and p refer to
neutron and proton quantum states, respectively. Following the
previous work within the shell model of Towner and Hardy
[2,4] and that of Ormand and Brown [6,14], we suppose that
the single-particle matrix element is given by an overlap of the
proton [Rαp

(r)] and neutron [Rαn
(r)] radial wave functions:

〈αn| t+ |αp〉 =
∫ ∞

0
Rαn

(r)Rαp
(r)r2dr = �α. (5)

In the isospin-symmetry limit, the initial and final nuclear
states, |i〉 and |f 〉, are exact analog states and the radial overlaps

�α are equal to unity. Then, Eq. (4) reduces to the model-
independent value of the Fermi matrix element. Introducing
charge-dependent interaction and a realistic single-particle
basis, we can estimate deviations of the Fermi matrix element
from its model-independent value.

It has been pointed out by Miller and Schwenk [15,16] that
the exact isospin operator in (4) may involve terms where radial
quantum number, nα , for of a proton state αp is different from
that of a neutron state αn. Here we notice that it is not possible
to include those nondiagonal terms within the shell model
because the nodal mixing requires very large model spaces.
For this reason, we will stay within the same approximation as
Towner and Hardy [2,4], considering only the diagonal terms.

Since the corrections considered here are small, we treat
them within the perturbation theory. Let us define the cor-
rection to the one-body transition density due to the isospin-
symmetry breaking as

�α = 〈f | a†
αn

aαp
|i〉T − 〈f | a†

αn
aαp

|i〉 , (6)

where the superscript T is used to denote the one-body
transition densities calculated in the isospin-symmetry limit.
Then, one can express the matrix element MF in terms of �α

as

MF =
∑

α

( 〈f | a†
αn

aαp
|i〉T − �α

)
�α

=
∑

α

( 〈f | a†
αn

aαp
|i〉T − �α

)
[1 − (1 − �α)]

= M0
F

[
1 − 1

M0
F

∑
α

�α + 1

M0
F

∑
α

�α(1 − �α)

− 1

M0
F

∑
α

〈f | a†
αn

aαp
|i〉T (1 − �α)

]
. (7)

Since the isospin-symmetry-breaking effects are small, we can
keep only the leading-order (linear) terms in small quantities
and express MF squared as

|MF |2 = ∣∣M0
F

∣∣2
[

1 − 2

M0
F

∑
α

�α

− 2

M0
F

∑
α

〈f | a†
αn

aαp
|i〉T (1 − �α) + O(ζ 2)

]
,

(8)

where ζ denotes (1 − �α) or �α . Comparing Eq. (8) with
Eq. (2), we can identify the correction δC as a sum of two
parts,

δC = δIM + δRO, (9)

called the isospin-mixing part,

δIM = 2

M0
F

∑
α

�α, (10)

and the radial-overlap part,

δRO = 2

M0
F

∑
α

〈f | a†
αn

aαp
|i〉T (1 − �α). (11)
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The initial and final state wave functions will be determined
by diagonalization of a well-established shell-model effective
Hamiltonian in a spherical (harmonic-oscillator) many-body
basis. The isospin mixing part arises from the diagonalization
of the shell-model Hamiltonian containing Coulomb and other
charge-dependent terms. The parameters of such a Hamiltonian
are usually adjusted to reproduce the splittings of the isobaric
multiplets in a given model space. The estimate of the radial-
overlap part of the correction, �α , in Eq. (11) is calculated
using realistic single-particle radial wave functions instead of
the harmonic-oscillator wave functions. Thus, δRO accounts for
the charge-dependent effects in the single-particle basis, which
cannot be computed otherwise in a single-oscillator shell.

III. WOODS-SAXON POTENTIAL

A standard single-particle WS potential includes a spin-
independent central term, a spin-orbit term, an isospin-
dependent term, and a Coulomb term for protons:

V (r) = V0f (r,R0,a0) + Vs

( rs

h̄

)2 1

r

d

dr
[f (r,Rs,as)] 〈l · σ 〉

+Viso(r) + Vc(r), (12)

where

f (r,Ri,ai) = 1

1 + exp
(

r−Ri

ai

) , (13)

with i denoting either 0 for the central term or s for the
spin-orbit term. The radius is parametrized in a standard way
as Ri = ri(A − 1)1/3, while the diffuseness parameters, ai ,
are kept fixed. In general, the spin-orbit length parameter
(rs) is smaller than that of the volume term (r0), because of
the very short range of the two-body spin-orbit interaction
[17]. The one-body Schrödinger equation is solved in relative
coordinates for a particle of mass μ = m(A − 1)/A, where m
is the nucleon mass and A is the mass number of the composite
nucleus. Among various terms of the WS potential, the last two
terms are the most crucial for the radial-overlap correction.

Experimental data from both positive and negative energies
suggested that an additional isospin-dependent term [18–20]
was required. A common form of such a term [21,22], favoring
a balanced configuration of neutrons and protons (symmetry
term), reads

Viso(r) = V1
tzT

′
z

A − 1
f (r,R0,a0), (14)

where tz is the isospin projection of the nucleon, with tz =
1/2 for neutron and −1/2 for proton, and T ′

z is the isospin
projection of the core/target nucleus.

It was pointed out later by Lane [18,19] that the symmetry
term (14) is an averaged version of a more fundamental formula
which contains a dependence on the scalar product of the
isospin operators of a nucleon (t) and a core nucleus (T ′) (see
also discussion in Ref. [23]):

Viso(r) = V1
〈t · T ′〉
A − 1

f (r,R0,a0). (15)

In principle, one could include other symmetry-preserving
terms which involve the nucleon operators p, r, σ , t and the

TABLE I. Standard numerical values of the selected
parametrizations.

BMm SWV Unit

r0 1.26 1.26 fm
rs 1.16 1.16 fm
a0 = as 0.662 0.662 fm
V0 −52.833 −652.0 MeV
V1 −146.368 −133.065 MeV
λ 0.22 0.198A2/(A − 1)2

λ1 0.22 0

core spin and isospin operators T ′ and J ′. However, most
of these terms were found to be small [20], except for the
isospin-dependent spin-orbit term [24,25], important for study
of neutron-rich nuclei:

V s
iso(r) = V s

1
〈t · T ′〉
A − 1

( rs

h̄

)2 1

r

d

dr
[f (r,Rs,as)] 〈l · σ 〉 . (16)

Usually, the strength of the spin-orbit term is related to that of
the volume term by Vs = −λ V0, and similarly for the isospin-
dependent part, V s

1 = −λ1 V1.
The repulsive long-range Coulomb potential is determined

from the assumption of a uniformly charged sphere of
radius Rc:

Vc(r) = (Z − 1)e2 ×
⎧⎨
⎩

1

r
if r > Rc,

1
Rc

(
3
2 − r2

2R2
c

)
otherwise.

(17)

For many applications, it is a good approximation because the
influence of the surface diffuseness of the charge distribution
on the strength of the Coulomb potential is not strong. In
general, the radius Rc is defined in the same way as the central
and spin-orbit radii: Rc = rc × (A − 1)1/3. However, since the
Coulomb term is of major importance for our study, we extract
Rc from experimental data on charge radii, 〈r2〉ch, via the
expression [26]

R2
c = 5

3

[
〈r2〉ch − 3

2

(
a2

p − b2/A
)]

. (18)

In this equation, the last two terms correct for the internal
structure of the proton and for the center-of-mass motion,
with ap = 0.694 fm [4] being the parameter of the Gaussian
function describing the charge distribution of the proton and b
being the harmonic-oscillator length parameter.

Among existing WS potential parametrizations
(Refs. [17,23,27–30] and references therein), constructed
with different objectives and relevant for different nuclear
mass regions, we selected two (Table I). One is that of
Bohr and Mottelson [17], modified as proposed in Ref. [31]
and denoted as BMm, while the other is that of Schwierz,
Wiedenhöver, and Volya (SWV) [23]. They mainly differ
by the isovector term: the BMm parametrization adopts the
symmetry term of the form of Eq. (14), whereas the other
employs the isospin coupling as given in Eq. (15). For heavy
nuclei with large neutron excess, the difference is small.
for lighter nuclei around N = Z line, which are of primary
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interest for our study, the differences are important. Besides,
the SWV parametrization defines radii with respect to the
composite nucleus: R0 = r0 A1/3 and Rs = rs A1/3.

IV. RADIAL OVERLAP CORRECTION
IN THE CLOSURE APPROXIMATION

Although our final results are done within the parentage-
expansion formalism, it is instructive to first consider the
simplest approach which assumes that the ground state of the
(A − 1) nucleus is a unique parent (the formalism was outlined
in Sec. II). Our purpose here is to study the parametrization
dependence and to see better the role of the full parentage
expansion presented in the next section.

We choose only sd-shell emitters, most of which are well
described by the so-called universal sd interactions, USDand
USDA/B [32,33]. They include 22Mg, 26mAl, 26Si, 30S, 34Cl,
34Ar, 38mK, and 38Ca. Six of these transitions are used to
deduce the most precise F t value, while the decays of 26Si
and 30S are expected to be measured with an improved
precision in future radioactive-beam facilities. The shell-model
calculations were performed in the full sd shell, using the
NUSHELLX@MSU code [34].

To get the radial wave functions, we used two parameter
sets of a WS potential summarized Table I. Note that these
parameter sets have been determined by a global fit to various
ground-state properties of nuclei around doubly-magic nuclei
throughout the nuclear chart. The radial overlap correction
is strongly dependent on the parametrization. In particular,
it is very sensitive to the difference between proton and
neutron single-particle states for an orbital with the same
quantum numbers. One can also notice that the considered
parametrizations do not account for the charge-symmetry-
breaking effects which have been observed in nucleon-nucleon
elastic scattering [35]. Furthermore, the charge symmetric
isovector term (14) or (15) is related to the difference between
neutron and proton numbers. For example, the radial overlap
correction (almost) vanishes for N = Z emitters. Obviously,
this latter property does not agree with the HF case [14],
because the isovector component of a self-consistent mean
field is different from zero even in N = Z nuclei due to the
difference between proton and neutron densities.

To improve the accuracy of the WS potential, we keep
the form of the potentials as described above and put the
parameters under experimental constraints. In general, only
the charge radii and the nucleon separation energies can be
predicted by the WS model. In what follows, we readjust case
by case the parameters r0 and V0 to reproduce the charge
radii and the separation energies, respectively, while the other
parameters are fixed at the standard values as given in Table I.

According to the Koopman’s theorem, the energy of the
highest occupied orbital is approximately equal to the nucleon
separation energy with an opposite sign. Therefore, one usually
fits the last occupied single-particle state and keeps the same
potential to get all the other radial wave functions. For the
present study, we readjusted V0 for each valence orbital
separately for protons and for neutrons. We believe that this
method is more consistent with the shell model in which the
valence single-particle states are partly occupied.
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FIG. 2. Results with the adjusted parametrizations (BMm and
SWV) of a WS potential. The length parameter resulting from the
fit of charge radii is plotted in the upper panel, the horizontal
line indicates the standard value, r0 = 1.26 fm. The radial-overlap
correction, δRO , is plotted in the lower panel. These results are
the averages of three values obtained with the USD, USDA, and
USDB effective interactions. However, there is a great consensus
about these interactions: the resulting uncertainties are negligible.
The experimental data on 34Ar and 38K are taken from Ref. [36],
while Ref. [4] is used for the others.

The charge radius is calculated via

〈r2〉ch =
∫ ∞

0
ρp(r)r4dr

/∫ ∞

0
ρp(r)r2dr + 3

2

(
a2

p − b2
/
A

)
.

(19)

with the proton density, ρp(r), being

ρp(r) = 1

4π

∑
α

∣∣Rαp
(r)

∣∣2 × nαp
. (20)

The occupations nαp
are equal to (2j + 1) for fully filled or-

bitals of an inert core, while for valence orbitals the occupation
numbers are obtained from the shell-model diagonalization.

The values of the length parameter r0 obtained from the fit
of charge radii of the parent nuclei are plotted in the upper
panel of Fig. 2, while the radial-overlap correction is shown in
the lower panel. Notice that the two parametrizations produce
very close results, confirming that the adjustment procedure
puts severe constraints on the potential. We also remark that
there is a pronounced odd-even staggering of δRO . Namely,
for the parent nuclei with (Tz = −1), we obtain a large overlap
between proton and neutron radial wave functions, thus δRO

increases. In cases of Tz = 0 emitters, the overlap is very close
to unity, thus resulting in a very small correction value. This
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effect is solely generated by the isovector terms, which also
violate the isospin symmetry.

Two sources of uncertainties are considered: one is the
error on the experimental data of charge radii and the other
is the spread of results obtained with different shell-model
effective interactions. We assume that the calculations with
different interactions provide a set of independent values;
we can thus apply statistics to describe this data set. Our
adopted values are the normal averages (arithmetic means),
while the spread of the individual values is considered a
statistical uncertainty that follows a normal (or Gaussian)
distribution. The uncertainties are dominated by the errors on
the experimental charge radii and they only weakly depend on
a particular effective interaction and a specific parametrization
of the WS potential. For this reason, we consider this source of
uncertainties to be systematic. To cover the small spread, the
maximum value has to be chosen.

For each individual calculation, we compute the charge radii
and the radial overlap correction for four different values of r0

around 1.26 fm. Both quantities can be very well approximated
by linear functions in the vicinity of 1.26 fm as

√
〈r2〉ch = a × r0 + b,

δRO = c × r0 + d,

(21)

where a, b, c, and d are the regression coefficients.
Once these coefficients are determined, we can deduce

the radial overlap correction and the length parameter that
correspond to the experimental charge radii. To extract the
systematic uncertainty on δRO we follow the error propagation
rule,

σsyst =
√

(c × σr0 )2 + (r0 × σc)2 + (σd )2. (22)

In this equation, σr0 is the systematic uncertainty on the length
parameter, evaluated from the first line of Eq. (21), while σc

and σd are the errors of the coefficients c and d, obtained from
the fit. For all cases, the dispersion of the data points around
the straight line is almost negligible, thus the errors σc and σd

are generally not significant.
It is important to remark that σsyst depends on the sensitivity

to the length parameter [on a and c in Eq. (21)] which varies
from nucleus to nucleus. This effect will be discussed in the
next section.

The overall uncertainty is estimated as the sum in quadra-
ture,

σ =
√

σ 2
syst + σ 2

stat, (23)

where σstat is the previously mentioned statistical uncertainty.

V. RADIAL OVERLAP CORRECTION WITH FULL
PARENTAGE EXPANSION

A. Formalism

In the previous section, we took only the separation energies
relative to the intermediate nucleus ground state. Now, we
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FIG. 3. Fermi matrix element |M0
F | and the radial overlap correc-

tion δRO for various numbers of intermediate states Nπ ∈ [20,150].

extend our model as was done in Refs. [2,4,14] and expand δRO ,
inserting a complete sum over intermediate states

∑
π |π〉 〈π |

into the transition densities, between creation and annihilation
operators. Hence, Eq. (11) becomes

δRO = 2

M0
F

∑
α,π

〈f |a†
αn

|π〉T 〈i|a†
αp

|π〉T (
1 − �π

α

)
, (24)

where the matrix elements 〈f |a†
αn

|π〉T and 〈i|a†
αp

|π〉T are
related to the spectroscopic amplitudes [14] for neutron and
proton pick-up, respectively. These quantities can be computed
within the shell model using an appropriate isospin-invariant
effective interaction. For the calculation of the overlap inte-
grals, �π

α , we take into account the excitation energies, Eπ , in
the intermediate nucleus while fitting the WS potential. Those
excitation energies can be extracted from the experimental
data, if available, or calculated theoretically.

In sd-shell nuclei, the basis dimensions for an interme-
diate nucleus can reach a few thousands. However, since
spectroscopic amplitudes decrease on average with increasing
excitation energy Eπ , one can impose a robust truncation at a
certain number of states, Nπ . The variations of |M0

F | and δRO

as a function of Nπ are displayed in Fig. 3. From the top panel,
it is seen that the Fermi matrix element does not converge
quickly. For the transitions in the middle of the sd shell, with
Nπ = 150 for each spin and parity, the value of |M0

F | is still
off its model-independent value. Fortunately, the correction
δRO converges much faster than |M0

F |, because of the factor
(1 − �π

α ) which decreases monotonically with increasing of
Eπ and tends to zero finally. For all sd-shell emitters, one
can use Nπ = 100 as a reasonable cutoff for the number of
intermediate states.

B. Charge radius calculation

The parentage-expansion formalism can also be applied for
the charge radius calculation. The square of the charge radius
(relative to the inert core) is given by the expectation value of
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the operator r2
sm in the ground state of a parent nucleus:1

〈r2〉sm = 〈ψi | r2
sm |ψi〉

= 1

Z

∑
α

〈αp| r2 |αp〉 〈i| a†
αp

aαp
|i〉 . (25)

Inserting the complete sum over intermediate states∑
π |π〉 〈π | into this equation, we convert the proton occupa-

tions, 〈i| a†
αp

aαp
|i〉, into a sum of spectroscopic factors which

can be obtained from the shell model. Thus, Eq. (25) takes the
form

〈r2〉sm = 1

Z

∑
α,π

〈i| a†
αp

|π〉2 〈αp| r2 |αp〉π . (26)

The single-particle matrix element is given by

〈αp| r2 |αp〉π =
∫ ∞

0
r4

∣∣Rπ
αp

(r)
∣∣2

dr, (27)

where π denotes that the radial wave functions depend on the
intermediate states |π〉 because of the fit of separation energies.
We have found that 〈r2〉sm as a function of Nπ converges much
faster than δRO . The value at Nπ = 50 is sufficiently accurate.

Within the shell model exploited here, only a limited number
of nucleons in a valence space outside an inert core are treated
as active nucleons. In this spirit, we calculate the charge radii
by two different methods. Following method I, we extract
the contribution of core orbitals from the experimental charge
radius, 〈r2〉cch, of the closed-shell nucleus (i.e., 16O for the sd
shell) via

〈r2〉ch = 〈r2〉sm + 3

2

(
a2

p − b2/A
) + 〈r2〉cch Z̄

+ 3/4(2n′ + l′ + 2)
(
b2 − b2

c

)
Z̄

− 3/2
(
a2

p − b2
c

/
Ac

)
Z̄, (28)

where Z̄ = Z/Zc is the ratio between the atomic numbers of
parent and core nucleus. The third line of Eq. (28) accounts for
the mass dependence of the potential. We obtained this term
using harmonic oscillator wave functions (more details of the
formalism can be found in Ref. [37]). The symbols n′ and l′
stand for the radial and orbital angular momentum quantum
numbers of the highest filled level of the core, and bc and Ac

are the oscillator parameter and the mass number, respectively,
of the closed-shell nucleus. The fourth line of Eq. (28) is the
center-of-mass correction for the closed-shell nucleus, similar
to that in Eq. (18). This method avoids the energy dependence
of the nuclear mean field, which could be significant for deeply
bound states, as suggested from the optical model [18–20] and
also from HF calculations using Skyrme forces [38].

With method II we calculate the charge radii with WS eigen-
functions for all occupied states, including closed-shell orbits,
following expressions (19) and (20). The proton occupancies

1We diagonalize this operator in the initial 0+, T = 1 state. For most
cases, it is the ground state of the parent nuclei, except for 26Al and
38K. For these two cases, such a state has an excitation energy of 228.3
and 130.4 keV, respectively.
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I) and method II (BMm-II and SWV-II). The horizontal line indicates
the standard value of the length parameter, r0 = 1.26 fm. The BMm

curve represents the values obtained in the closure approximation.

of core orbitals are taken as (2j + 1). We notice that the energy
dependence is not accounted for; however, this method is free
from the mass-dependent correction which is necessary in the
previous method.

We have explored the predictive power of these new ap-
proaches for charge radii. We found that, with V0 as the only
adjustable parameter, the predictive ability of our methods I and
II is much better than that of the traditional approach, except
for 34Cl for which the value obtained from an isotope-shift
estimation [4] is particularly large.

In the work of Towner and Hardy [2,4], the charge radii
are computed via a simplified expression, Eq. (19), without
intermediate states dependence. The resulting r0 values are
kept for the calculations of δRO in the full parentage-expansion
formalism. In the latter step, the depth of the central term is
independently readjusted to reproduce the separation energies
with respect to multiple-intermediate states. We notice that,
in principle, the two parameters could not be unambiguously
determined in this way; instead the fit should be performed
using the least-squares method, which ensures the optimization
of the resulting radial wave functions.

Thanks to the generalization of the formalism for charge
radii described above, we are able now to adjust both the po-
tential depth V0 and the length parameter r0 in a self-consistent
way. The final individual energy spectra and wave functions are
thus capable of reproducing simultaneously the one-proton and
one-neutron separation energies and the experimental charge
radii of the parent nuclei. Our results with full parentage
expansion are shown in Fig. 4 and tabulated in Table II. It
is remarkable that the results obtained are very insensitive
to the parametrization (SWV and BMm). Moreover, the δRO
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TABLE II. Results of the calculations with full parentage expansion are tabulated with BMm-I, SWV-I, BMm-II, SWV-II, BMm-IIG, and
SWV-IIG (see Sec. V for details). Results obtained in our preliminary study, which did not include the multiple-intermediate states, are denoted
by BMm and SWV. These results correspond to those illustrated in Fig. 2. The values taken from Ref. [4] and from Ref. [2] (with partial updates
from Ref. [1]) are reported with the labels TH2002 and TH2008 respectively.

Z BMm-I SWV-I BMm-II SWV-II BMm-IIG

r0 (fm) δRO (%) r0 (fm) δRO (%) r0 (fm) δRO (%) r0 (fm) δRO (%) r0 (fm) δRO (%)

12 1.310(74) 0.266(38) 1.310(74) 0.275(34) 1.298(27) 0.262(12) 1.298(27) 0.268(10) 1.288(48) 0.253(17)
13 1.178(34) 0.233(18) 1.180(34) 0.220(19) 1.233(13) 0.263(7) 1.236(13) 0.253(7) 1.179(33) 0.245(9)
14 1.194(44) 0.339(35) 1.194(44) 0.353(29) 1.233(19) 0.366(11) 1.233(19) 0.380(13) 1.190(48) 0.345(21)
16 1.237(23) 0.638(32) 1.237(23) 0.629(33) 1.255(12) 0.660(17) 1.255(12) 0.656(18) 1.226(31) 0.637(21)
17 1.354(20) 0.649(34) 1.354(20) 0.668(33) 1.324(11) 0.596(16) 1.322(11) 0.618(18) 1.314(25) 0.536(25)
18 1.278(5) 0.708(20) 1.278(5) 0.686(20) 1.282(3) 0.720(16) 1.281(3) 0.691(16) 1.280(11) 0.636(11)
19 1.302(5) 0.680(11) 1.306(8) 0.714(21) 1.285(2) 0.652(14) 1.286(3) 0.674(15) 1.252(7) 0.538(8)
20 1.304(16) 0.889(42) 1.304(16) 0.869(46) 1.290(10) 0.846(26) 1.289(10) 0.815(25) 1.341(29) 0.761(39)

Z SWV-IIG TH2002 TH2008 BMm SWV

r0 (fm) δRO (%) r0 (fm) δRO (%) r0 (fm) δRO (%) r0 (fm) δRO (%) r0 (fm) δRO (%)
12 1.263(48) 0.268(21) 1.281(26) 0.255(10) 0.370(20) 1.265(26) 0.202(10) 1.244(26) 0.213(10)
13 1.159(33) 0.219(13) 1.194(12) 0.230(10) 0.280(15) 1.179(13) 0.181(5) 1.167(12) 0.172(5)
14 1.168(46) 0.374(18) 1.206(18) 0.330(10) 0.405(25) 1.190(19) 0.259(10) 1.174(19) 0.275(10)
16 1.155(31) 0.616(25) 1.223(13) 0.740(20) 0.700(20) 1.187(12) 0.484(14) 1.173(12) 0.471(13)
17 1.214(26) 0.454(22) 1.303(11) 0.530(30) 0.550(45) 1.245(11) 0.269(10) 1.231(11) 0.294(10)
18 1.149(6) 0.587(18) 1.253(17) 0.610(40) 0.665(55) 1.215(11) 0.329(12) 1.202(11) 0.298(13)
19 1.162(9) 0.465(12) 1.245(21) 0.520(40) 0.565(50) 1.198(21) 0.246(22) 1.186(20) 0.275(21)
20 1.140(31) 0.670(36) 1.269(10) 0.710(50) 0.745(70) 1.224(10) 0.345(13) 1.212(10) 0.313(13)

correction depends little on the treatment of closed-shell orbits,
and both methods produce consistent values throughout the sd
shell. In general, the length parameters r0 from method II are
closer to a global-fit value of 1.26 fm [23]. In practice, method
I is generally less appropriate for a charge radii fit because of
its low sensitivity. Since the closed-shell contribution is taken
from the experimental data, Eq. (28) puts little constraint on the
valence space protons. Hence, the uncertainties on the BMm-I
and SWV-I results are much larger than those produced by
method II.

Comparing the present results with those obtained in the
closure approximation, Fig. 2, we remark that the introduc-
tion of multiple-intermediate states increases both the radial-
overlap correction and the length parameter, especially for the
transitions in the upper part of the sd shell.

C. Surface terms

Instead of varying the central part of the potential, one
can include an extra surface-peaked term [39] and adjust its
strength to reproduce the nucleon separation energies. Two
terms have been considered in the literature [4], namely,

Vg(r) =
(

h̄

mπc

)2
Vg

asr
exp

(
r − Rs

as

)
[f (r,Rs,as)]

2 (29)

and

Vh(r) = Vh a2
0

[
d

dr
f (r,R0,a0)

]2

, (30)

where (h̄/mπc) ≈ 1.4 fm is the pion Compton wavelength,
while Vg and Vh are adjustable parameters.

We found that since Vh(r) has a very weak effect on the
single-particle spectra, the fit of separation energies results in
very large values of Vh and generates a high peak on the WS
potential at the nuclear surface. Besides, the inclusion of Vh(r)
leads to an unusual correlation between the charge radius and
the length parameter: when r0 increases, the calculated nuclear
charge radius first increases and then decreases, following a
kind of parabolic dependence. This property is in disagreement
with the uniform-density liquid drop model [40], and moreover
it deteriorates our optimization procedure. For these reasons,
we do not use this term for our study of δRO .

In contrast, Vg(r) has a much stronger effect on the single-
particle spectra and does not lead to any particular problem in
the fit. Before adding the surface term, we fix the depth of the
central term, V0, in such a way that the calculated energy of the
last occupied orbit matches the experimental separation energy
relative to the ground state of the (A − 1) nucleus. The energies
of the remaining states are fitted by varying the strength of the
surface term, while the parameter r0 is consistently readjusted
to get the experimental charge radii of the parent nuclei. The
other parameters are kept fixed at the standard values. The
obtained values of r0 and δRO are shown in Fig. 5 (BMm-IIG
and SWV-IIG) in comparison to previously obtained results
(BMm-II and SWV-II).

First, we note that, except for a few cases, the addition of the
Vg(r) term produces larger charge radii, when r0 is fixed. This
is always the case for the SWV parametrization. As the radii are
proportional to the length parameter, our fit with Vg(r) results
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FIG. 5. The length parameter (upper panel) as obtained from
method II and the corresponding radial overlap correction (lower
panel). The horizontal line indicates the standard value of the
length parameter, r0 = 1.26 fm. BMm-IIG and SWV-IIG refer to the
calculations with BMm and SWV parametrizations complemented
by the surface term Vg(r), while BMm-II and SWV-II refer to the
calculations without Vg(r). For comparison we show the results of
Towner and Hardy (TH2002 [4] and TH2008 [2]).

in smaller r0 as seen from Fig. 5, except for 38Ca (BMm). In
spite of smaller length parameters, the δRO values for the cases
with masses between A = 22 and 30 are in fair agreement with
those obtained in the calculations without Vg(r). For the other
transitions, the SWV-IIG values of δRO are about 25% lower
than the BMm-II or SWV-II values, whereas those obtained
from the BMm-IIG model drop only by about 15%. For heavier
emitters, the inclusion of Vg(r) leads to a clear dependence on
the WS parametrization, even though the parameter V0 also
has been readjusted for the ground state. The uncertainties on
these latter results are somewhat larger than those obtained
from method II (see Table II). This means that the sensitivity
to r0 becomes lower [the coefficient c in Eq. (22) increases]
when we include the Vg(r) term.

D. Discussion

Figure 5 shows the comparison of the present results
with the two results of Towner and Hardy (TH2002 [4] and
TH2008 [2]). In Ref. [4], the shell-model calculations for
nuclei between A = 22 and 34 have been performed in the sd
shell; for A = 38, the 0f7/2 orbital has been added, with the
0d5/2 orbital being frozen. In 2008 [2], the authors introduced
the core polarization in their calculation of δRO . Since then they
evaluate the radial overlap correction with the inclusion of the
orbitals outside the valence space, their method is based on
shell-model calculations of the spectroscopic amplitudes, but
limits the sums over single-particle orbitals to those for which

large spectroscopic factors have been observed in neutron
pick-up reactions. Our work in this direction is in progress.

With the exception of 30S, the BMm-II or SWV-II values
for δRO are on average 12% larger than those of TH2002. This
augmentation could be understood as due to the increase of
r0 because our calculation takes into account all intermediate
states for the charge radius. For A = 38, this effect may partly
be due to the inclusion of 0f7/2 in the TH2002 calculation. A
large value for 30S reported in TH2002 may stem from different
cutoffs for the sum over intermediate states. The values ob-
tained in Ref. [2] (TH2008) with core-polarization effects are
somewhat larger than their earlier result (TH2002), especially
for 22Mg. It can be seen from Fig. 5 that δRO from our SWV-IIG
calculation follow closely the trend of TH2008, but they are
about 16% smaller in magnitude. One may quickly guess that
these two sets of δRO will produce a similar agreement with
the CVC hypothesis, but with different F t values.

Note that the results of Towner and Hardy are obtained from
their assessment of all multiple-parentage calculations made
for each decay, including the calculation without additional
terms and the calculation with the Vh(r) and Vg(r) terms.
However, each of these calculations produced very similar
values of δRO because they used the same set of the length
parameter which is determined using a traditional method (see
discussions in Ref. [4]).

We notice that the calculation with a surface-peak term
could be very dependent on the fitting procedure. For example,
if one fixes the depth of the volume term (V0) to be the same for
the proton and the neutron, then one adjusts the parameter Vg

and r0 to reproduce the relevant experimental observables, the
conventional isovector terms present in the central part of the
potential will not be affected or only weakly affected by this
optimization procedure because of the difference between the
form factor of the volume and the surface term. Consequently,
the resulting δRO will show a stronger odd-even staggering, as
we have seen in Sec. IV.

To conclude, we remind that the results of the shell-model
plus WS wave functions predict δRO which are systematically
larger than those from the shell model with HF wave functions
[8,14]. The reason is the presence in the latter case of an
additional self-consistent isovector potential which partially
compensates for the difference between single-particle proton
and neutron wells [14]. It may also be that addition of charge-
symmetry breaking terms to a Skyrme force will result in
larger values of the correction. The work in this direction is
in progress and the results will be published elsewhere.

VI. CONSTANCY OF THE F t VALUES

With our results, we are now in a position to check the
constancy of the F t values, the criterion to validate the CVC
hypothesis. First, using our value for δRO and the input data for
f t , δNS , δ′

R , and δIM from Ref. [1], we compute the individual
F t values for each transition according to Eq. (1) and the
corresponding uncertainty. Then, for six of these transitions
we calculate the weighted average F t (column 2 of Table III)
for each method in comparison with the results of Towner and
Hardy. The decays of 26Si and 30S are not included because of
large experimental uncertainties on their f t values.
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TABLE III. Reported in the left half (column 2 to 4) are the
weighted averages, F t , and the corresponding χ2/ν and CL values,
while the right half (column 5 to 7) contains the values obtained from a
similar procedure but without theoretical uncertainties on δRO . Labels
for theoretical calculations: A = BMm-I, B = SWV-I, C = BMm-II,
D = SWV-II, E = BMm-IIG, F = SWV-IIG, G = TH2002, H =
TH2008.

Model With uncertainty of δRO No uncertainty of δRO

F t χ 2/ν CL F t χ 2/ν CL

A 3070.1(15) 5.09 0 3070.6(15) 6.97 0
B 3070.4(18) 6.45 0 3070.4(17) 8.94 0
C 3071.2(10) 2.84 1 3071.1(10) 3.08 0
D 3071.0(13) 3.93 0 3070.8(13) 4.35 0
E 3072.90(70) 1.06 38 3072.76(70) 1.25 28
F 3074.49(80) 0.46 81 3074.45(70) 0.49 78
G 3072.84(80) 1.92 9 3072.75(80) 2.02 7
H 3072.26(90) 0.57 72 3071.93(70) 0.82 54

For each average, we compute χ2/ν, which measures the
scatter of the individual F t values relative to the mean.
Here ν = N − 1 = 5 is the number of degrees of freedom.
Then we use the scaling factor s =

√
χ2/ν to deduce the

uncertainty on F t . The statistics procedure followed here is
that recommended by the Particle Data Group [41].

In their latest survey [1], Hardy and Towner did not include
any uncertainty on δ′

R , but treated the contribution of the Z2α3

term in δ′
R as a source of systematic uncertainty, to be assigned

to F t . In the present calculations, we adopt from that survey,
adding into F t a systematic uncertainty of ±0.36 s, which
corresponds to the contribution of the Z2α3 term.2

From the obtained values of χ2, we proceed to calculate the
confidence level (CL), defined as

p =
∫ ∞

χ2
0

Pν(χ2)dχ2, (31)

where Pν(χ2) is the χ2 distribution function and χ2
0 denotes the

values computed with the null hypothesis (in our case, CVC is
the null hypothesis). The calculated CL values for each model
are given in Table III.

Method I produces the smallest values of F t , with the
highest χ2/ν. Under the assumption that CVC is valid, these
results are statistically significant at CL < 1%. We believe
that this discrepancy reflects the inaccuracy of the δRO values
generated by this method because of the sensitivity problem,
as discussed in the previous section. Along these lines, the
BMm-I and SWV-I calculations must definitely be rejected.
Concerning the results of method II, the agreement with CVC
is somewhat better, but still significantly poorer than the two
results of Towner and Hardy. In contrast, the calculations
with Vg(r) represent the best model for generating a set of

2To simplify, we take this value directly from Ref. [1]. Regarding
their procedure, such uncertainty could depend on the sample size
and on the calculated δRO values.

δRO corrections, satisfying the CVC hypothesis. The values
resulting from the BMm-IIG are of similar quality to those of
TH2002, whereas the SWV-IIG calculation produces an even
better CL and is comparable to that of TH2008.

In order to assess the constancy of the F t values from
the eight sets of δRO on an equal footing, we perform a
parallel analysis, by setting for all models the theoretical
uncertainties on δRO to be equal to zero. The outcome is
given in the right part of Table III, columns 5 to 7. It is
seen that the omission of this source of uncertainties only
slightly affects the weighted averages. The χ2/ν values are
systematically increased, thus resulting in a lower confidence
level. Nevertheless, the conclusions of a comparative analysis
of various methods remain unchanged.

However, it might be too early to draw any conclusion
about the standard model because our samples are made up of
only 6 out of the 14 best-known superallowed transitions. Our
purpose is rather to provide, at least qualitatively, an alternative
assessment for our theoretical models, and to compare with the
previous calculations.

VII. CVC TEST FOR δRO CORRECTION

In this section, we carry out the confidence-level test
proposed recently by Towner and Hardy [42], taking into
account the experimental uncertainties, as well as uncertainties
on δRO and the other theoretical correction terms. The test is
based on the assumption that the CVC hypothesis is valid to at
least ±0.03%, which is the level of precision currently attained
by the best f t-value measurements. This implies that a set of
structure-dependent corrections should produce a statistically
consistent set of F t values.

If we assume that the CVC hypothesis is satisfied (F t
is constant), without regarding the CKM unitarity, we can
convert those experimental f t values into experimental values
for structure-dependent corrections and compare the results
with each theoretical calculation in turn. Since the isospin
mixing correction δIM is small compared to the radial overlap
correction δRO and only one set of calculated δNS correction
exists [43], pseudo-experimental values for δRO can thus be
defined by

δex
RO = 1 + δNS − δIM − F t

f t(1 + δ′
R)

. (32)

To test a set of radial overlap correction for N superallowed
transitions, we use the method of least squares with F t as
the adjustable parameter, to optimize the agreement with the
pseudo-experimental values:

χ2/ν = 1

N − 1

N∑
i

[
δth
RO(i) − δex

RO(i)
]2

σth(i)2 + σex(i)2
, (33)

where σex and σth stand for the uncertainties on the experi-
mental and calculated values of δRO respectively. The former
is propagated from the right-hand side of Eq. (32), based on
the data of f t , δNS , and δ′

R taken from Ref. [1].
Thus, the success of each theoretical calculation can be

judged by the quality of the fit. The result for the renormal-
ized F t is F tR , the optimized χ2/ν is [χ2/ν]min, and the
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TABLE IV. Results similar to those given in Table III, except
that F t is treated as an adjustable parameter. We added the subscript
min to χ 2/ν to indicate the minimal or the optimized values. The
corresponding F t values are referred to as renormalized values
and denoted as F tR . The values listed in the left part result from
the analysis that includes theoretical uncertainties on δRO , whereas
those given in the right part are obtained without considering this
uncertainty source.

Model With uncertainty of δRO No uncertainty of δRO

F tR [χ 2/ν]min CL F tR [χ 2/ν]min CL

A 3067.43 0.14 98 3067.48 0.17 97
B 3066.81 0.10 99 3066.86 0.11 99
C 3069.09 0.17 97 3069.09 0.17 97
D 3068.45 0.19 97 3068.45 0.20 96
E 3071.82 0.25 94 3071.71 0.28 92
F 3074.18 0.26 93 3074.12 0.27 93
G 3071.22 0.41 84 3071.35 0.47 80
H 3071.13 0.22 95 3071.11 0.27 93

corresponding CL values are given in columns 2 to 4 of
Table IV, while the values obtained without uncertainties on
δRO are reported in columns 5 to 7. From both results, all eight
sets of δRO (including those generated by method I) turn out to
be very consistent with the CVC hypothesis with the optimized
values of χ2/ν ranging from 0.1 to 0.4 and the confidence level
being greater than 80%. However, there is a significant spread
among model calculations in the deduced F tR values. It is
seen that, with the exceptions of the BMm-IIG and SWV-IIG
models, the F tR values are about 3 s lower than the weighted
averages, F t , given in Table III.

From these results, we conclude that the statistical analysis
of this section has very low comparative power. The result
given in Table IV is not accurate enough to make a clear
choice of one of the theoretical models. This indicates that
the χ2 test, Eq. (33), is not sensitive to small spreads between
the correction sets. Obviously, although method I has been
found to be inappropriate, the present analysis yields a good
agreement of these correction values with the CVC hypothesis,
comparable to the other calculations summarized in Table II. It
is likely that a weak sensitivity of the χ2 test based on Eq. (33)
is due to the small number of transitions considered here,
and the result should be reconsidered when more emitters are
included. Too small χ2/ν values may indicate too small values
of uncertainties assigned to the corrections and should be
revisited.

These results are preliminary. Firmer conclusions can be
extracted when a whole series of emitters is examined in
a similar way. We also remark that it would interesting to
reinvestigate A = 38 in a larger model space.

VIII. SUMMARY AND PERSPECTIVES

We have performed a detailed and critical study of the radial
overlap correction, which is the major part of the isospin-
symmetry-breaking correction to superallowed 0+ → 0+ β
decay. Eight emitters in the sd shell have been reexamined,

using the USD, USDA, and USDB effective interactions, while
the single-particle matrix elements of the transition operator
are calculated with WS eigenfunctions.

We have investigated two WS potential parametrizations
with different isovector terms, optimizing them in a two-
parameter grid (r0,V0) to experimental nuclear charge radii
and nucleon separation energies. As a new feature, we have
introduced a parentage expansion to the nuclear charge radius,
allowing us to perform a consistent adjustment of both param-
eters. All results have been thoroughly studied with respect to
convergence as a function of the number of intermediate states.
Two different approaches to nuclear charge radii with respect
to the treatment of closed-shell orbitals and two different
choices for adjusting the WS potential (variation of the central
or surface term) led us to propose a set of six calculations
of the correction for sd-shell nuclei. Two calculations have
been found to be inappropriate because of their low sensitivity
when treating the contribution of closed-shell orbits as a
constant, taken from experimental radii of closed-shell nuclei.
We found that the surface term, Vh(r), is not compatible with
our consistent adjustment, because of its very small effect on
single-particle spectra.

For 22Mg, 26Al, and 26Si, our values of δRO are close to
those obtained by Towner and Hardy in 2002, when the same
model space was exploited. All our models produced smaller
values for 30S. We suppose that this discrepancy is due to the
difference in the cutoff for intermediate states. In the cases of
34Cl, 34Ar, 38K, and 38Ca, the correction is strongly dependent
on the method of fitting the experimental data.

The calculated correction, δRO , combined with the radiative
corrections (δ′

R and δNS) and experimental f t values from
Ref. [1] leads to six new sets of corrected F t values. Four
of these values are not concordant with the weighted averages
for the six data points with a low confidence level. Neverthe-
less, the scatter is much reduced for the F t values resulting
from the calculations with Vg(r): the BMm result has a CL of
38%, while the SWV result produces a CL of 81%.

With the assumption that CVC is valid, we performed
the analysis considering the F t value as an adjustable
parameter and minimizing the scatter between the calcu-
lated values of δRO and the pseudo-experimental values.
This analysis shows that all sets of the correction gen-
erated by WS eigenfunctions agree well with the CVC
hypothesis. Inclusion of other emitters may change this
outcome.

It will be interesting to perform a similar study of lighter
and heavier 0+ → 0+ emitters, as well as to enlarge the
model space for nuclei near the cross shell using large-scale
calculations. The aim is to explore the sensitivity of the results
to details of the theoretical method and to robustly assign the
corresponding uncertainties. The importance stems from the
relevance to the most accurate tests of the standard model of
electroweak interactions.
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