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Surface properties of neutron-rich exotic nuclei within relativistic mean field formalisms
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In this theoretical study, we establish a correlation between the neutron skin thickness and the nuclear symmetry
energy for the even-even isotopes of Fe, Ni, Zn, Ge, Se, and Kr within the framework of the axially deformed
self-consistent relativistic mean field for the nonlinear NL3∗ and density-dependent DD-ME1 interactions. The
coherent density functional method is used to formulate the symmetry energy, the neutron pressure, and the
curvature of finite nuclei as a function of the nuclear radius. We have performed broad studies for the mass
dependence on the symmetry energy in terms of the neutron-proton asymmetry for mass 70 � A � 96. From this
analysis, we found a notable signature of a shell closure at N = 50 in the isotopic chains of Fe, Ni, Zn, Ge, Se,
and Kr nuclei. The present study reveals a interrelationship between the characteristics of infinite nuclear matter
and the neutron skin thickness of finite nuclei.
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I. INTRODUCTION

Investigation of nuclei far from the line of β-stability
has played a significant role in nuclear physics. Further, the
advancement in the experimental facilities such as Jyaväskylä
(Finland) [1], ORNL (United States) [2], CSR (China) [3],
FAIR (Germany) [4], RIKEN (Japan) [5], GANIL (France)
[6], GSI (Germany) [7], FLNR (Russia) [8], and FRIB (United
States) [9] has already opened new possibilities of exploring
the production of various exotic nuclei and their properties
under the extreme conditions of large isospin asymmetry. By
virtue of the neutron-proton asymmetry in finite nuclei, one can
gain insight into some of the basic components of the equation
of state (EoS) of nuclear matter such as the symmetry energy S0

(ρ) and the slope parameter L0 (ρ) at nuclear saturation density
ρ0 [10]. In other words, the density properties of the symmetry
energy of nuclear matter is forced to lie within a narrow window
in terms of the nuclear bulk properties of neutron rich nuclei
and vice-versa [11]. In this context, a better understanding of
the isospin and density dependent of the symmetry energy in
exotic nuclei is one of the primary objectives of present studies.

Exploring the nuclear surface properties of semi-infinite
nuclear matter is simple as compared to a finite nuclear system
due to the absence of the many complexities arising from the
shell, the charge, occupation probability, and finite-size effects.
In past works, the semiclassical Thomas-Fermi model [12–14],
and quantal Hartree-Fock approach [15,16] have investigated
the surface properties of symmetric as well as asymmetric
nuclear matter. Recently, considering the isotopic chains of
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doubly close shell nuclei, Warda et al. have demonstrated theo-
retically that the stiffness of the symmetry energy is dependent
on the bulk and the surface component of the neutron skin
thickness [17–19]. Furthermore, the correlation between the
volume and surface symmetry energy for finite nuclei has been
extensively discussed in Refs. [20–25]. In addition to these, the
effects of temperature on the surface and the bulk symmetry
have also been reported recently [26,27]. In these works, the
surface symmetry energy term is predicted to be more sensitive
to the temperature than that of the volume one [26,27]. The
symmetry energy is not a directly measurable quantity but its
value can be estimated indirectly from physical observables
that are correlated to it. Two constraints are the experimental
energy of the giant dipole resonance [28] and the experimental
differential cross-section data in a charge exchange reaction
using the isospin dependent interaction of the optical potential
[29,30] (see the recent review of the Refs. [31,32] for details).
Further, the connection of isospin asymmetry to the symmetry
energy has an impact on many physical studies such as
astrophysical observations [33–38], the ground state structure
of exotic nuclei [39–42], the determination of the neutron
skin [43,44], the dynamics of heavy-ion reactions [45–47],
giant collective excitations [48,49], the dipole polarizability
[50–53], the mirror charge radii [54,55], the properties of
compact star object [20,37,38,56], the nucleosynthesis process
through neutrino convection [25,57], the photospheric radius
of a neutron star [25], the core collapse of compact massive
stars and related explosive phenomena at high density [20,58].

At present, a concerted effort has been put forth to determine
the density properties of the symmetry energy and slope param-
eters for highly neutron-proton asymmetric systems in nuclear
matter and in drip-line nuclei [59–63]. Broadly, these nuclear
matter parameters are involved in the bulk properties of finite
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nuclei such as binding energies [27,59,64], relative nuclear
radii [64–67], and neutron density distributions [59,60,64,67].
In this theoretical investigation, we study the relation between
the neutron skin thickness and nuclear matter properties at
saturation density, such as the symmetry energy, the neutron
pressure, and the curvature in an isotopic chain. Furthermore,
we demonstrate in a few cases a relation between various bulk
physical quantities of finite nuclei and the density properties of
infinite nuclear matter. We consider the neutron rich even-even
isotopes of medium mass nuclei such as Fe, Ni, Zn, Ge, Se,
and Kr in the present analysis, as they are primary candidates
in the the upcoming experimental facilities and several pre-
dictions have been made for them regarding the emergence
of a nuclear skin. The calculations are performed within the
axially deformed relativistic mean field approach, which has
the ability to predict the nuclear skin thickness in exotic nuclei
[66,68,69]. To interlink the infinite nuclear matter properties
to intrinsic finite nuclear bulk properties, we have used the
coherent density functional method [63,64,70–72] through the
energy density functional of Brueckner et al. [73,74]. Briefly,
our aim to constrain the nuclear matter observables using the
inherent properties of exotic neutron rich finite nuclei as well
as the contrary.

This paper is organized as follows. In Sec. II we discuss
the theoretical model for the relativistic mean field approach
along with coherent density functional method. Section III
is assigned to the discussion of the results obtained from
our calculation and of the possible correlation among the
infinite nuclear matter and finite nucleus properties. Finally,
a summary and a brief conclusion are given in Sec. IV.

II. THEORETICAL FORMALISM

In the present work, we estimate the nuclear symme-
try energy S0(ρ), neutron pressure p0(ρ), and other related
physical quantities of exotic finite nuclei as functions of the
baryon density on the basis of the corresponding definitions
for asymmetric nuclear matter. We have taken a general form
of the nonlinear finite-range relativistic mean field model,
considering it to be represented by the Lagrangian density
(given in the next subsection) [66,75,76]. This model has been
widely used to describe infinite nuclear matter, finite nuclei,
and stellar matter properties for extreme isospin asymmetry
[39,66,75–93]. To calculate the effective intrinsic nuclear mat-
ter quantities in finite nuclei, one must know the key parameters
of nuclear matter that characterize its density dependence at
saturation density. The most general form of the nuclear matter
symmetry energy S(ρ) for the relativistic mean field models
can be expressed as

SNM (ρ) = 1

8

(
∂2(E/ρ)

∂y2

)
ρ,y=1/2

, (1)

where y is the proton fraction for asymmetric nuclear matter.
Here, the detailed calculations of the energy density E as a
function of density from the relativistic Lagrangian are given
in Refs. [37,90,91,94,95]. The widely used slope parameter

TABLE I. Parameters and infinite nuclear matter properties at
saturation density of the nonlinear NL3∗ [97] and density-dependent
DD-ME1 [90] interaction parameters.

NL3∗ interaction [97] DD-ME1 interaction [90]

M = 939 M = 939
mσ = 502.5742 mσ = 549.5255
mω = 782.6000 mω = 783.0000
mρ = 763.000 mρ = 763.000
mσ = 10.0944 mσ (ρsat) = 10.4434
mω = 12.8065 mω (ρsat) = 12.8939
mρ = 4.5748 mρ (ρsat) = 3.8053
g2 = −10.8093 aσ = 1.3854
g3 = −30.1486 bσ = 0.9781
M/M∗ = 0.594 cσ = 1.5342
ρ0 = 0.150 dσ = 0.4661
E/A = −16.31 aω = 1.3879
KNM

0 = 258.27 bω = 0.8525
SNM = 38.68 cω = 1.3566

dω = 0.4957
aρ = 0.5008
M/M∗ = 0.586
ρ0 = 0.152
E/A = −16.04
KNM

0 = 244.72
SNM = 33.06

LNM at saturation density is given as

LNM
0 = 3ρ

(
∂SNM

∂ρ

)
ρ=ρ0

= 3pNM
0

ρ0
, (2)

where pNM
0 is the neutron pressure of nuclear matter at satura-

tion density, ρ0 being the saturation density of the symmetric
nuclear matter. Further, the curvature and skewness of the
symmetry energy are given by

KNM
0 = 9ρ2

(
∂2SNM

∂ρ2

)
ρ=ρ0

(3)

and

QNM
0 = 27ρ3

(
∂3SNM

∂ρ3

)
ρ=ρ0

, (4)

respectively. Our present knowledge of the basic properties
of the symmetry energy around saturation density is still poor
with its value estimated to be about 27 ± 3 MeV [94,96]. In
practice, this ambiguity play an essential role in the structure
calculations of finite nuclei. Here, to obtain a general idea of
what one might expect, we have used the calculated saturation
properties of infinite nuclear matter from the relativistic mean
field with nonlinear NL3∗ and density-dependent DD-ME1
interaction parameters, which are listed in Table I (for details
see Refs. [37,90,91,97]). In the relativistic mean field (RMF)
model, there is a strong correlation between the Dirac effective
nucleon mass at saturation density and the strength of the
spin-orbit force in finite nuclei [98,99]. Further, one of the most
compelling features of RMF models is the reproduction of the
spin-orbit splittings in finite nuclei. This occurs when the ve-
locity dependence of the equivalent central potential that leads
to saturation arises primarily due to a reduced nucleon effective
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mass [100]. On the other hand, the nonrelativistic effective
mass parametrizes the momentum dependence of the
single-particle potential, which is the result of a quadratic
parametrization of the single-particle spectrum. It has been
argued [101] that the so-called Lorentz mass should be
compared with the nonrelativistic effective mass extracted
from analyses carried out in the framework of nonrelativistic
optical and shell models.

A. The relativistic mean-field theory

The fundamental theory of the strong interaction that can
provide a complete description of nuclear equation of state
is quantum chromodynamics (QCD). At present, it is not
conceivable to describe the complete picture of hadronic matter
due to its nonperturbative properties. Hence, one needs to apply
the perspective of an effective field theory (EFT) at low energy,
such as quantum hadrodynamics (QHD) [75–77]. The mean
field treatment of QHD has been used widely to describe the
properties of infinite nuclear matter [37,38,76,91] and finite
nuclei [42,75,77,79,80,90,93]. In the relativistic mean field ap-
proach, the nucleus is considered as a composite system of nu-
cleons (proton and neutron) interacting through the exchange
of mesons and photons [76,81–85,102]. Further, the contribu-
tions from the meson fields are described either by mean fields
or by point-like interactions between the nucleons [103,104].
Density dependent coupling constants [39,89–93] and/or non-
linear coupling terms [75,105] are introduced to reproduced the
properties of finite nuclei and the correct saturation properties
of infinite nuclear matter. Here, most of the computational
effort is devoted to solving the Dirac equation and calculating
various densities. In the present calculation, we have used
the microscopic self-consistent relativistic mean field (RMF)
theory as a standard tool to investigate nuclear structure. It
is worth mentioning that the RMF approach is one of the
most popular and widely used formalisms. A typical relativistic
Lagrangian density (after several modifications of the original
Walecka Lagrangian to take care of various limitations) for a
nucleon-meson many body system has the form [75,76,78–88]

L = ψ{iγ μ∂μ − M}ψ + 1

2
∂μσ∂μσ

−1

2
m2

σ σ 2 − 1

3
g2σ

3 − 1

4
g3σ

4 − gsψψσ

−1

4
	μν	μν + 1

2
m2

wωμωμ − gwψγ μψωμ

−1

4
�Bμν. �Bμν + 1

2
m2

ρ �ρμ. �ρμ − gρψγ μ�τψ · �ρμ

−1

4
FμνFμν − eψγ μ (1 − τ3)

2
ψAμ (5)

with vector field tensors

Fμν = ∂μAν − ∂νAμ,

	μν = ∂μων − ∂νωμ, (6)

�Bμν = ∂μ �ρν − ∂ν �ρμ.

Here, the field for the σ meson is denoted by σ , that for the
ω meson by ωμ, and for the isovector ρ meson by �ρμ. The

electromagnetic field is defined by Aμ. The quantities, 	μν ,
�Bμν , and Fμν are the field tensors for the ωμ, �ρμ, and photon
fields, respectively.

The RMF model proposed in Refs. [90,91] allows den-
sity dependence of the meson-nucleon coupling, which is
parametrized in a phenomenological approach [39,89–93]. The
coupling of the mesons to the nucleon fields are defined as

gi(ρ) = gi(ρsat)fi(x)|i=σ,ω, (7)

where

fi(x) = ai

1 + bi(x + di)2

1 + ci(x + di)2
(8)

and

gρ = gρ(ρsat)e
aρ (x−1). (9)

Here, the functional x = ρ/ρsat and the eight real parameters
in Eq. (8) are not independent. The five constraints fi(1) = 1,
f ′′

σ (1) = f ′′
ω (1), and f ′′

i (0) = 0 reduce the number of indepen-
dent parameters to three. These independent parameters (cou-
pling parameters and the mass of the σ meson) were adjusted to
reproduce the properties of symmetric and asymmetric nuclear
matter and the ground state properties of finite nuclei.

From the above Lagrangian density we obtain the field
equations for the nucleons and the mesons. These equations
are solved by expanding the upper and lower components of
the Dirac spinors and the boson fields in an axially deformed
harmonic oscillator basis, with an initial deformation β0.
The set of coupled equations is solved numerically by a
self-consistent iteration method. The center-of-mass motion
energy correction is estimated by the usual harmonic oscillator
formula Ec.m. = 3

4 (41A−1/3). The quadrupole deformation
parameter β2 is evaluated from the resulting proton and neutron
quadrupole moments, as

Q = Qn + Qp =
√

16π

5

(
3

4π
AR2β2

)
. (10)

The root mean square (rms) matter radius is defined as

〈
r2
m

〉 = 1

A

∫
ρ(r⊥,z)r2dτ, (11)

where A is the mass number, and ρ(r⊥,z) is the deformed
density. The total binding energy and other observables are also
obtained by using the standard relations, given in Ref. [99].
Here, we have used the NL3∗ [97,106] and the density-
dependent DD-ME1 [90] interactions. These interactions are
able to reproduce reasonably well the properties of not only
the stable nuclei but also those not too far from the β-stability
valley [90,93,97,106]. In the outputs, we obtain the potentials,
densities, single-particle energy levels, nuclear radii, deforma-
tions, and the binding energies. For a given nucleus, the maxi-
mum binding energy corresponds to the ground state and other
solutions are obtained as various excited intrinsic states at other
deformations, provided the nucleus does not undergo fission.

To describe the nuclear bulk properties of open-shell nuclei,
one has to consider the pairing correlations in their ground as
well as excited states [107]. There are various methods, such as
the BCS approach, the Bogoliubov transformation and particle
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number conserving methods, that have been developed to treat
pairing effects in the study of nuclear properties including
fission barriers [108–111]. In principle, the Bogoliubov trans-
formation is the most widely used method to take pairing cor-
relations into account for the drip-line region [82–85,112,113].
In the case of nuclei not too far from the β-stability line, one
can use the constant gap BCS pairing approach to obtain a
reasonably good approximation of pairing [114]. In the present
analysis, we have employed the constant gap BCS approach
with the NL3∗ and a Bogoliubov transformation with DD-ME1
interactions [42,66,79,90,93,115,116].

B. The coherent density functional method

The coherent density functional method (CDFM) was
suggested and developed by Antonov et al. [70,71]. It is
based on the δ-function limit of the generator coordinate
method [63,67,72]. In CDFM, the one-body density matrix ρ
(r,r′) of a finite nucleus can be written as a coherent superpo-
sition of the one-body density matrices ρx (r,r′) for spherical
pieces of the nuclear matter called fluctons,

ρx(r) = ρ0(x)�(x − |r|) (12)

with ρo(x) = 3A
4πx3 . The generator coordinate x is the spherical

radius of all A nucleons contained in a uniform distributed
spherical Fermi gas. In finite nuclear system, the one body
density matrix is given as [63,64,67,72]

ρ(r,r′) =
∫ ∞

0
dx|f (x)|2ρx(r,r′), (13)

where |f (x)|2 is the weight function [defined in Eq. (17)]. The
term ρx(r,r′) is the coherent superposition of the one-body
density matrix and defined as

ρx(r,r′) = 3ρ0(x)
J1(kf (x)|r − r′|)
(kf (x)|r − r′|)

×�

(
x − |r + r′|

2

)
. (14)

Here, J1 is the first order spherical Bessel function and kF (x)
is the Fermi momentum of the nucleons in the flucton with
radius x. The corresponding Wigner distribution function for
the one-body density matrices in Eq. (14) is

W (r,k) =
∫ ∞

0
dx|f (x)|2Wx(r,k), (15)

where Wx(r,k) = 4
8π3 �(x − |r|)�(kF (x) − |k|). Similarly,

the density ρ (r) in the CDFM can express in terms of the
same weight function as

ρ(r) =
∫

dkW (r,k) =
∫ ∞

0
dx|f (x)|2 3A

4πx3
�(x − |r|) (16)

and it is normalized to the mass number,
∫

ρ(r)dr = A.
By taking the δ-function approximation to the Hill-Wheeler
integral equation, one obtains a differential equation for the
weight function in the generator coordinate [70–72]. We have
adopted a conventional approach to the weight function instead
of solving the differential equation (detail in Refs. [71,72]).

The weight function for a given density distribution ρ (r) can
be expressed as

|f (x)|2 = −
(

1

ρ0(x)

dρ(r)

dr

)
r=x

(17)

with
∫ ∞

0 dx|f (x)|2 = 1. For a detailed analytical derivation,
one can follow Refs. [72,89,105]. Here, our principal goal is
to define an effective symmetry energy, its slope, and curvature
for a finite nucleus around by weighting the quantities for
infinite nuclear matter within the CDFM. Following the CDFM
approach, the effective symmetry energy S0, its corresponding
pressure p0, and the curvature K0 for a finite nucleus can be
written as [63,64,67,72,89,105]

S0 =
∫ ∞

0
dx|f (x)|2SNM (ρ(x)),

p0 =
∫ ∞

0
dx|f (x)|2pNM

0 (ρ(x)), (18)

K0 =
∫ ∞

0
dx|f (x)|2KNM

0 (ρ(x)).

We will see that the quantities on the left-hand side of Eq. (18)
(i.e., symmetry energy S0, neutron pressure p0 and the curva-
ture K0) are surface weighted average of the corresponding
nuclear matter quantities SNM , pNM

0 , and KNM
0 with local

density density ρ (x) on the right-hand side. The region within
xmin � x � xmax (see Fig. 3 displaying the weight function) is
taken for the integration. More details can found in Sec. III.
The calculated densities from the NL3∗ and the DD-ME1 are
used for estimate the weight function |f (x)|2 in Eq. (17) for
each nucleus and used for the calculations in Eq. (18). The
spin-independent proton and neutron mean-field densities are
given by

ρ(R) = ρ(r⊥,z), (19)

where r⊥ and z are the cylindrical coordinates of the radial
vector R. The single particle densities are

ρi(R) = ρi(r⊥,z) = |φ+
i (r⊥,z)|2 + |φ−

i (r⊥,z)|2, (20)

where φ±
i is the wave function, expanded into the eigenfunc-

tions of an axially symmetric deformed harmonic oscillator
potential in cylindrical co-ordinates. The normalization of the
densities is given by ∫

ρ(R)dR = X, (21)

where X = N,Z for neutron and proton number, respectively.
Further, the multipole decomposition of the density can be
written in terms of even values of the multipole index λ as

ρ(r⊥,z) =
∑

λ

ρi(R)Pλ(cos θ ). (22)

Here, we have used the monopole term of the density distribu-
tion in the expansion Eq. (22) for the calculation of the weight
function |f (x)|2 for simplicity. For a deformed nucleus, the
peak of |f (x)|2 does indeed depend on the angle. However,
the density also depends on the angle in such a manner that
the density at the peak of |f (x)|2 is almost constant. The
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TABLE II. The binding energy (BE), charge radius rch, and the quadrupole deformation parameter β2 for the ground states of the 72–86Fe,
74–88Ni, and 76–90Zn nuclei from the nonlinear NL3∗ and the density dependent DD-ME1 calculations compare with the experimental data
[117–119], wherever available. The asterisk (*) marks in the binding energies of the experimental data are for extrapolated values.

Nucleus Binding energy Charge radius Quadrupole deformation

NL3∗ DD-ME1 Expt. [117] NL3∗ DD-ME1 Expt. [118] NL3∗ DD-ME1 Expt. [119]

70Fe 580.68 580.59 577.43∗ 3.875 3.879 −− 0.179 0.190 −−
72Fe 588.89 588.68 589.10∗ 3.898 3.899 −− 0.207 0.214 −−
74Fe 594.98 594.78 −− 3.912 3.909 −− 0.198 0.188 −−
76Fe 600.61 600.58 −− 3.938 3.935 −− 0.004 0.002 −−
78Fe 602.99 603.65 −− 3.956 3.950 −− 0.261 0.254 −−
80Fe 605.64 606.70 −− 3.958 3.966 −− 0.211 0.248 −−
82Fe 608.40 609.21 −− 3.978 3.979 −− 0.223 0.225 −−
84Fe 609.37 611.02 −− 3.994 3.992 −− 0.202 0.188 −−
86Fe 610.40 612.64 −− 4.006 3.995 −− 0.174 0.124 −−
72Ni 611.78 612.34 613.15 3.901 3.892 −− 0.042 0.014 −−
74Ni 621.94 622.31 623.74∗ 3.923 3.908 −− 0.099 0.096 0.21∗
76Ni 630.95 631.52 633.16∗ 3.929 3.923 −− 0.009 0.006 −−
78Ni 635.85 635.96 641.94∗ 3.945 3.935 −− 0.001 0.002 −−
80Ni 643.51 643.61 −− 3.958 3.954 −− 0.008 0.011 −−
82Ni 646.72 645.74 −− 3.974 3.967 −− 0.091 0.096 −−
84Ni 649.67 650.64 −− 3.990 3.982 −− 0.085 0.059 −−
86Ni 652.52 653.84 −− 3.995 3.994 −− 0.067 0.035 −−
88Ni 655.08 656.76 −− 4.007 4.010 −− 0.034 0.005 −−
74Zn 637.64 637.27 639.51 3.985 3.981 −− 0.161 0.185 −−
76Zn 650.78 650.51 652.08 4.001 3.997 −− 0.182 0.201 −−
78Zn 661.39 661.01 663.44 4.008 4.006 −− 0.150 0.164 −−
80Zn 670.90 670.99 674.08 4.009 4.010 −− 0.001 0.002 −−
82Zn 677.13 677.08 680.84∗ 4.039 4.042 −− 0.151 0.186 −−
84Zn 682.51 682.59 −− 4.069 4.069 −− 0.202 0.216 −−
86Zn 687.54 687.68 −− 4.096 4.095 −− 0.230 0.238 −−
88Zn 691.09 691.76 −− 4.119 4.117 −− 0.228 0.227 −−
90Zn 694.32 695.42 −− 4.136 4.136 −− 0.213 0.206 −−

effect of the multipole component in the expansion can thus be
neglected. We can define the neutron skin thickness �R using
the root-mean-square (rms) radii of neutrons and protons as

�R = 〈
r2
n

〉 − 〈
r2
p

〉
. (23)

The quantities defined above in Eq. (23) are used in the present
study.

III. CALCULATIONS AND RESULTS

In the relativistic mean field model, the field equations
are solved self-consistently by taking different inputs for the
initial deformation β0 [77,79,90,93,97,99,106]. To verify the
convergence of the ground state solutions for this mass region,
we performed calculations for the number of major boson
shells NB = 16 and varied the number of major fermion
shells NF from 10 to 20. From the results obtained, we have
confirmed that the relative variations of these solutions are
�0.004% for the binding energy and 0.001% for the nuclear
radii over the range of major fermion shells. Hence, the
desired number of major shells for fermions and bosons were
fixed at NF = 16 and NB = 16. The number of mesh points
for Gauss-Hermite and Gauss-Laguerre integration used are
20 and 24, respectively. For a given nucleus, the solution

corresponding to the maximum binding energy is treated as the
ground state and other solutions are considered excited states
of the nucleus. We have used the nonlinear NL3∗ [97] and
density-dependent DD-ME1 [90] interactions for the present
analysis. These interaction parameters are widely used and are
able to provide a reasonable good description of the properties
of nuclei from light to superheavy, from the proton to the
neutron drip line [42,79,80,97]. The calculations furnish the
ground state bulk properties such as binding energy, rms charge
radius, nuclear quadrupole deformation β2, nuclear density
distribution ρ(r⊥,z), and the single particle energy.

The results obtained from both sets of interaction parame-
ters along with the experimental data [117–119] are listed in
Tables II and III. From the tables, one notices that the results of
our calculations agree quite well with the experimental data for
binding energy and root-mean-square charge radius, wherever
available. In both the NL3∗ and DD-ME1 results, we find
deformed prolate solutions in the ground state configuration
for entire isotopic chains except the mass region near N = 50.
In other words, the deformed prolate configuration follows a
spherical solution at N = 50 and again becomes deformed
with increasing neutron number for the Fe, Zn, Ge, Se, and
Kr nuclei. In the case of the isotopic chain of Ni, we found
almost spherical solutions for the entire isotopic chain, which
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TABLE III. The binding energy (BE), charge radius rch, and the quadrupole deformation parameter β2 for the ground states of the 78–92Ge,
80–94Se, and 82–96Kr nuclei for the nonlinear NL3∗ and the density dependent DD-ME1 calculations compare with the experimental data
[117–119], wherever available. The asterisk (*) marks in the binding energies of the experimental data are for extrapolated values.

Nucleus Binding energy Charge radius Quadrupole deformation

NL3∗ DD-ME1 Expt. [117] NL3∗ DD-ME1 Expt. [118] NL3∗ DD-ME1 Expt. [119]

76Ge 658.59 657.85 661.59 4.052 4.050 4.0811 0.171 0.179 −−
78Ge 674.41 673.71 676.38 4.064 4.061 −− 0.181 0.189 0.2623
80Ge 688.05 687.64 690.18 4.071 4.066 −− 0.158 0.164 −−
82Ge 699.53 699.56 702.43 4.068 4.068 −− 0.001 0.012 −−
84Ge 707.17 706.87 711.22∗ 4.099 4.101 −− 0.153 0.181 −−
86Ge 714.42 714.24 −− 4.131 4.132 −− 0.207 0.216 −−
88Ge 721.25 721.22 −− 4.160 4.161 −− 0.235 0.244 −−
90Ge 726.52 726.92 −− 4.184 4.185 −− 0.235 0.236 −−
92Ge 731.42 732.04 −− 4.206 4.208 −− 0.225 0.224 −−
78Se 676.63 675.80 679.98 4.113 4.110 4.1406 0.162 0.181 0.2712
80Se 694.77 693.95 696.86 4.122 4.119 4.1400 0.173 0.185 0.2318
82Se 710.82 710.33 712.84 4.128 4.126 4.1400 0.154 0.170 0.1934
84Se 725.73 725.51 727.34 4.123 4.117 −− 0.001 0.001 −−
86Se 733.52 733.21 738.07 4.141 4.151 −− 0.032 0.045 −−
88Se 743.26 742.34 747.55 4.185 4.187 −− 0.202 0.215 −−
90Se 751.63 751.42 755.73∗ 4.216 4.214 −− 0.237 0.247 −−
92Se 758.96 759.01 762.58∗ 4.241 4.240 −− 0.239 0.243 −−
94Se 765.53 765.85 768.92∗ 4.266 4.266 −− 0.232 0.236 −−
80Kr 691.74 691.08 695.43 4.164 4.158 4.1970 0.095 0.097 0.2650
82Kr 711.77 710.96 714.27 4.171 4.167 4.1919 0.124 0.126 0.2021
84Kr 730.13 729.56 732.25 4.171 4.171 4.1884 0.078 0.097 0.1489
86Kr 747.73 747.56 749.23 4.174 4.170 4.1835 0.001 0.001 −−
88Kr 757.48 756.93 761.80 4.192 4.195 4.2171 0.027 0.105 −−
90Kr 767.61 767.18 773.22 4.227 4.228 4.2423 0.158 0.173 −−
92Kr 777.57 777.49 783.18 4.261 4.269 4.2724 0.210 0.236 −−
94Kr 786.29 786.47 791.67∗ 4.286 4.289 4.3002 0.218 0.222 −−
96Kr 794.34 794.75 799.68∗ 4.307 4.311 4.3267 0.206 0.208 −−

do not appear in case of other nuclei (see Tables II and
III). The experimental data for the deformations are slightly
underestimated by the calculations for both sets of interaction
parameters.

A. The neutron separation energy

The two neutron separation energy S2n (Z,N ) can be
estimated from the ground state nuclear masses BE (Z,N ) and
BE (Z,N − 2) and the neutron mass mn by the relation

S2n(Z,N ) = −BE(Z,N ) + BE(Z,N − 2) + 2mn. (24)

The BE of the AZ and A−2Z nuclei are calculated using the
nonlinear NL3∗ and the density-dependent DD-ME1 interac-
tion parameters. Here, we have used the experimental data
[117] to obtain the experimental values of the S2n energy
for comparison with our calculated results. From Tables II
and III, one observes that the calculated binding energies are
reasonably good agreement with the available experimental
data, which shows the predictive power of the calculations
for the correct evolution of shell structures. The estimated
S2n results along with the experimental values (wherever
available) are shown in the upper panel of Fig. 1 for 70–86Fe,
72–88Ni, 74–90Zn, 76–92Ge, 78–94Se, and 80–96Kr isotopes. The

two-neutron separation energy S2n, as a function of the neutron
number in an isotopic chain, decreases smoothly as the number
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FIG. 1. The two neutron separation energies S2n (upper panel) and
the differential variation of the separation energy dS2n (lower panel)
from the NL3∗ and the DD-ME1 interactions are given for Fe, Ni, Zn,
Ge, Se, and Kr isotopic chains. The experimental data [117] are given
for comparison, wherever available. See text for details.
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of neutron increases. Sharp discontinuities (kinks) appear at the
neutron spherical closure magic number N = 50. In terms of
energy, the energy necessary to remove two neutrons from a
nucleus (Z,Nmagic + 2) is much smaller than that to remove
two neutrons from the nucleus (Z,Nmagic), which breaks the
regular trend. From Fig. 1 (upper panel), one can observe that
the calculated results are in agree with the experimental data
and also follow the expected trend along the isotopic chains.

To better explore the dependence of S2n with respect to neu-
tron number, the differential variation of the S2n [dS2n(N,Z)]
is defined as

dS2n(Z,N ) = S2n(Z,N + 2) − S2n(Z,N )

2
. (25)

In Fig. 1 (upper panel), we observe that the curves for isotopic
chains for different atomic number shows roughly the similar
trends. From these general characteristics of the S2n curves
we expect that the derivative, dS2n, should have a sharp fall
in the negative direction for magic or/and semimagic neutron
number in an isotopic chain. In other words, the magnitude of
the sharp drop, at magic neutron numbers shows the strength
of the shell structure for that specific neutron number in the
isotopic chain. Here, we found similar characteristics for the
Fe, Ni, Zn, Ge, Se, and Kr nuclei (see the lower panel of Fig. 1).
The experimental values [117] are also given for comparison.
Further, the depth of dS2n at magic neutron number increases
along the isotonic chain. The fall in dS2n at N = 50 for the
isotopic chain discloses additional nuclear structure features.

B. The nuclear density and weight function

Once we have the density in hand, we estimate the nu-
clear matter observables using these densities in the frame-
work of the coherent density functional method (CDFM)
[63,64,67,70,71], which involves the following steps: (i) we
generate the weight function |f (x)|2 for each nucleus using the
density distribution obtained from the RMF (NL3∗ and DD-
ME1), as defined in Eq. (17) [63,64,67,70,71], (ii) then we use
this weight function along with the nuclear matter observables
to calculate the effective symmetry energy properties in finite
nuclei [63,64,67,70,71]. We compare our calculated results
with other theoretical predictions and examine the influences
of these observables on the prediction of shell closures in
each isotopic chain and the constraints they place on nuclear
matter observables. In Fig. 2, we have plotted the total density
distribution (sum of the proton ρp and the neutron ρn density)
for 76Fe and 86Kr obtained from the NL3∗ and DD-ME1
interaction parameters as a representative case. One finds
similar characteristics of the density for all nuclei considered
in the present study. Further, a careful inspection shows a
small enhancement in the surface region with an increase in
proton number. In other words, the total density is extended
towards the tail region in an isotonic chain and this ostensible
distinction plays a significant role in the effective nuclear
matter quantities.

The weight functions [in Eq. (17)] is interlinked with the nu-
clear matter observables, such as the symmetry energy, the neu-
tron pressure and their related observables [63,64,67,70,71].
Following the CDFM approach, we briefly discuss the weight
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FIG. 2. The microscopic relativistic mean field with nonlinear
NL3∗ and Dirac-Hartree-Bogoliubov with DD-ME1 total density
distribution for 76Fe and 86Kr isotopes. See text for details.

function |f (x)|2,i.e., in Eq. (17), which is directly associated
with the density distribution of the finite nucleus. We have
estimated the weight function of each nucleus using its total
density (ρp + ρn) distribution obtained from the relativistic
mean field model. Here, we have given the |f (x)|2 for 76Fe and
86Kr nuclei as representative cases, which are shown in Fig. 3.
The weight function is the crucial quantity for describing the
surface properties of the finite nucleus in terms of effective
nuclear matter quantities. One can see from the figure, the
weight function has a peak near the surface of the nuclear
density density distribution. In other words, one finds a peak
in the weight function ≈5 fm, which is due to contributions
from the surface region of the nuclear density. For a better
comprehension of this fact, one should compare the plots of
the density distribution to those of the weight factor, i.e., see
Figs. 2 and 3.
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FIG. 3. The weight function |f (x)|2 calculated for 76Fe and 86Kr
isotopes by using the self-consistent NL3∗ and DD-ME1 total density
distributions of these nuclei. The arrows stand for the minimum and
maximum values of the integration limit taken in the subsequent
calculations. See text for details.
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FIG. 4. The symmetry energy S0 for 70–86Fe, 72–88Ni, 74–90Zn,
76–92Ge, 78–94Se, and 80–96Kr isotopes as a function of the neutron
skin thickness �R as calculated using the RMF NL3∗ (solid line)
and DD-ME1 (dashed line) interactions. The Skyrme-Hartree-Fock
+ BCS results for the LNS interaction [64,67] (dotted line) are given
for comparison, where available. See the text for details.

As we mentioned above, the objective of the present
investigation is to study correlations between the neutron-skin
thickness and effective nuclear matter properties such as the
symmetry energy, neutron pressure (proportional to the slope
of the bulk symmetry energy), and curvature in a given isotopic
chain. Following Eq. (18), we first introduce the value of xmin

at which the symmetry energy for nuclear matter SNM (x)
changes sign from negative to positive at xmin � x � xmax

(see Fig. 3). In other words, the SNM < 0 for the values of
x � xmin and x � xmax in Eq. (18). Considering the basic
principle of the CDFM, the domain of x should run from 0
to ∞, which incorporates the region of densities ρ0 (x) from
∞ to 0, as well. At a point where the value of x is very small,
in practice the estimate provides the values of density ρ0 (x)
that are much larger than the saturation density. To avoid such
a nonphysical situation, i.e., a negative value of the symmetry
energy, we include the value of x � xmin for the lower limit
and simultaneously exclude x � xmax from the upper limit of
the integration in Eq. (18). The estimated values of xmin and
xmax of the integration are shown in Fig. 3.

C. The symmetry energy

The RMF calculations furnish principally nuclear structure
properties, such as the quadrupole moment Q20, nucleon
density distribution ρ(r⊥,z) = ρp(r⊥,z) + ρn(r⊥,z), and the
root-mean-square nuclear radii. We estimate the neutron skin
thickness �R of nuclei in a given isotopic chain using the neu-
tron and proton radii obtained from the relativistic mean field
with the non-linear NL3∗ and density-dependent DD-ME1
interaction parameters. The symmetry energy S0 for a given
nucleus is calculated within the CDFM through the weight
function |f (x)|2 (obtained from the self-consistent density
distribution) using Eq. (18). We show the symmetry energy S0

as a function of neutron skin thickness in Fig. 4 for the 70–86Fe,
72–88Ni, 74–90Zn, 76–92Ge, 78–94Se, and 80–96Kr nuclei using the
NL3∗ (solid line) and DD-ME1 (dashed line) interactions. The
results obtained from a Skyrme-Hartree-Fock (SHF) + BCS
with LNS interaction are also given for comparison, where

27
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FIG. 5. The symmetry energy S0 and the quadrupole deformation
β2 for 70–86Fe, 72–88Ni, 74–90Zn, 76–92Ge, 78–94Se, and 80–96Kr isotopes
as a function of neutron number N are given in the upper and lower
panels, respectively. The calculated results from RMF NL3∗ (solid
line) and DD-ME1 (dashed line) interactions are compared with the
Skyrme-Hartree-Fock + BCS results for the LNS interaction [64,67]
(dotted line) where available. See the text for details.

available. From the figure, we observe a smooth growth ofS0 up
to the neutron number (N = 50) and then a linear decrease of
S0, where the neutron-skin thickness of the isotopes increases.
The SHF displays a similar behavior of the symmetry energy
with respect to the skin thickness. Careful inspection shows
that the neutron skin thicknesses obtained from the RMF
(NL3∗ and DD-ME1) are slightly larger when compared to
those of the LNS interaction parameter. Further, the values of
the S0 for the relativistic interactions are slightly larger than
the nonrelativistic LNS predictions, which can reflect on the
nuclear matter characteristics [94,96].

The results exhibited in Fig. 4 are shown from an additional
point of view in Fig. 5. In the upper and the lower panels
of Fig. 5, we give the evolution of the symmetry energy and
the quadrupole deformation β0 as a function of the mass
number, respectively. From the figure, we observe a similar
peak of the symmetry energy at N = 50 for all the isotopic
chains (see the upper panel of Fig. 5). One sees in Figs. 4
and 5 that S0 varies by about 29.0 ± 1.0 MeV in the interval
for the NL3∗ and DD-ME1 interaction parameters. The LNS
interaction yields a values of S0 smaller by ≈1 unit than
the corresponding values of the relativistic interactions. The
evolution of the symmetry energy is related to the development
of the quadrupole moment as a function of the mass number,
as displayed in the lower panel of Fig. 5. From the trajectory
of the quadrupole deformation parameter β2 as a function
of mass number, one can see that the semi-magic isotopes
corresponding to the neutron number N = 50 are spherical for
both the NL3∗ and DD-ME1 interactions, while the open-shell
isotopes within these isotopic chains have a prolate ground
state configuration. Following Fig. 5, one can clearly see that
the peak of the symmetry energy occurs for the closed shell
nuclei that are spherical in shape. The open-shell nuclei display
a slight decrease of the symmetry energy along the deformed
shell. This represent a possible direction for further systematic
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FIG. 6. The neutron pressure p0 and the curvature K0 for 70–86Fe,
72–88Ni, 74–90Zn, 76–92Ge, 78–94Se, and 80–96Kr isotopes as a function of
neutron skin thickness �R using the nonlinear NL3∗ (solid line) and
density-dependent DD-ME1 (dashed line) interactions are displayed
in the upper and lower panels, respectively. The Skyrme-Hartree-Fock
results for the LNS interaction [64,67] (dotted line) are given for
comparison, where available. See text for details.

investigation of the isospin dependence of the nuclear equation
of state.

D. Neutron pressure and curvature

Next, we illustrate a possible correlation of the neutron skin
thickness �R with the neutron pressure p0 and the curvature
K0, in Fig. 6. In Fig. 7, we plot the trajectory of p0 and K0

with neutron number for the Fe, Ni, Zn, Ge, Se, and Kr nuclei.
The calculated results from the RMF NL3∗ (solid line) and
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FIG. 7. The neutron pressure P0 and the curvature K0 for 70–86Fe,
72–88Ni, 74–90Zn, 76–92Ge, 78–94Se, and 80–96Kr isotopes as a function of
mass number for the nonlinear NL3∗ and density-dependent DD-ME1
interactions are given in the upper and lower panels, respectively. The
Skyrme-Hartree-Fock results for the LNS interaction [64,67] (dotted
line) are also given for comparison, where available. See the text for
details.

DD-ME1 (dashed line) interactions are given with the results
of the nonrelativistic Skyrme-Hartree-Fock (LNS) interaction
(dotted line) [64,67] for comparison, where available. From
the figure it is clearly seen that the neutron skin thickness of
the isotopes correlates almost linearly below and above the
minimum with p0 and K0, as does S0. Similar to the symmetry
energy, here we also find a peak in the neutron pressure p0 and a
minimum in the curvature K0 for semimagic nuclei at N = 50
for both interactions. Further, a slightly distorted transition
is found in the linear correlation as compared to that of the
symmetry energy curve. The small difference in the linear
behavior indicates that the stability pattern is not as regular
for the isotopic chain. As we have mentioned above, the peak
follows a valley for a transition from a closed shell to an open
shell nuclei. Here we have also found the same variation in
the neutron pressure and curvature in the isotopic chains. It is
worth mentioning that the decrease in S0, p0, and K0 in the
case of open-shell nuclei is due to the different occupancies of
the single particle levels. Hence, we see that in general peaks
are produced at shell closures. However, analysis of the precise
dependence of the various peaks on the occupation number of
specific shells will require further work. The results obtained
from the nonlinear NL3∗ and density-dependent DD-ME1
interactions for p0 and K0 show a similar trend to that of the
LNS force. More careful inspection shows that the results for
p0 and K0 from our calculations are slightly smaller values
than those of the LNS predictions. As we know, the magicity
and/or shell closure (s) in an isotopic and/or isotonic chain
are universal properties as far as the model used. Here, we
get similar trends for nonlinear NL3∗ and density-dependent
DD-ME1 interactions, which also qualitatively agree with the
nonrelativistic NLS predictions. Hence, we can conclude, the
results obtained in the present calculations are fairly model
independent.

IV. SUMMARY AND CONCLUSIONS

In the present study, we have investigated possible relation-
ships between the neutron skin thickness of neutron-rich nuclei
and nuclear matter characteristics. A microscopic approach
based on an axial deformed relativistic mean field with the
nonlinear NL3∗ and density-dependent DD-ME1 interaction
parameters has been used. Effective nuclear matter properties
such as the symmetry energy S0, the neutron pressure p0, and
the nuclear curvature parameter K0 have been determined for
finite nuclei. The coherent density functional method was used
to provide a transparent and analytic manner of calculating
the effective infinite nuclear matter quantities by means of
a weight function. In the first step, we have obtained the
ground state nuclear bulk properties such as the binding en-
ergies, quadrupole deformations, nuclear density distributions
using the self-consistent microscopic RMF with the NL3∗
and DD-ME1 interactions. We have considered the even-even
isotopic chains of Fe, Ni, Zn, Ge, Se, and Kr nuclei in the
present analysis. The two neutron separation energies and
the differential variation of the separation energies are also
estimated from the microscopic binding energy for both the
sets interaction parameters. From the separation energies, we
found shell closures at N = 50 for all the isotopic chains
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considered for both interactions. The neutron skin thickness
and the weight function for each nucleus were estimated using
the root-mean-square radius and the total density distribution,
respectively.

In the second step, we have calculated effective infinite
nuclear matter characteristics such as symmetry energy S0,
neutron pressure p0 and curvature K0 for the finite nuclei.
For all of the isotopic chains, we found that there exists a
strong correlation between the neutron skin thickness and the
symmetry energy. We found a peak in S0 in an isotopic chain,
which corresponds to the semimagic isotopes at N = 50 and
a spherical solution. An inflection-point transition appears
for deformed nuclei at the spherical shell closures for the
semimagic isotopes at N = 50 in the isotopic chain. In addition
to these, a similar correlation between �R versus p0 and �R
versus K0 has also been observed in the isotopic chains for both
the NL3∗ and DD-ME1 sets of interaction parameters. The ef-
fect of the relative neutron-proton asymmetry on the evolution

of the symmetry energy has been pointed out for these isotopes
in the range 44 � N � 60. We observe that the microscopic
theoretical approach used is capable of predicting additional
nuclear matter quantities in neutron-rich exotic nuclei and
their connection to the surface properties of these nuclei. New
exploratory results on giant resonances and the neutron skin
in heavy nuclei and heavy-ion collisions could lead to new
constraints on the nuclear symmetry energy, permitting an
increased understanding of the physical quantities of nuclear
systems.
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