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Rotational bands in the quadrupole-octupole collective model
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A collective band of positive as well as negative parity could be composed of vibrational and rotational
motions. The octupole vibrational configurations can be based either on axial or nonaxial octupole excitations. A
consistent approach to the quadrupole-octupole collective vibrations coupled with the rotational motion enables
us to distinguish between various scenarios of disappearance of the E2 transitions in negative-parity bands
observed in several nuclei. The theoretical estimates presented here are compared with the very recent experimental
energies and transition probabilities in and between the ground-state and low-energy negative-parity bands in
156Dy. A realistic collective Hamiltonian contains the potential-energy term obtained through the macroscopic-
microscopic Strutinsky-like method with a particle-number-projected BCS approach and a deformation-dependent
mass tensor. The potential energy and the inertia parameters are defined in the vibrational-rotational, nine-
dimensional collective space of the multipole-deformation parameters and Euler angles. The symmetrization
procedure applied to the eigenstates of the collective Hamiltonian ensures their uniqueness with respect to the
laboratory coordinate system. This quadrupole-octupole collective approach may also allow us to find and/or
verify some fingerprints of possible high-rank symmetries (e.g., tetrahedral, octahedral, ...) in nuclear collective
bands.

DOI: 10.1103/PhysRevC.97.024321

I. INTRODUCTION

The idea of looking for the experimental evidence of the
high-rank symmetries in atomic nuclei has been triggered
by a series of theoretical articles (see, e.g., Refs. [1–5]),
where existence of the nonaxial octupole stable configurations
have been connected with negative-parity bands. The octupole
deformation of the nucleus was confirmed experimentally by
studies of experimental observables such as rotational spectra
of quadrupole or octupole deformed nuclei [6,7], the transition
probabilities, magnetic moments and some properties of K
isomers [8,9]. Recently, the investigation of negative-parity,
odd-spin states in 156Dy has been repeated with the high-
resolving power of the Gammasphere array [10].

The most expected evidence of the nonaxial octupole defor-
mation of rotating nucleus would be the disappearance of the
E2 transitions between the lowest states in the negative-parity
band. The E2 transitions are measured in “band 2” (odd spin)
and “band 4” (even spin) of Ref. [10] for 156Dy. In band 2, the
E2 transitions are measured starting from the state 27− down
to 7−. Reference [10] presents also two other negative-parity
bands exhibiting the rotational structure (“band 5” and “band
6”), starting from spin 7− up, but they have been measured in
older experiments, where only the energy spectra have been
accessible. Since for these two bands there are neither the
values of the reduced transition probabilities nor any branching

*arturd@kft.umcs.lublin.pl
†katarzyna.mazurek@ifj.edu.pl
‡andrzej.gozdz@umcs.lublin.pl

ratios, we are not able to reliably judge their intrinsic structure
in the current study. Thus the main attention will be focused
on bands 2 and 4.

Since in our previous work of Ref. [11] the ground-state
and the negative-parity odd-spin bands for 156Gd nucleus was
discussed in the collective quadrupole-octupole model in the
low-spin regime (0 < J < 5), we now want to extend the
study to somewhat higher spins. Our approach describes the
rotational-vibrational character of the spectra but it does not
take into account any microscopic properties, e.g., particle-
hole excitations. We hope that we will also be able to, at least,
partly answer the question posed by the authors of Ref. [10]
in Sec. IV B concerning the band 2 and/or band 4: octupole
vibrations or tetrahedral symmetry?

Nuclear vibrations have been discussed by several authors
in Refs. [12,13] by using the Bohr–Hamiltonian model [14,15]
or by the interacting boson model (IBM) [16] or the analytic
collective model (AQOA) [17]. Also the new approach based
on the cluster Hamiltonian is shown in Ref. [18]. All these
approaches are aimed at searching for stable nuclear config-
urations and the strengths of the electromagnetic transitions
between collective states, where quadrupole and octupole
deformation parameters play the role of dynamical collective
variables.

The collective Hamiltonian used in the present investi-
gation contains the collective potential obtained within the
macroscopic-microscopic calculations using the Strutinsky
method with the Woods–Saxon mean field [3,19]. The mass
tensors and moments of inertia in the kinematic part are
given by the cranking approximation [20]. The vibrational-
rotational Hamiltonian is constructed in the intrinsic frame by
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applying the so-called adiabatic approximation. The spherical
harmonics parametrization of the nuclear deformation allow us
to control the geometrical properties of the nuclear surface and
apply the symmetrization procedure. The deformation space is
limited to the “induced” dipole (λ = 1), quadrupole (λ = 2),
and octupole (λ = 3) multipole deformation parameters.

The collective Hamiltonian is diagonalized in the space of
the symmetrized basis functions. In a final step, for a selected
Hamiltonian, eigenstates identified as the members of band 2,
band 4, and ground-state bands, the reduced probabilities of
electric interband dipole and intraband quadrupole transitions
are calculated. More details of this approach are presented in
Ref. [11]. The accompanying problem of the center-of-mass
shift has also been discussed in Ref. [21]. We want to stress that,
in fact, in the calculations we generate negative-parity one-
phonon-model bands based on all four α3ν octupole excitations
with even and odd spins up to J = 9. Next, the energetic
and reduced-transition properties of all these model bands are
confronted with either experimental band 2 or band 4 to choose
the most suitable theoretical candidates. As a matter of fact, the
reduced-transition properties of all proposed odd-spin bands
do not differ from each other as dramatically as in the case of
even-spin model bands. For the even-spin sequence of band
4 we have found only the one theoretical candidate, having
B(E2)/B(E1) ≈ 20 (experimentally around 150), where the
interband B(E2) values are expressed in hundreds Weisskopf
units. For the remaining even-spin theoretical sequences with
B(E2) values given in tens of W.u. and many order-of-
magnitude-lower B(E1) values, these ratios are 2–8 orders
of magnitude higher; thus we give up to display them here.

An interesting outcome of this study is the fact that each
state belonging to a given vibrational-rotational band; in
particular band 2 and band 4, contains the superposition of the
rotational contributions with different K quantum numbers in
uncorrelated percentage. As usually, K stands for the projec-
tion of the angular momentum on the chosen quantization axis
of the intrinsic reference system.

The paper is organized as follows: Section II gives the de-
tails of the collective quadrupole-octupole model and the prob-
lem of uniqueness of intrinsic vibrational-rotational Hamil-
tonian eigensolutions in the laboratory frame. Section III is
devoted to the properties of the negative-parity model bands.
The theoretical transition energies and branching ratios are
compared with experimental data. The article is closed with
the summary.

II. COLLECTIVE QUADRUPOLE-OCTUPOLE MODEL

The vibrational-rotational collective bands of positive or
negative parity can be modeled with the use of either even
or odd-multipolarity αλμ deformations, where λ = 1, 2, 3, . . .
and μ = −λ, − λ + 1, . . . , + λ. In the following applica-
tions these deformation parameters become the dynamical col-
lective variables describing surface vibrations in the intrinsic
frame. The variables αλμ are also the spherical components
of the irreducible tensor with respect to the SO(3) group, so
their properties are well defined with regard to the group theory
formalism.

The nuclear surface is expanded in the body-fixed reference
frame in terms of the orthogonal basis set of the spherical
harmonics {Yλμ}. As shown in Ref. [11], the dipole α10 and
α1±1 variables are determined from the condition that the center
of mass of the nuclear body is fixed in the beginning of the
coordinate system.

The space spanned by two quadrupole variables, α20,
α22 = α2-2 with the conditions α21 = α2-1 = 0 defines the
body-fixed frame and Euler angles of the discussed model.
Therefore, this set together with the full octupole {α3ν},ν =
0,±1,±2,±3 complex tensor and three Euler angles � form
the twelve-dimensional collective space. However, fixed in
this way, the intrinsic frame is not the principal-axis frame
of the quadrupole-octupole body but it permits us to use the
traditional picture of the collective quadrupole motion, where,
at least, the quadrupole Q2μ tensor is diagonal, extended by the
presence of independent octupole vibrations. The calculation
of the matrix elements of the collective Hamiltonian and/or any
physical observables with a satisfactory accuracy is a serious
task in a so-defined multidimensional space.

A further limitation of the {α3ν} values to real numbers im-
plies that α3μ and α3-μ become mutually dependent. Obtained
in such a way, the reduction of the collective-space dimension-
ality to nine dimensions (including Euler angles) allows now
for an efficient determination of the time-consuming multi-
dimensional integrals and, consequently, an investigation of
contributions from individual collective modes. The use of the
so-called adiabatic approximation allows the vibrational and
rotational matrix elements of the Hamiltonian to be calculated
separately. Moreover, the rotational matrix elements depending
only on the Euler angles may be calculated analytically.

Actually, the independent vibrational collective variables
of the present approach are (α20,α22,{Re(α3ν)}) with ν be-
ing index running over non-negative integers only, i.e., ν =
0,1,2,3, describing the axial and nonaxial quadrupole vibra-
tional modes and four real octupole modes, respectively. With
the above, the nuclear surface as function of (ϑ,ϕ) angles can
be expressed in the body-fixed frame as

R(ϑ,ϕ) = R0c(α)

⎧⎨
⎩1 + α10Y10(ϑ,ϕ) + α20Y20(ϑ,ϕ)

+ 2α11Re[Y11(ϑ,ϕ)] + 2α22Re[Y22(ϑ,ϕ)]

+ α30Y30(ϑ,ϕ) + 2
3∑

μ=1

α3μRe[Y3μ(ϑ,ϕ)]

⎫⎬
⎭, (1)

where the function c(α) ensures the volume conservation of
the deformed body.

The angles (ϑ,ϕ) measured with respect to the intrinsic
frame parametrize the points on the nuclear surface. These
angles do not belong to the set of the collective variables. The
orientation of the nuclear surface with respect to the laboratory
frame is described by the Euler angles� = (�1,�2,�3), which
are treated here as collective degrees of freedom in the intrinsic
frame.

The problem of the center-of-mass shift as a result of the
presence of the mass asymmetry in octupole-deformed nuclei
is widely discussed in Refs. [11,21].
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For fixed values of the quadrupole deformations (α20,α22),
the conditions Im(α3μ) = 0 imposed on the intrinsic α3μ tensor
mean that a single octupole shape can be obtained with
more than one set (α30,α31,α32,α33). Generated in this way,
shapes have, however, different orientations with respect to the
axes of the laboratory frame. To avoid the nonuniquenesses
of the wave functions in the laboratory frame caused by
the above limitations on the collective space along with the
conditions to define the intrinsic frame, one has to introduce
the symmetrization procedure.

Briefly, each physical state which describes the system in the
laboratory frame should necessarily be invariant with respect
to the so-called symmetrization group Ḡs , acting within the
intrinsic frame. Such a group should always be determined
individually, depending on the set of αλμ variables involved in
the model. For present octupole variables, the symmetrization
group is Ḡs = D̄4y and it is lower than the octahedral group
in a pure quadrupole Bohr–Hamiltonian model. Its elements
(rotations) ḡ are (I , C2x , C2y , C2z, C4y , C−1

4y , C2c, C2d ), where
Cni (for i = {x,y,z}) denote the rotations about 2π/n angle
around the ith axis, including some skew to the OX, OY , and
OZ axes. Finally, for all ḡ ∈ Ḡs , the symmetrization condition
applied to any collective state 	(α,�) reads

ḡ	(α,�) = 	(α,�). (2)

The relation (2) ensures the uniqueness of the Hamiltonian
eigensolutions in the laboratory frame. In the context of the
Hamiltonian-symmetry problem, the symmetrization group Ḡs

can be treated as its minimal symmetry group. This implies
that both the kinetic and potential components of the full
Hamiltonian exploited in this study have to be, at least, Ḡs

invariant.

A. Collective Hamiltonian

Habitually, a consistent vibrational-rotational collective ap-
proach is constructed by defining the Hamiltonian with respect
to the laboratory frame, spanned by the laboratory collective
variables. In the next step, this Hamiltonian is transformed
to the body-fixed frame. For the quadrupole collective space
a standard kinetic-energy term obtained with this prescription
results, e.g., with the well-known Bohr–Hamiltonian approach.

In contradiction to the above-outlined scheme, the used
here of the collective vibrational-rotational Hamiltonian is
already written in the intrinsic frame. The already-mentioned
adiabatic approximation is introduced in order to separate
the vibrational and rotational motions. In principle, such
separation is possible due to the difference of typical energy
scales for both of these modes. Furthermore, quadrupole and
octupole vibrational modes are assumed to be totally decoupled
in the kinetic-energy term. As easily deduced, this accelerates
numerical calculations by a factor equal to the number of
mesh points of the quadrupole subspace {α20,α22}, i.e., about
2 × 103.

Therefore, we calculate two independent mass tensors: first
for pure quadrupole motion, where the octupole deformation
corresponds to the potential-energy minimum with all α3ν = 0,
and the second describing pure octupole vibrations performed
around the equilibrium shape.

This simplification leads to a quantized realistic
quadrupole-octupole-vibrational Hamiltonian with
deformation-dependent inertia parameters:

Hcoll(α2,α3,�)

= −h̄2

2

{
1√|B2|

2∑
νν ′=0

∂

∂α2ν

√
|B2|

[
B−1

2

]νν ′ ∂

∂α2ν ′

+ 1√|B3|
3∑

μμ′=0

∂

∂α3μ

√
|B3|

[
B−1

3

]μμ′ ∂

∂α3μ′

⎫⎬
⎭

+ Ĥrot(�) + V̂ (α2,α3), (3)

where α2 and α3 describe the subspaces of the quadrupole
and octupole variables with metrics B2(α2), B3(α3) given in
this approach as the quadrupole and octupole microscopic
mass tensors, respectively. Quantities |B2| = det(B2(α2)) and
|B3| = det(B3(α3)) stand for square roots of the metric-tensor
determinants. Above, � denotes the set of three Euler angles
describing relative orientations of the axes of the intrinsic
versus laboratory frames. The microscopic mass tensors are
determined via the cranking method of Ref. [20]. Its covariant
component, Bλν,λν ′ , for λ = 2 or λ = 3 and indices ν > 0 is
given by the expression

Bλν,λν ′({αλμ}) =
∑
kl

〈φk| ∂Ĥsp

∂αλν
|φl〉〈φl| ∂Ĥsp

∂αλν′ |φk〉
(Ek + El)3 (ukvl + vkul)

2,

(4)

where the double sum runs over the full set of the BCS
quasiparticle (including time-reversed) states, obtained out of
eigensolutions of the mean-field Hamiltonian Ĥsp used the
and chosen pairing model. Quantities vn are the occupation
probability amplitudes of the nth quasiparticle state while un

is given by the normalization relation u2
n = 1 − v2

n. In the
denominator of Eq. (4), Ek and El are the quasiparticle energies
of kth and lth states.

In this work, contrary to nowadays-applied self-consistent
methods, an effective approximation to generate the collective
potential in the six-dimensional space of {α2,α3} variables is
still a widely applied macroscopic-microscopic model. This
model, for a careful choice of the mean-field potential, pairing
interaction, and smooth liquid-drop energy contribution, is able
to produce reliable estimates of the potential-energy surfaces
V̂ (α2ν,α3μ). Within this study we use the Woods–Saxon
potential [22] with the so-called universal parameters [19]
(refitted to the newer data of Ref. [23]) which delivers single-
particle energies and eigenstates for a desired mean-field
deformation. Both of these quantities are “input” quantities
for calculations of quantum shell and pairing energies as well
as mass parameters through Eq. (4).

B. Rotational term

Due to significantly different energy regimes of the vibra-
tional and rotational modes, they are here totally decoupled.
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Hence, the rotational term Ĥrot(�) depends only on the Euler
angles and, parametrically, on the static nuclear deformation,
here corresponding to the equilibrium point. Since, as men-
tioned in Sec. II, the rotational Hamiltonian has to be invariant
with respect to the symmetrization group Ḡs , so we construct
it by using irreducible (spherical) tensors of the SO(3) group,
T̂λμ(n; λ2 = 2,λ3 = 3, . . . ,λn−1 = (n − 1)), as done, e.g., in
Refs. [11,24,25].

The rotor Hamiltonian Ĥrot of given symmetry Ḡs and
multipolarity λ can be defined as the linear combination of T̂
with the condition that n = λ and the constant term T00(n = 2)
as

Ĥrot =
λmax∑
λ=0

λ∑
μ=−λ

cλμT̂λμ + c00T00(n = 2). (5)

The upper limit of multipolarities λmax is, in general, arbitrary.
In this work we limit ourselves to λmax = 2. The tensors
T̂λμ(n; λ2 = 2,λ3 = 3, . . . ,λn−1 = (n − 1)) entering Eq. (5)
are constructed out of the spherical components of the angular-
momentum operators in the following way:

T̂λμ(n; λ2 = 2,λ3 = 3, . . . ,λn−1 = (n − 1))

≡ [((
(Ĵ ⊗ Ĵ )λ2

⊗ Ĵ
)
λ3

⊗ · · · ⊗ Ĵ
)
λn−1

]
λμ

, (6)

where n and λ are respectively the rank and multipolarity
of the resulting tensor, and λk for k = 2,3, . . . ,n − 1 are the
multipolarities of tensors arising in the intermediate coupling
steps. The coupling of angular-momentum spherical tensors
of multipolarity λ = 1 in Eq. (6) is given within the stan-
dard way by using the SO(3) Clebsch–Gordan coefficients
(1,μ; 1,μ′|λ2μ2):

(Ĵ ⊗ Ĵ )λμ =
1∑

μ=−1

1∑
μ′=−1

(1μ1μ′|λμ)Ĵ1μĴ1μ′ . (7)

Let us notice that, constructed in such a way, the rotational
Hamiltonian is coupled solely by the angular-momentum

operators and does not contain explicit derivatives over the
Euler angles. The latter indicates that no Coriolis interaction
is simulated here.

The coupling constants c00, c20, and c22 in Eq. (5) can be
expressed through the moments of inertia as

c00 = − 1√
12

(
1

Ix

+ 1

Iy

+ 1

Iz

)
,

c20 = 1√
6

(
1

Iz

− 1

2Ix

− 1

2Iy

)
, (8)

c22 = 1

4

(
1

Ix

− 1

Iy

)
,

where Ix , Iy , and Iz are the microscopic nuclear moments
of inertia with regard to Ox, Oy, and Oz axes, respectively,
obtained also in the cranking approximation.

If the D̄4y-symmetric rotor Hamiltonian Ĥrot(�) of Eq. (3)
is needed, the quadrupole coupling constants entering Eq. (5)
fulfill the approximate relation c22 ≈ c20/0.8165.

Following the symmetrization idea, the basis in which
the full collective Hamiltonian (3) is diagonalized contains
functions symmetrized with respect to the intrinsic group D̄4y .
Recall that the intrinsic group, by definition, acts in the intrinsic
collective space containing Euler angles.

In numerical calculations it is very convenient to use the
projection-operator formalism which defines the projection
of an initial wave function onto the selected irreducible
representation of the symmetry group. If one chooses, in
particular, the scalar (A1) representation of the symmetrization
Ḡs group, such a procedure is equivalent to the symmetrization
condition (2).

Applying the explicit form of the projection operator P̂ (A1)

on the six-dimensional “shifted” harmonic-oscillator solution
combined with the appropriate Wigner function, one gets the
nth symmetrized basis function as

	
(±)
n;JMκ = P̂ (A1)	k;JMKπ =

√
2J + 1

8

8∑
i=1

un20 (η20, ˆ̄giα20 − α̊20)un22 (
√

2η22, ˆ̄giα22 − α̊22)un30 (η30,± ˆ̄giα30 − α̊30)

× un31 (
√

2η31,± ˆ̄giα31 − α̊31)un32 (
√

2η32,± ˆ̄giα32 − α̊32)un33 (
√

2η33,± ˆ̄giα33 − α̊33)
J∑

K=−J

Dλ
κK (gi)D

J�
MK (�), (9)

where the set of all eight elements ˆ̄gi forms the symmetrization
group. Parameters α̊2ν and α̊3μ describe the position of the
potential-energy-well minimum. Studying potential-energy
maps of Sec. II C, we can conclude in advance that α̊20 =
0.25, α̊22 = 0, and all α̊3μ = 0. Quantities ηλν set down as
the widths of individual functions um(η,α̊; α) are assumed
to be the normalized, one-dimensional m-phonon harmonic-
oscillator solutions. The determination of the η-like parameters
is outlined in Sec. III C.

The basis states of the positive (+) or negative (−)
parity are obtained as the linear combinations of func-

tions (9), 1
2 [	(+)

n;JMκ + 	
(−)
n;JMκ ] and 1

2 [	(+)
n;JMκ − 	

(−)
n;JMκ ],

respectively.

C. Collective potential

As already mentioned, the estimates of the total poten-
tial energy of the deformed nucleus are obtained within
the phenomenological mean-field approach, known as the
macroscopic-microscopic method of Strutinsky. In this
method, as commonly known, the macroscopic energy term
given usually by the liquid-drop-type formula is modified
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FIG. 1. The potential energy of 156Dy in the quadrupole plane
(α20,α22).

by the microscopic shell- and pairing-energy corrections,
describing quantum effects in a nucleus. However, this kind
of approach has been applied for more than five decades now
and is still a powerful and successful method, well suited
particularly to large-scale calculations and able to produce
results close to the experimental data. The details of this kind
of calculation and the corresponding results are presented, e.g.,
in Refs. [26,27] and references therein.

The geometry of the potential-energy surfaces in the vicinity
of the equilibrium state of cold, medium-mass nuclei gener-
ated, for example, by the Lublin–Strasbourg drop model (LSD)
[28] is very similar to this, obtained from other competitive
macroscopic models. Moreover, the LSD approach permits us
to successfully reproduce fission barriers of actinides; see, e.g.,
Ref. [29].

The microscopic-energy correction is defined as the sum
of the shell- and pairing-energy corrections to the smoothly
changing liquid-drop energy.

The shell-energy correction arising due to the shell structure
of a nuclear system is calculated by using the standard
Strutinsky approach of the 6th order [30]. For the pairing
energy [31,32], because of the difference between the sum
of the single-particle energies and the energy of the pair
correlations [33], the particle-number projected (PNP) pairing
model within the standard BCS framework is applied.

The numerical calculations of the total collective potential
entering Eq. (3) are performed in the six-dimensional mesh of
vibrational collective variables: {α20,α22,α3ν,ν = 0,1,2,3} for
the 156Dy nucleus.

The ranges of nuclear deformation parameters as well as
the corresponding mesh steps �αλμ are listed below:

α2νε(−1.0; 1.0), �α2ν = 0.05, ν = 0,2,
(10)

α3με(−0.3; 0.3), �α3μ = 0.1, μ = 0,1,2,3,

which gives a mesh of about two million points, describing
various quadrupole-octupole nuclear shapes.

Figure 1 displays the total-energy map as function of
the quadrupole (α20,α22), putting the other four deformation
parameters to zero. The equilibrium energy minimum corre-
sponding to the quadrupole axial (prolate) shape of 156Dy is

visible. The straight dashed line of Fig. 1 on the (α20,α22)
cross section separates the quadrupole configurations, which
are identical with respect to the D̄4y symmetrization group. We
clearly observe the ground-state energy occurring in the three
(α20,α22) quadrupole configurations.

The problem of the “repeatability” of the nuclear shapes
as a results of the symmetrization with respect to the octa-
hedral and D̄4y groups is widely discussed in Ref. [11] and
references therein. Now we want to recall that, in particular,
the resulting Strutinsky potential energy as a function of
the quadrupole and octupole deformation is invariant with
regard to the symmetrization group Ḡs . This property is true
since the macroscopic liquid-drop contribution, as well as
the microscopic shell- and pairing-energy corrections, depend
only on the shape of the nuclear surface defined by Eq. (1).
This means that, for a fixed quadrupole deformation, a single
octupole shape for all α

(0)
3μ 
= 0 can be obtained by using eight

different deformation-parameter combinations.
In general, the identical quadrupole-octupole shape for

the D̄4y symmetrization group is expected to show up, at
a maximum, 2 × 8 = 16 times in the full (α2,α3) space.
Otherwise, if it happens that all α(0)

3μ = 0, such a shape appears,
in fact, three times. Please recall that, in this particular case, the
true symmetrization group is the octahedral, not D̄4y , group.

The dependence of the total potential energy on the
quadrupole α20 and octupole α3μ degrees of freedom is shown
in Fig. 2. Projections of the full potential-energy surface
(PES) into axial quadrupole and selected octupole deforma-
tion parameter space permit us to trace the features of the
global and local energy minima, such as their positions and
depths.

The total-energy maps projected onto the (α20, α3μ) plane
show two subtly pronounced identical minima for α20 < 0
and α22 = 0. Figure 2 shows that the ground-state well, which
appears for octupoles α3ν = 0, is the only stable configuration
for the 156Dy nucleus. Thus, the above-written arguments lead
to the conclusion that one should obtain exactly two additional
“copies” of this minimum, both again for α3ν = 0. In Fig. 1,
these minima are visible for α20 slightly below zero and
α22 = 0.

III. RESULTS

The model discussed here offers the positive- and negative-
parity collective vibrational-rotational states based on α2μ and
α3ν one-phonon excitations. On the basis of these states the
reduced probabilities of the electric-dipole and quadrupole
transitions are calculated and confronted with selected exper-
imental results of Ref. [10].

A. Negative-parity bands

The negative-parity states are created in the potential-
energy well based on the quadrupole-deformed ground-state
configuration with quadrupole deformation α20 = 0.25 and
α22 = 0.0. By consequence, the resulting octupole negative-
parity states have a significant static quadrupole deformation
producing large B(E2) intraband transition probabilities. As
deduced from the potential-energy plots of Fig. 2, the octupole
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FIG. 2. Potential-energy maps generated for quadrupole (α20,α22 = 0) versus octupole (α30, α31, α32, α33) deformations.

vibrations (with multipolarity λ = 3) are performed around
pure quadrupole shapes. In other words, the 156Dy nucleus
seems to have no stable configuration for which, at least, one
of the static octupole deformations α̊3ν 
= 0, ν = 0,1,2,3.

As seen in Fig. 3, the odd-spin negative-parity bands,
having as the bandhead axial α30 and nonaxial α31 one-phonon
vibrational excitations, are shifted from each other in energy

by about 70 keV whereas the band built on the tetrahedral α32

phonon lies higher by approximately 150 keV. The band built
by the α33 one-phonon vibration is too high in energy compared
with the previous three model bands, so is not considered in
this study.

Due to the proximity in energy of the three of all four
octupole bands mentioned, the photon energies of the dipole

FIG. 3. The predicted ground-state and odd-spin negative-parity bands of 156Dy. Arrows mark the E1 and E2 transitions. The branching
ratios B(E2)/B(E1) are written in parentheses.
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TABLE I. γ -ray energies Eα30
γ , Eα31

γ , Eα32
γ , and Eα33

γ predicted
theoretically for all four model bands characterized by the type of
octupole one-phonon excitation versus experimental results Eexpt

γ

measured at Gammasphere on 156Dy [10].

Transition Eα30
γ Eα31

γ Eα32
γ Eα33

γ Eexpt
γ

keV keV keV keV keV

(3− → 1−) 136 136 104 104
(5− → 3−) 212 212 180 180
(7− → 5−) 289 289 247 152
(9− → 7−) 361 365 331 327 376

(5− → 4+) 1115 1153 1188 1621 1121
(5− → 6+) 809 847 882 1315 755
(7− → 6+) 1098 1136 1138 1577 1039
(7− → 8+) 671 709 711 1150 594
(9− → 8+) 1032 1074 1042 1477 971

(6− → 4−) 230 240 240 271
(8− → 6−) 310 310 310 363

(4− → 4+) 1080 1380 1810 1223
(6− → 6+) 880 1020 1450 1128
(8− → 8+) 760 900 1330 1046

interband transitions, Eγ (λ = 1) (Table I), vary within an
interval ±0.1 MeV which is even less than the typical order
of discrepancy between experimental results and theoretical
predictions in up-to-date models.

In turn, the even-spin negative-parity band, marked in
Ref. [10] as band 4, is shown in Fig. 4. The comparison with
the calculated transition probability B(E2)/B(E1) ratios and
level energies allow us to ascribe this band to a “tetrahedral
band,” i.e., built on top of the one-phonon α32 excitation. In
the case of the other vibrational modes, such as α30, we obtain
a B(E2)/B(E1) ratio about two orders of magnitude too low
or 2–8 orders of magnitude too high (for remaining nonaxial
modes) in comparison with experimental data of Table II.

FIG. 4. Similar to Fig. 3 but for the predicted ground-state and
even-spin negative-parity bands of 156Dy.

TABLE II. Predicted intraband E2 and interband E1 transition
probabilities for odd- and even-spin negative-parity and ground-state
bands. Columns 2–5 correspond to negative-parity bands based on a
given octupole α3ν excitation in 156Dy.

Transition B(E2) [W.u.]

Iπ
i → Iπ

j α30 α31 α32 α33

3− → 1− 166 20 276 274
5− → 3− 140 138 412 406
7− → 5− 238 236 476 468
9− → 7− 308 306 512 504

6− → 4− 302 298 294
8− → 6− 376 370 366

B(E1) [W.u.]

α30 α31 α32 α33

3− → 2+ 6.0 × 10−3 3.8 × 10−3 2.6 × 10−3 1.2 × 10−4

5− → 4+ 2.6 × 10−3 1.4 × 10−3 3.0 × 10−3 2.0 × 10−4

7− → 6+ 1.3 × 10−3 7.2 × 10−4 3.0 × 10−3 1.4 × 10−4

9− → 8+ 8.2 × 10−4 4.4 × 10−4 3.2 × 10−3 2.2 × 10−4

6− → 6+ 1.9 × 10−2 0.5 × 10−3 0.8 × 10−6

8− → 8+ 1.6 × 10−2 0.4 × 10−3 2.7 × 10−6

In the even-spin sequence, the mode α31 is expelled by the
symmetrization procedure.

Looking only at the Eα30
γ values of Table I, one is not able to

reliably indicate at this stage which of these odd-spin negative-
parity bands is the best candidate to reproduce the experimental
collective bands referred to in Ref. [10] as band 2. However,
for band 4, the tetrahedral mode seems to be preferable.

In the following section III C we come to the discussion of
the reduced transition probabilities obtained [more precisely,
the B(E2)/B(E1) ratios] with the comparison with the mea-
sured values in these bands.

B. Rotational properties of states

As turns out, each vibrational-rotational negative-parity
state of given spin J (in this work, 0 � J � 9), characterized
by a given type of octupole excitation and the number of excited
phonons (here 1 or 3), can occur, e.g., for odd spin, in (J + 1)/2
configurations, as shown in Fig. 5. They are described by
specific combinations of rotational basis functions given as
complex-conjugated Wigner functions DJ�

MK (�) characterized
in the intrinsic frame by a given K number and arbitrary M .
These combinations, labeled here by κ (−J � κ � J ), are
fixed to ensure that collective states are symmetrized with
respect to the D̄4y intrinsic symmetry group. The conservation
of the body-fixed frame adds conditions on the octupole
variables Im(α3ν) = 0 during the collective motion. In brief,
the symmetrization condition requires that each collective state
as the eigensolution of the collective Hamiltonian of Eq. (3)
has to be invariant with respect to the symmetrization group.
Obtained in this way solutions are unique in the laboratory
frame, and thus can be named physical states.

Let us also observe that the rotational Hamiltonian (5),
by construction, contains, besides the constant term T00, the
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FIG. 5. The negative-parity states built on octupole axial and
nonaxial one-phonon excitations in 156Dy. Colors mark (J + 1)/2
states with different κ numbers for given spin J .

components of angular-momentum operators of power two
only, and, as a consequence, is time-reversal invariant. By
the fact that the vibrational Hamiltonian term, defined in
Sec. II A, is obviously invariant with regard to the time-reversal
operation, one concludes that the full Hamiltonian keeps this
symmetry.

In general, as written in Ref. [11], states with negative κ
are linearly dependent on those with positive κ . This means
that both are composed of identical (real) combinations of
rotational basis functions (differing only by the sign of K)
and therefore can be considered as mutual time-reversed
states. Consequently, it is sufficient to solve the Hamiltonian
eigenproblem within the basis-function subset with, e.g.,κ > 0.
Finally, each resulting eigenstate has to be treated as doubly
degenerate.

Figures 6 and 7 present a distribution of rotational basis
states of given K in the collective eigensolutions of spin J be-
longing to the ground-state band and the two above-discussed
candidate bands based on α30 and α32 one-phonon excitations
associated respectively with band 2 and band 4. Shown is
only the probability for K > 0 quantum numbers since they

FIG. 6. The distribution of rotational basis states of given K for
the ground-state band of the 156Dy.

FIG. 7. Distribution of rotational basis states of given K for two
model bands based on α30 and α32 one-phonon excitations of 156Dy
for odd-spin negative-parity-level scheme describing the experimental
band 2.

are identical for K < 0. The ground-state sequence is mainly
dominated by K = 0 and K = 2 components (Fig. 6). One
observes that, in the axial-octupole band of Fig. 7, the largest
rotational components are characterized by K = 0 and K = 4
while the second, nonaxial tetrahedral band, is characterized
by components with K = 0 and K = 2.

When the even-spin negative-parity band is concerned, the
K number mixing is presented in Fig. 8. Here, the main
contributions have K = 2 and K = 4. This mixing pattern is
different than for the odd-spin band, dominated by K = 0.

One therefore deduces that none of the theoretical bands
considered characterized by one-phonon α3ν excitations has

FIG. 8. Similar to Fig. 7 but for model band based on α32 one-
phonon excitation as a candidate for even-spin negative-parity-level
scheme of experimental band 4.
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a well-fixed spin projection number K in the chosen in-
trinsic frame. Let us recall that the conditions imposed on
quadrupoles, i.e., α21 = α2−1 = 0 and α22 = α2-2, to define
the body-fixed coordinate system are identical as in the Bohr–
Hamiltonian model of, e.g., Ref. [14].

Seemingly, the mixing of the K numbers within a given oc-
tupole band is caused by a relatively high-order symmetrization
group, D̄4y which combines rotational basis states of different
K within a given vibrational structure, as defined in Eq. (9). As
demonstrated in Ref. [34], the use the most general complex
space of all octupole variables α3μ ∈ C, instead of real ones
exploited in this study, leads to the octahedral symmetrization
group. As known from the studies of the quadrupole bands
within the Bohr–Hamiltonian approach, this group, similar
to the D̄4y one, mixes, within a given state, the rotational
contributions of different K as well.

As an exception, one can imagine an unrealistic collective
model with the symmetrization group composed only of the
rotations about the intrinsic OZ axis, which would keep the
K number unchanged within the whole collective band. In
addition, any group composed of Cnz rotations about an angle
2π/n, where n ∈ N , and being a subgroup of the SO(2),
imposes the condition for variables αλρ that ρ/n should
be an integer number. This implies that, for n � 3, some
deformations α2μ and α3ν are eliminated from the model or, for
the case n � 3, only axial deformations αλ0 are left. Another
example of a nonphysical symmetrization group could be the
C2y group composed only of the rotation about the angle π
with respect to the OY axis and the identity operation. It turns
out that this particular would not mix the contributions with
different K , either.

On the other hand, we investigated that any three realistic
conditions imposed on the quadrupole and/or octupole vari-
ables to fix the intrinsic frame in unique way always lead to
symmetrization groups possessing more than one rotation axis.
One therefore deduces that the issue of K mixing within the
vibrational-rotational collective bands is neither the effect of
the presence of these limiting conditions on the variable space
nor computational artifacts but should rather be treated as an
imminent property of such bands.

C. Strength of B(Eλ) transitions

As mentioned at the end of Sec. III A, knowing only the
energies of the band members, one is not unequivocally able
to associate a given theoretical sequence of levels with the
experimentally determined band. The study of the probabilities
of the electric transitions is therefore obligatory to predict
more faithfully the vibrational and rotational structures of these
bands.

According to the experimental indications, the ground-state
well in the 156Dy nucleus is strongly quadrupole deformed.
This means that, in the equilibrium state, octupole degrees of
freedom are, in the first approximation, not excited. It implies
that in the function (9)

∑3
ρ=0 n3ρ = 0 whereas n20 and n22

values are assumed to be 0, 1, 2, 3. For the negative-parity
states, on the contrary, n20 = 0 and n22 = 0, while in the
octupole part of this function,

∑3
ρ=0 n3ρ = 1 or 3. Due to the

parity property, even-phonon numbers on the right-hand side
of the previous condition are not permitted.

An essential problem is to fix the values of the model
parameters. The first group of parameters are the shifts α̊2μ and
α̊3ν in Eq. (9) for λ = 2,3 and −λ � μ � λ. These parameters
mean that all the basis functions (9) are centered over the
potential-energy minimum in our six-dimensional deforma-
tion space, i.e., at the point (α20, α22, α30, α31, α32, α33) =
(0.25, 0.0, 0.0, 0.0, 0.0, 0.0).

The second group of basis parameters in function (9) is the
so-called “widths,” ηλμ. Certainly, for the incomplete basis set,
the parameters ηλμ are absolutely crucial. We have decided that
the optimal values of these parameters should correspond to
the minimal collective energy of the ground state with respect
to all ηλμ, i.e., Egs = Egs({ηλμ}) = min.

As we see, both of these groups of parameters are deter-
mined by using clear criteria referring to the properties of the
potential energy as a function of the deformation. None of
these parameters has been adjusted to the experimental data;
however, to get a better agreement of the energies of states
with the measured values, some “fine tuning” of the moments
of inertia of Eq. (8) in future studies would be necessary. In
general, the reduced transition probability of the electric Eλ
transition finally reads

B(Eλ,J → J ′) =
∣∣〈J ′π ′κ ′||Q̂(lab)

λ ||Jπκ〉∣∣2

2J + 1
, (11)

where J , π , and κ are the actual quantum numbers of the
model, and Q̂

(lab)
λ is the transition operator of multipolarity λ

defined in the laboratory frame. The latter are simulated by the
multipole-moment operators with the constant proton density
distribution and R0 = 1.2A1/3, as done, e.g., in Ref. [35].

Since, as mentioned above, in the case of the D̄4y sym-
metrization group, K is not conserved within the band, one
may in fact construct more than one band of collective states
described by the same vibrational structure and different com-
binations of K . To assemble a band of theoretical Hamiltonian
eigensolutions one has admitted that within this sequence the
one-phonon vibrational structure is conserved and, in parallel,
the intraband B(E2) values have to lower monotonically with
lowering spin. The strengths of the quadrupole B(E2) matrix
elements are determined both by the intrinsic vibrational
(quadrupole moments) and rotational (appropriate Clebsch–
Gordan coefficients) properties of the state.

The arguments presented here lead, in principle, to rather
qualitative conclusions. We are aware of the fact that the model
used is not able to perfectly reproduce the absolute values of
energies Eγ (Table I) and transition probabilities B(E1) and
B(E2) (Table II).

Nevertheless, the overall tendency of the B(E1)/B(E2)
ratio for the preselected sequences of states called theoretical
bands as a function of spin, shown in parentheses in Figs. 3
and 4, can be directly extracted from the calculations. First,
for the negative-parity bands based on one-phonon α3μ ex-
citations, the lowering of the B(E1)/B(E2) branching ratio
with lowering spin, as discovered in the experiment, is visible
in bands constructed on the α30 and α31 modes but, for
the latter, this ratio is about one order of magnitude higher
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than the experimental one of Ref. [10]. As also seen, in the
so-called “tetrahedral” and nonaxial α33 bands this quantity
is almost independent of spin. These facts may suggest that
the experimental band, named in Ref. [10] band 2, may be
most likely of axial octupole (α30) character. Note also that the
nonaxial α31 band efficiently competes with the latter.

The hypothesis that the vanishing of the intraband B(E2)
transitions below J = 7− state in the studied negative-parity
band 2 of the 156Dy nucleus can be provoked by the presence
of the tetrahedral symmetry is apparently not supported by this
model. The intraband B(E2) values in the band built on the ax-
ial α30 mode are, in general, lower by approximately 40% than
in the tetrahedral band, which is somehow in contradiction to
early simplistic approaches proposed to identify the tetrahedral
symmetry.

As commonly known, their values are predominantly de-
termined by the quadrupole moment of the bandhead and
the rotational structures of individual states in terms of the
K-number distribution of the initial and final configurations.
As discussed in Sec. II C, all octupole negative-parity bands,
including the tetrahedral one, are constructed on top of the
quadrupole deformed ground state; their quadrupole moments
are practically identical. Therefore, the substantial variations
in B(E2) values between different model bands come from
differences in their rotational structures.

Where the dipole E1 transitions is concerned, in the axial
α30 and nonaxial α31 octupole bands, the B(E1) reduced
transition probabilities grow monotonically by an order of
magnitude upon lowering the spin from 9− to 1− while in the
tetrahedral band the spin is almost unchanged. Observe that,
in all proposed odd-spin model bands the magnitude of B(E1)
vary between 10−4 to 10−3 W.u. while in the even-spin one,
between 10−4 to 10−6 W.u.

Coming to the even-spin band 4 plotted in Fig. 4, the
only theoretical candidate is constructed on the one-phonon
tetrahedral excitation since its corresponding energy levels
(Table I) and the electric transition probability B(E2)/B(E1)
ratios are the closest to the experimental data. The pre-
dicted B(E2,8− → 6−)/B(E1,8− → 8+) and B(E2,6− →
4−)/B(E1,6− → 6+), as seen, are too small by a factor of 6–7
compared with the experimental values. On the other hand,
the ratios corresponding to other two α30 and α33 one-phonon
excitations deviate even by two and more orders of magnitude
which is why they cannot be considered as potential candidates
to reproduce the experimental band 4.

Since all the results are obtained within a pure collective
approach, the E1 transition operator is constructed from the
tensor couplings of the quadrupole and octupole (α2μ ⊗ α3ν)
modes, treated as its second-order contributions. For more de-
tails see Ref. [21]. To be detailed, the first-order contributions
to the E1 transition operator would be proportional to α10, α1±1

independent dipole deformations which are not considered in
this work.

However, the presence of the α3ν variables introduce a shift
of the center of mass of the nuclear surface with respect to the
beginning of the coordinate system—a spurious effect which
should certainly be eliminated from the transition dipole oper-
ator. To cure this drawback we determine the so-called induced
dipole deformations as functions of independent variables α2μ

and α3ν which, when inserted into expansion (1), translate the
center of mass back to the beginning of the coordinate system.

The same induced α1 variables play here the role of the
first-order contributions in the dipole transition operator. Here
we profit from the approximate property of the α1-type defor-
mations as being responsible for the center-of-mass motion.
As mentioned in Ref. [21] and references therein, such a shift
is always accompanied by a certain modification of the surface
shape. The stronger the deformation α1, the larger the change
in the nuclear body.

Finally, notice that, defined in such a way, the transition
operator does not, by construction, take into account the
microscopic effect of charge-density variation with the surface
curvature, known as the polarization effects. We are convinced
that, for the discussion herein, low-lying collective config-
urations built in the ground-state well and characterized by
fairly compact shapes, this kind of effect is supposed, in the
first approximation, to be negligible. In contrast, as concluded
in Ref. [21], effects related with the center-of-mass shift can
change the B(E1) estimates up to ≈40%.

IV. SUMMARY

The model discussed allows us to construct the positive- and
negative-parity collective states based on α2μ and α3ν degrees
of freedom. In 156Dy are a number of measured collective
bands, but our interest is focused only on band 2 and band 4 in
which, as written in a very recent publication [10], structure is
questionable.

The analysis of the theoretical ground-state and the
negative-parity-model bands reveals their tendency to be
slightly “squeezed” compared with experimental ones. This
clearly is an indication that some “fine tuning” of the coupling
constants of the rotational Hamiltonian, here obtained on
the basis of the cranking moments of inertia and Eq. (8), is
needed. Please note that these constants are determined at the
ground-state point and are assumed to be constant during the
vibrational motion. In other words, a mechanism of vibration-
rotation coupling through the deformation-dependent mo-
ments of inertia is, at this stage, neglected. On the other hand,
it is interesting and remarkable that the relative energies of the
octupole states with respect to the states of the equilibrium band
are reproduced in a satisfactory way within some 0.1 MeV,
which may indicate a reasonable predictive ability of the
model.

Every vibrational-rotational state characterized by a given
type of excitation and the number of excited phonons that
can occur in J + 1 configurations are described by a specific
combinations of K numbers, which ensure the state to be
symmetrized with respect to the symmetrization D̄4y group.
Usually half of these states are linearly dependent and thus
are not used directly in numerical calculations. Excitations in
α30, α31, and α32 are close each other in energy (within some
150 keV).

For the odd-spin negative-parity bands based on one-
phonon excitations in a α3μ mode, the lowering of the
B(E2)/B(E1) ratio with lowering spin, as discovered in the
experimental band 2, is seen in the case of bands built on α30

and α31 modes. The tetrahedrally and α33 excited bands give
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this ratio slowly changing with spin. As already mentioned
in Ref. [11], the E2 transitions are almost insensitive to
changes of octupole deformation, thus the main contribution
to the B(E2)/B(E1) changes is due to dipole transitions. The
value of B(E1) probability gives the information about dipole
moment Q1 which, in here used approximation, is proportional
to the tensor coupling α2ν × α3μ tensors. A more detailed
study on that is done in Ref. [21]. Briefly, the stronger dipole
transitions B(E1) (or dipole moment Q1) with lowering spin,
the stronger effective octupole deformation of the collective
band is then obtained. Otherwise, for bands built on α32 and
α33 phonons, its octupole deformation is getting larger and
larger with increasing spin.

Another interesting point is the issue that the quantum
number K seems to be not conserved within the vibrational-

rotational bands studied here. Each excited rotational state
is constructed as the superposition of rotational contributions
with different K values with amplitudes remarkably different
from zero. As demonstrated, this is a consequence of the
quite-high symmetrization group associated with our model.
Nonetheless, the K-mixing amplitudes may, to some extent be
model dependent.

ACKNOWLEDGMENTS

This work was supported by the COPIN-IN2P3 Polish–
French Collaboration under Contract No. 04-113 and
the Polish National Science Centre under Contract No.
2013/08/M/ST2/00257 (LEA COPIGAL) and by Contract No.
2013/11/B/ST2/04087.
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