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Spin singlet and spin triplet pairing correlations on shape evolution in sd-shell N = Z Nuclei
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We study the shape evolution of N = Z nuclei 24Mg, 28Si, and 32S in the axially symmetric deformed Woods-
Saxon model, taking into account both T = 0 and T = 1 pairing interactions. We find the coexistence of T = 0
and T = 1 superfluidity phases in the large deformation region |β2| > 0.3 in these three nuclei. The interplay
between the two pairing interactions has an important effect on determining the deformation of the ground states
in these nuclei. The self-energy contributions from the pairing correlations to the single particle (s.p.) energies
are also examined.
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I. INTRODUCTION

Pairing correlations play important roles in nuclear structure
and have an important effect on nuclear electromagnetic (EM)
and weak transitions. The pairing correlations are classified
into like-pairing [neutron-neutron (nn) and proton-proton
(pp)] and unlike-pairing [neutron-proton (np)] correlations.
In particular, for N = Z nuclei, the np pairing may become
significant because protons and neutrons occupy the same
orbital and have the maximum configuration overlap, which
makes especially T = 0 pairing important. The nn and pp
pairings have an isovector (IV) spin-singlet (T = 1, J = 0)
mode, while the np pairing correlations have peculiar isoscalar
(IS) spin-triplet (T = 0, J = 1) as well as IV spin-singlet
modes [1–5]. Over the last few decades, there have been many
discussions regarding the np pairing correlations, in particular,
the coexistence of IS and IV correlations and their competitions
in some specific nuclear observables [6–12]. As shown in
recent works [13,14], the nuclear structure of the N �= Z
nuclei may also be affected by the np pairing correlations. For
example, the authors of Ref. [13] found the mixing phase of
the IS spin-triplet and IV spin-singlet condensation for nuclei
with 60 < N < 70 and 57 < Z < 64.

Recently, interesting experimental data were reported,
which showed more quenching in the IV M1 spin transition
data than the IS ones for the N = Z sd-shell nuclei [15]. These
features are not expected from former theoretical discussions
[16,17]. It was pointed out in Ref. [18] that the T = 0 pairing
plays a significant role in causing these features in the spin-
dependent observables.
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The importance of the np pairing was also discussed in
our early papers for double-β decay transitions calculated by a
realistic two-body interaction given by the BruecknerG-matrix
based on the CD Bonn potential [19,20]. These studies were
performed using spherical QRPA, which did not include the
deformation explicitly and the IS np pairing was taken into
account by renormalizing the IV np pairing interactions.

The main aim of the present work is to study the shape
evolution of sd-shell N = Z nuclei in the deformed Bardeen-
Cooper-Schrieffer (BCS) approach including all kinds of pair-
ing correlations: IS and IV pairing correlations in the model.
We will address also the self-energy term due to the pairing
correlations in the BCS approach [21].

The deformation effect on N = Z medium-heavy nuclei
was discussed by deformed HF BCS model in Refs. [22,23]
by Skyrme interactions and RMF model in Ref. [24]. However,
the effect of T = 0 pairing correlations was not discussed in
these works. This work is a general extension of the previous
works [22,25–28].

This paper is presented as follows. In Sec. II, we briefly
explain the deformed BCS method by a Woods-Saxon po-
tential. In Sec. III, we discuss the shape evolution of the
N = Z sd-shell nuclei 24Mg, 28Si, and 32S by a simple shell
filling model and by the BCS theory. An evolution of the
Fermi surface is also presented in terms of the deformation.
Section IV is devoted to a summary and conclusions.

II. DEFORMED SINGLE-PARTICLE STATES

A deformed Woods-Saxon (WS) potential [29,30] is used to
calculate Nilsson-type single-particle (s.p.) states. The single-
particle spectrum obtained by the deformed WS potential
(DWS) depends on the deformation parameters β2 and β4.
These parameters define explicitly the distance from the origin
of the coordinate system to a point on the shape cut nuclear

2469-9985/2018/97(2)/024320(11) 024320-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.97.024320&domain=pdf&date_stamp=2018-02-16
https://doi.org/10.1103/PhysRevC.97.024320


EUNJA HA, MYUNG-KI CHEOUN, AND H. SAGAWA PHYSICAL REVIEW C 97, 024320 (2018)

TABLE I. Deformation parameter βE2
2 from the experimental E2 transition data [34] and theoretical β2 by relativistic mean field (RMF)

[35] and FRDM model [36] for 24Mg, 28Si, and 32S nuclei. Qexp. from experimental data [37,38] are also tabulated. Empirical pairing gaps are
deduced from the five-point gap formulas in Eqs. (14) and (15) for �emp

p and �emp
n together with np pairing gap δemp

np obtained from Eq. (17).

Nucleus βE2
2 [34] βRMF

2 [35] βFRDM
2 [36] Qexp. [37,38] �emp

p �emp
n δemp

np

24Mg 0.605 0.416 0. – 0.29 ∼ – 0.07 3.123 3.193 1.844
28Si (prolate) 0.407 x x x 2.841a 2.917a 1.384a

28Si (oblate) x – 0.374 – 0.363 0.16 ∼ 0.18 2.841a 2.917a 1.384a

32S 0.312 0.186 0.221 – 0.12 ∼ – 0.18 2.141 2.207 1.047

aPairing gaps for 28Si in Ref. [39] should be modified as these numbers.

surface

R(θ,β2,β4) = R0[1 + β2Y20(θ ) + β4Y40(θ )], (1)

where R0 = 1.2A1/3fm. Y20 and Y40 are the spherical harmon-
ics. The customary parameter ε = 3(ω⊥ − ω3)/(2ω⊥ + ω3)
used in the deformed harmonic oscillator is related to β2 ≈
(2/3)

√
4π/5ε at the leading order. In the cylindrical coordinate

system, we define the axial symmetric deformed WS potential,

VDWS = VC + VSO + VCoul, (2)

where the nuclear and spin-orbit potentials are given as [29,31]

VC(l) = − V0

1 + exp(l/a)
, (3)

VSO (l) = −λ(h̄/2mc)2[∇V (l)](�σ × �p). (4)

In Eqs. (3) and (4), l is a minimal distance function between a
given point assigned by radial vector �r and the nuclear surface
represented by Eq. (1). Here the minus sign is taken inside the
surface. The Coulomb potential VCoul is given in Ref. [29]. a
and λ are diffuseness parameter and strength of a spin-orbit
potential, respectively.

In general, the shell evolution by the deformation becomes
significant in neutron-rich nuclei. The deformation can be
confirmed by the E2 transition probability extracted from
many experiments [32,33], and plays important roles in under-
standing the nucleosynthesis. Such features may also appear
for deformed stable N = Z nuclei. In particular, from the
observed quadrupole moment Q2+ , 28Si is known to be oblately
deformed in contrast to other prolate deformations in 24Mg and
32S, according to recent data tabulated in Table I. However, in
the βE2

2 from the E2 transition data in Table I, only absolute
values are extracted and show no distinction between oblate
and prolate shapes. These values (or experimental quadrupole
moment Q2+) are associated to an intrinsic deformation (or
intrinsic quadrupole moment Q0) in the rotational model,
QJπ = 3K2−J (J+1)

(J+1)(2J+3) Q0. This relation is valid for well-developed
intrinsic deformed nuclei, but is not always hold for lighter
nuclei [40]. Since the nuclei considered in this work are not
heavy, such a deformation index may not always come from
the intrinsic deformation, but also expected to come from
dynamical quadrupole vibration.

III. FORMALISM FOR DEFORMED BCS MODEL

We perform the deformed BCS calculations by using the
deformed s.p. wave functions obtained from the potential in

Eq. (2). Since the theoretical framework for the deformed BCS
approach had already been discussed in the previous paper [26],
here only basic formulas are briefly stated. We perform also
the deformed Hartree-Fock-Bogolyubov (HFB) calculations in
the same context, but the results are almost equivalent to those
of the deformed BCS ones. Because of this reason, we will not
mention the results of deformed HFB in the present paper. We
start from the following nuclear Hamiltonian:

H = H0 + Hint,

H0 =
∑
ρααα′

ερααα′c
†
ρααα′cρααα′ ,

Hint =
∑

ραρβργ ρδ,αβγ δ,α′β ′γ ′δ′
Vρααα′ρβββ ′ργ γ γ ′ρδδδ′

× c
†
ρααα′c

†
ρβββ ′cρδδδ′cργ γ γ ′ , (5)

where Greek letters (α,β,γ,δ) denote real (bare) s.p. states
with the absolute value of the angular momentum projection
� of the angular momentum on a nuclear symmetry axis. The
projection � is a good quantum number in the axial-symmetric
deformed basis. ρα(ρα = ±1) denotes a sign of the angular
momentum projection � of the state assigned by the Nilsson
quantum numbersα. Isospins of particles and quasiparticles are
denoted by Greek letters with a prime (α′,β ′,γ ′,δ′) and with a
double prime (α′′,β ′′,γ ′′,δ′′), respectively. The operator c

†
ρααα′

(cρααα′ ) in Eq. (5) stands for a creation (destruction) operator of
the real particle in the state assigned by ραα′ having the angular
momentum projection �α , its sign ρα , and the isospin α′. The
Hamiltonian, represented by the real particles in Eq. (5), is
then transformed to the quasiparticle representation through
the deformed Bogolyubov transformation

a
†
ρααα′′ =

∑
ρβββ ′

(uαα′′ββ ′c
†
ρβββ ′ + vαα′′ββ ′cρβ β̄β ′ ),

aραᾱα′′ =
∑
ρβββ ′

(uᾱα′′β̄β ′cρβ β̄β ′ − vᾱα′′β̄β ′c
†
ρβββ ′). (6)

Our formalism is intended to include the np pairing correla-
tions, so that we may denote the isospin of quasiparticles (α′′ or
β ′′) as = 1 or 2, while isospin of real particles(α

′
or β

′
) is p or n.

We assume the time reversal symmetry, which means uαα′′ββ ′ =
u∗̄

βα′′ᾱβ ′ andvαα′′ββ ′ = −v∗̄
βα′′ᾱβ ′ . In the deformed HFB (DHFB),

the quasiparticle comprises particle and hole properties located
in different deformed states, α and β. In the deformed BCS
(DBCS), we do not allow the mixing of the different s.p. states,
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FIG. 1. (a–c) Shell evolutions of s.p. states by the deformation
for 24Mg, 28Si, and 32S. They are calculated by using a deformed
Woods-Saxon potential with the optimal parameter set for 24Mg and
Chepurnov set for 28Si and 32S in Ref. [29].

α and β, to the quasiparticle in the deformed basis. However,
in the view of the spherical basis, the quasiparticle state is
a mixture of different particle states because each deformed
state (basis) is represented by a linear combination of the
spherical state (basis) (see Fig. 1 at Ref. [26]). This feature
is one of additional characters coming from the inclusion of
deformation in the BCS approach, i.e., the DBCS approach.

Consequently, the np pairing leads us to a HFB-type pairing
potential constructed from many different states.

The DBCS transformation for each α state was then reduced
to the following form:

⎛
⎜⎜⎝

a
†
1

a
†
2

a1̄
a2̄

⎞
⎟⎟⎠

α

=

⎛
⎜⎝

u1p u1n v1p v1n

u2p u2n v2p v2n

−v1p −v1n u1p u1n

−v2p −v2n u2p u2n

⎞
⎟⎠

α

⎛
⎜⎜⎝

c
†
p

c
†
n

cp̄

cn̄

⎞
⎟⎟⎠

α

. (7)

The Hamiltonian can be expressed in terms of the quasiparti-
cles as follows:

H
′ = H

′
0 +

∑
ρααα′′

Eαα′′a
†
ρααα′′aρααα′′ + Hqp.int. (8)

Finally, using the transformation of Eq. (7), the following
DBCS equation for each α state is obtained

⎛
⎜⎝

εp − λp 0 �pp̄ �pn̄

0 εn − λn �np̄ �nn̄

�pp̄ �pn̄ −εp + λp 0
�np̄ �nn̄ 0 −εn + λn

⎞
⎟⎠

α

⎛
⎜⎝

uα′′p
uα′′n
vα′′p
vα′′n

⎞
⎟⎠

α

= Eαα′′

⎛
⎜⎝

uα′′p
uα′′n
vα′′p
vα′′n

⎞
⎟⎠

α

, (9)

where Eαα′′ is the energy of the quasiparticle with the isospin
quantum number α′′ in the state assigned by the label α. We
include np̄ and pn̄ pairings in addition to the usual pp̄ and nn̄
pairing correlations. The np and n̄p̄ pairings in the same orbital
(e.g., |np,T = 0〉 and |n̄p̄,T = 0〉) are not included explicitly,
but included implicitly by multiplying a factor of 2 on the T =
0 matrices with np̄ and pn̄ pairs. A detailed discussion of this
procedure is done in Eqs. (22) and (23) in Sec. IV B. The pairing
potentials for each α state in the DBCS are calculated in the
deformed basis by using G matrices obtained from a realistic
Bonn CD potential for nucleon-nucleon (N -N ) interaction as
follows:

�pp̄α
≡ �αpᾱp = −

∑
J,c

gppF
J0
αaᾱaF

J0
γ cγ̄ cG(aacc,J,T = 1)

× (
u∗

1pc
v1pc

+ u∗
2pc

v2pc

)
, (10)

�pn̄α
≡ �αpᾱn = −

∑
J,c

gnpF
J0
αaᾱaF

J0
γ cγ̄ c

[
G(aacc,J,T = 1)

× Re
(
u∗

1nc
v1pc

+ u∗
2nc

v2pc

)

+ iG(aacc,J,T = 0)

× Im
(
u∗

1nc
v1pc

+u∗
2nc

v2pc

)]
, (11)

where Roman letters a and c stand for spherical s.p. state, i.e.,
|a�α〉 = |Na

0 ,la,�a
α,�a〉 and |c�α〉 = |Nc

0 ,lc,�c
γ ,�c〉. A co-

efficient FJK
αaᾱa = Bα

a Bα
a (−1)ja−�αCJK

ja�αja−�α
(K = �α − �α)

is introduced to represent the G matrix in the deformed basis
with an expansion coefficient Bα

a [28] from the spherical s.p.
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FIG. 2. (a,c,e) Ground-state energies (GSEs) and (b,d,f) total s.p. energies (TSPEs) by the filling approximation with the Woods-Saxon
potential [29]. TSPEs are calculated by a sum of mean-field energies by Eq. (21), while GSEs are calculated by Eq. (20).

state to deformed s.p. state [26]

|α�α〉 ≡
∑
a�

Bα
a |a�α〉,

Bα
a =

∑
Nnz�

C
j�α

l� 1
2 �

A
N0l
Nnz�

bNnz� with A
N0lnr

Nnz�

= 〈N0l�|Nnz�〉. (12)

In the coefficient FJK
αaᾱa , K is a projection number of the total

angular momentum J onto the z axis. It is selected to be K = 0
because we consider a pair of particles in the state α and
its time-reversed state ᾱ. G(aaccJ ) represents the two-body
(pairwise) matrix element calculated in the spherical basis
including all possible scattered pairs above Fermi surface. In
the present work, we include all possible J values in Eqs. (10)
and (11) by retaining the K = 0 projection. The neutron
pairing gap �αnᾱn can be obtained by replacing n by p in
Eq. (10).

In this work, the self-energy term due to the pairing
correlations is introduced in the εp(n) − λp(n) for each α state
in Eq. (9)

μp(n)
α = −1

2

∑
J,c

F J0
αaγ̄ cF

J0
αaγ̄ cG(acac,J )

(
v2

1p(n)c + v2
2p(n)c

)
,

(13)

which is usually neglected in the BCS equation because
it comes from particle-hole correlations beyond the BCS.
To see quantitatively its effect on the deformed s.p.
state, we include the self-energy contributions, Eq. (13),
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FIG. 3. Evolution of np pairing strength for 24Mg in term of the
deformation. The gnn,gpp , and gnp in Eqs. (10) and (11) are adjusted
to reproduce empirical pairing gaps in Table I. The values g∗

np are
adjusted by using the enhanced T = 0 interaction of the np channel.
See the text for details.
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FIG. 4. The ground-state energy (EGSE′ = EMF′ + Epair + Eself), which is termed as Etotal denoted as red points, by the DBCS model for
24Mg with a deformed Woods-Saxon potential [29] with respect to the DBCS Fermi energy. Mean-field energy by the DBCS is denoted as EMF′ .
Notice that EMF′ is different from the EGSE obtained by the filling model in Fig. 2 because the Fermi energy is changed by the BCS approach
owing to the pairing interactions. Epair is the pairing energy referred to by the right y axis. The pairing energies are estimated by three different
cases, without and with the np pairing in panels (a) and (b), respectively, and with the enhanced T = 0 pairing in np channel in panel (c). The
last one (d) is results including the self-energy in Eq. (13).

to Eq. (9). As shown later, the self-energy turns out
to give sizable contributions to total energies of relevant
nuclei.

For the gap equations, Eqs. (10) and (11), we introduce
renormalized parameters gpp and gnn, which are multiplied to
the G matrix [19], so that the calculated pairing gaps �pp̄ and

024320-5



EUNJA HA, MYUNG-KI CHEOUN, AND H. SAGAWA PHYSICAL REVIEW C 97, 024320 (2018)

�nn̄ in Eq.(10) reproduce the empirical pairing gaps �
emp
p and

�
emp
n . The empirical pairing gaps of protons and neutrons are

evaluated by the five-point formulas for neighboring nuclei
[41]

�emp
p = 1

8 [M(Z + 2,N ) − 4M(Z + 1,N ) + 6M(Z,N )

− 4M(Z − 1,N ) + M(Z − 2,N )], (14)

�emp
n = 1

8 [M(Z,N + 2) − 4M(Z,N + 1) + 6M(Z,N )

− 4M(Z,N − 1) + M(Z,N − 2)]. (15)

For np pairing correlations, we assume that the ground state
of odd-odd nuclei has one proton and one neutron outside
of even-even core embedding close to the Fermi surface.
Furthermore, two particles are influenced under the attractive
np paring interaction [4,19]. Therefore masses of the odd-odd
nuclei are treated as a sum of even-even mass and the proton and
the neutron pairing gaps subtracted by the attractive residual
np interaction energy

M(Z,N )odd−odd = M(Z,N )even−even + �emp
p + �emp

n − δemp
np .

(16)

Then the np pairing gap is deduced as follows:

δemp
np = ± 1

4 {2[M(Z,N + 1)

+M(Z,N − 1) + M(Z − 1,N ) + M(Z + 1,N )]

− [M(Z + 1,N + 1) + M(Z − 1,N + 1)

+M(Z − 1,N − 1) + M(Z + 1,N − 1)]

− 4M(Z,N )}, (17)

where the signs in the +(–) stand for even (odd) mass nuclei. In
the present model, theoretical np pairing gaps are calculated
as

δth.
np = −[(

H 12
gs + E1 + E2

) − (
Hnp

gs + Ep + En

)]
. (18)

Here H 12
gs (Hnp

gs ) is the total deformed BCS ground-state energy
with (without) np pairing and E1 + E2(Ep + En) is a sum
of the lowest two quasiparticle energies with (without) the
np pairing potential �np in Eq. (9). All of the pairing gaps
exploited in this work are tabulated in Table I. Our theoretical
pairing gaps are fitted within a few percent ambiguity to the em-
pirical values by adjusting the pairing strengths gnn,gpp,gnp,
in Eqs. (10) and (11).

For a more quantitative argument on thenp pairing gaps, one
should eliminate spurious components in the wave functions
due to fluctuations of the particle number and isospin quantum
number in the BCS approach. More refined approaches might
be desired, such as the (isospin) generalized BCS [3,6], which
includes |np〉 and |n̄p̄〉 pairing as well as |np̄〉 and |pn̄〉 pairing
considered in this work, and the projected BCS for the exact
particle and isospin quantum number conservations. These
studies remain for future projects.

IV. RESULTS AND DISCUSSIONS

This study adopts the optimal and Chepurnov parameter
sets for the axially symmetric Woods-Saxon potential given

by Cwiok et al [29]. Other parameter sets show almost the
same results for the nuclei considered in this work [39].
The model space for all the nuclei was taken up to N =
5h̄ω for the deformed basis and up to N = 10h̄ω for the
spherical basis. Results of the evolution of s.p. states by
the deformation parameter β2 are shown in Fig. 1. First we
consider a simple shell-filling model, in which all particles
distributes from the bottom of the potential up to the outermost
shell orbit by allocating two particles in each s.p.state. The
shell structure of 24Mg and 32S [Figs. 1(a) and 1(c)] are
evolved from an open shell to a closed shell nature along the
change of spherical to prolate deformation. However, for 28Si
[Fig. 1(b)], the evolution is different from the two nuclei, i.e.,
it evolves from a closed shell to an open shell nature as β2

increases.
The increase of s.p.states energy of 5/2+

1 state (N =
2,nz = 0,� = 2,� = 5/2 in Nilsson quantum number) is a
key ingredient for the shell evolution of the nuclei and can be
easily understood by the asymptotic formula of anharmonic
oscillator (AHO) energy;

εAHO(nz,nρ,ml) ∼ h̄ω0[(N + 3/2) + β2(N/3 − nz)], (19)
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FIG. 5. Evolution of the proton and neutron Fermi energies
(the chemical potentials λp and λn) for 24Mg as a function of the
deformation β2 with and without the np pairing correlations.
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FIG. 6. The same as Fig. 4, but for 28Si.

where the last term stands for the deformation effect. Since
the orbit 5/2+

1 has N = 2 and nz = 0, it goes up to
higher energy with the positive (prolate) deformation. In
Figs. 1(b) and 1(c), the crossing between the 5/2+

1 state and
1/2+

3 ([N,nz,2,�,�] = 2,1,1,1/2) state happens around the
β2 = 0.3–0.4 region. This crossing also affects the evolution
of the Fermi energies identified as the outermost occupied state.

A. Results by the filling approximation model

In Fig. 2, we show evolutions of the ground-state energy
(GSE) defined by

EGSE =
A/2∑

i

1

2

[(
ε

p
i + t

p
i

) + (
εn
i + tni

)]
(20)
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with kinetic energy ti [42]. The ground-state energy EGSE is
calculated referring to the highest occupied orbit (HOO) as the
Fermi energy and taken to be zero energy, i.e., εi(HOO) = 0.
We also show a sum of s.p. energies of all occupied orbits,

ETSPE =
Z/2(N/2)∑

i=1

(
εi

p + εn
i

)
(21)

as a reference to see the relation between the shell evolution and
the Nilsson s.p. energy. The energies in Eqs. (20) and (21) are
calculated by the filling approximation in which the occupation
probabilities are taken as v2

i = 1 for the orbit from the bottom
of the potential to the HOO state. Otherwise v2

i = 0 for the
unoccupied orbits. Two results show a different evolution as
a function of the β2 deformation, in particular, in the oblate
deformation region of 24Mg and 28Si. The reason turns out to
come from the different energy evolution of the HOO state as
will be discussed in the following.

Different evolutions of the TSPEs by the prolate and oblate
deformation can be easily understood by the evolution of
the HOO energy in Fig. 1. The uphill shapes by the prolate
deformation in Figs. 2(c) to 2(f) for 28Si and 32S come from
the energy increase of the HOO 5/2+

1 state, which makes the
binding of HOO state more loosely at the prolate deformation.
The downhill shape in TSPEs in Fig. 2(b) for 24Mg is mainly
due to the decrease of s.p. energy of the outermost HOO 1/2+

2
state for larger deformations. However, the shell evolution
in the GSE by DWS calculations reveals a different shape
evolution, especially in Figs. 2(a) and 2(c) for 24Mg and 28Si
because the HOO energy may also be changed as a function of
deformation. The present situation will be largely changed by
the pairing correlations, which makes a wide smearing of the
occupation probabilities of states near the Fermi level as will
be discussed in the next subsection.

B. Results by the deformed BCS calculations with T = 0 and
T = 1 pairing correlations

Here we calculate the GSE evolution by the DBCS model,
which takes into account the np pairing as well as the nn and
pp pairing correlations. We study the pairing correlations for
four different cases in Figs. 4, 6, and 8. The first two cases are
(a) without and (b) with the np pairing correlations. The 3rd
one (c) is with the enhanced T = 0 pairing of np channel, and
the last one (d) is done by taking the self-energy term Eq. (13)
into the case (c). The ground-state energy, EGSE′ , termed as
ETotal denoted by red points in the figure, by the DBCS model
comprises the mean field energy, EMF’, the pairing energy Epair.
The self energy is included in panel (d). Here the mean-field
energy, EMF′ , is calculated similarly to the GSE results by
Eq. (20) in Fig. 2 with respect to the Fermi energies λn,p taken
as zero energy.

Usually the T = 0 channel in the np pairing was not strong
enough to manifest itself in the pairing energy [4,26]. However,
recent experimental M1 spin transition data for the N = Z sd-
shell nuclei [15] show that a summed isovector spin strength is
much more quenched than a sum of isoscalar spin strengths in
the same energy region. This evidence is considered as a sign of
strong T = 0 pairing correlations in the ground states of N =

Z nuclei [43]. The signature of strong T = 0 pairing was also
found in the GT transitions in N = Z and N = Z + 2 nuclei
[14,18]. Therefore, in the third case, we adopt a strong isoscalar
pairing effect by multiplying a factor 1.5 to the corresponding
T = 0 matrices obtained from the G-matrix calculations.

In the present scheme, we include only np̄ and p̄n pairing
correlations, but do not explicitly include the np and n̄p̄
pairings. We effectively include these T = 0 contributions of
the np and n̄p̄ channels by multiplying another factor 2 to the
T = 0 pairing matrices of the np̄ and pn̄ configurations. This
procedure can be justified as follows. By following Ref. [3],
for np, n̄p̄, n̄p and np̄ pairings, if we assume

〈αnαp,T = 0|Vpair|βnβp,T = 0〉 =
〈αnαp,T = 0|Vpair|β̄nβ̄p,T = 0〉, (22)

then Im �T =0
αnαp = 0 and Re �T =0

αnαp = Im �T =0
αnᾱp by Eqs. (5) to

(7) in Ref. [3]. It leads to

�2 (T =0)
np = 2

∣∣�T =0
αpᾱn

∣∣2 + 2
∣∣�T =0

αpαn

∣∣2 = 4
∣∣�T =0

αpᾱn

∣∣2
, (23)

where a factor of 2 in the second term is due to ᾱpαn and ᾱpᾱn
pairings, respectively. Consequently, we multiply a weighting
factor of 1.5 × 2 = 3.0 on the T = 0 pairing G-matrix strength
for the cases (c) and (d) in Figs. 4, 6, and 8.

In Fig. 3, the pairing coupling strengths gnn,gpp and gnp

in Eqs. (10) and (11) are plotted as a function of deformation
parameter β2 for 24Mg. They are obtained in such a way that
calculated gaps reproduce the empirical ones in Table I. In
general, we need a larger coupling strength for larger prolate
and oblate deformations to reproduce the empirical pairing
gaps because of the closed-shell nature at larger deformations.
One may find interestingly different behavior of curves of gnp

and g∗np for larger deformation |β2| > 0.3. One can notice that
gnp and g∗

np are almost the same value in the region |β2| � 0.3.
That is, the T = 0 pairing correlations do not contribute to
the pairing gaps at all. However g∗

np becomes smaller in
both larger prolate and oblate deformation region |β2| � 0.3.
This is due to the effect of the T = 0 pairing condensation
which makes an additional T = 0 correlations to the gap
energy usually dominated by the T = 1 np contributions.
These results suggest a manifestation of the coexistence of
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FIG. 7. Same as Fig. 3, but for 28Si.
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FIG. 8. The same as Fig. 4, but for 32S.

two types of superconductivities (T = 0 and T = 1) in this
large deformed region.

In the following we present numerical DBCS results of
the ground state energies (GSEs) for 24Mg, 28Si, and 32S
in terms of the deformation parameter β2. We examine
also the effect of the self-energy in the DBCS approach in
Fig. 4(d).

1. 24Mg

Mean-field energy for 24Mg, EMF′ , by the DBCS is calcu-
lated by the formula, �i(εi + ti)v2

i /2, with respect to the Fermi
energy εf . The energy (EGSE′ = Etotal = EMF′ + Epair + Eself)
corresponds to the total ground-state energy EGSE in DWS
calculations with filling approximation. The results in Fig. 4(a)
show two shallow minima in both prolate and oblate regions.
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The pairing energy Epair, without the np in Fig. 4(a) turns out to
be smaller for the prolate deformation, but becomes somewhat
larger by the np pairing correlations. This is simply due to a
larger level density in the oblate side than that of prolate side
which can be seen in Fig. 1(a).

The evolution of Fermi energy εf (equivalently the chemical
potentials λ) is shown in Fig. 5 which is a key factor to
understand the evolution of the total energy. Without np
pairing, one can find an increase of the Fermi energy for larger
prolate deformation, which originates from the evolution of
s.p. energy of 5/2+

1 state in Fig. 1(a). The np pairing changes
the Fermi energy gap, by which the paring energy becomes
stronger as shown in Figs. 4(b) and 4(c). However, the pairing
energy contribution to total energy is small compared to the
mean-field energy EMF′ (Note the different energy scale in
right for the pairing and left y axis for the total energy), so that
the total energy minimum locates still in the oblate region in
Fig. 4(b).

In the Fig. 4(c) we use the enhanced T = 0 interaction,
which makes the pairing correlations stronger especially
at the large prolate deformation and leads to the prolate
deformation minimum in 24Mg. A drastic change of the
pairing correlation energy is induced by the active T = 0
pairing channel as was shown also in Fig. 3. Figure 4(d)
shows results with the self-energy terms. The self-energy
does not much affect the shape evolution of 24Mg because
the self-energy contributions denoted by green diamonds are
approximately constant, to be 15 MeV with about 2–3 MeV
variations.

2. 28Si

The energy evolution of 28Si is displayed in Fig. 6. Without
the np pairing shown in Fig. 6(a), we can see two deformation
minima at both the oblate and prolate sides at around β2 =
±0.2. The pairing correlations are larger at larger prolate
deformation to be Epair ∼ 40 MeV at β2 = 0.5 and almost
disappear at larger oblate deformation. These features are
entirely determined by the nature of level density around the
Fermi energy, i.e., very high level density at larger prolate
deformation and very low at larger oblate side, In Fig. 6(b)
with np paring correlations, the pairing gain energy is much
larger than the case without np pairing in Fig. 6(a). Here
Epair in Figs. 6(c) and 6(d) with the enhanced T = 0 pairing
is smaller than Fig. 6(b) in the β2 > 0.3 prolate region. It
comes from the fact in Fig. 7, where the gnp and g∗

np show
almost the same strength up to β2 = 0.3, but the g∗

np becomes
smaller than gnp in the region β2 > 0.3. Because of the T = 0
superfluidity, the isoscalar coupling does not need to be larger
to reproduce the empirical pairing gap δ

emp
np . While the gap

index δnp is the same for Figs. 6(b) and 6(c), the correlation
energy in Fig. 6(b) is larger than that of Fig. 6(c). One more
point is that contributions of EMF′ and Epair are not the same in
Figs. 6(c) and 6(d) although the value g∗

np is the same. It stems
from the self-energy term which will change the occupation
probabilities through the normalized s.p. energies, and also
EMF andEpair. But the self-energy contributionEself in Fig. 6(d)
is rather independent to the change of deformation to be about
Eself ∼ 16 MeV.
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FIG. 9. Same as Fig. 3, but for 32S.

3. 32S

Calculated results of 32S with T = 1 pairing without np
pairing show a shallow energy minimum at β2 ∼ 0.0 in
Fig. 8(a). The pairing gain energy is relatively small as Egain ∼
10 MeV compared to the other two nuclei except at very
large deformation β2 ∼ 0.5. This is again entirely due to the
low level density around the Fermi energy of 32S with N =
Z = 16 except at the large deformation region where the level
density becomes high. We can see in Fig. 8(b) larger pairing
correlation energies with np pairing. The enhanced T = 0
pairing interaction in Figs. 8(c) and 8(d) gives a rather shallow
energy minimum at a small prolate deformation β2 ∼ 0.1. The
self-energy terms Eself give again constant contributions to the
total energies and do not change the position of deformation
minimum appreciably. Here we also find the similar behavior of
pairing energy to that of 28Si due to the change of the enhanced
T = 0 pairing strength in Fig. 9 in the prolate deformed β2 >
0.3 region.

In Ref. [11], the effect of deformation on the coexistence
between neutron-proton and like-particle (proton-proton and
neutron-neutron) pairings were studied in fp-shell even-
even self-conjugate nuclei by using a model combining self-
consistent mean-field and shell-model techniques. In their
approach, the self-consistent mean-field calculations provide
the main ingredients, single-particle energies, and residual
two-body matrix elements, that are used in the subsequent shell
model calculations to obtain the pairing correlation energies.
It was found that the IS np pairing is generally much weaker
than the IV contribution. However, in some cases, it was
pointed out that large deformation induces the coexistence
of IS and IV np pair condensates. While the model and
masses of nuclei studied in Ref. [11] are different from the
present ones, the two models draw the same conclusion about
the importance of deformation on the coexistence of two
superfluidity.

V. SUMMARY AND CONCLUSION

We study the shape evolution of N = Z nuclei, 24Mg, 28Si,
and 32S in the DWS and DBCS approximations taking into
account both T = 0 and T = 1 pairing correlations. In the
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filling approximation for the DWS potential, it is shown that
the shape evolution correlates strongly with the shell structure
of s.p. energies near the last occupied orbit (Fermi energy).
The effect of two types of pairing correlations with the isospin
T = 0 and T = 1 are studied by the DBCS model with G-
matrix-based pairing interactions. We adopt an enhanced T =
0 pairing interaction to clarity the effect of T = 0 pairing on the
ground-state energy. We find a coexistent phase of two types
of superconductors in the large deformation region |β2| > 0.3
in 24Mg, 28Si, and 32S with the enhanced T = 0 pairing. The
competition between T = 0 and T = 1 pairing channels gives
a substantial effect on the energy minima of 24Mg, 28Si, and
32S. Our model gives reasonable deformation minima for these

nuclei, prolate for 24Mg and 32S, and oblate for 28Si. The self-
energy terms turn out to be rather constant as a function of
deformation in the three nuclei and do not change appreciably
the shape evolution.
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