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Rotational motion of triaxially deformed nuclei studied by the microscopic
angular-momentum-projection method. II. Chiral doublet band
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In the sequel of the present study, we have investigated the rotational motion of triaxially deformed nucleus by
using the microscopic framework of angular-momentum projection. The Woods-Saxon potential and the schematic
separable-type interaction are employed as a microscopic Hamiltonian. As the first example, nuclear wobbling
motion was studied in detail in part I of the series. This second part reports on another interesting rotational
mode, chiral doublet bands: two prototype examples, 128Cs and 104Rh, are investigated. It is demonstrated that
the doublet bands naturally appear as a result of the calculation in this fully microscopic framework without any
kind of core, and they have the characteristic properties of the B(E2) and B(M1) transition probabilities, which
are expected from the phenomenological triaxial particle-rotor coupling model.
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I. INTRODUCTION

It has been an interesting subject to study the rotational mo-
tion of triaxially deformed nucleus in the field of nuclear struc-
ture [1]. Although the triaxial deformation is rarely realized in
the ground state of nuclei [2], it is more frequently expected at
high-spin states, see, e.g., Refs. [3–5] and references therein.
When the nuclear mean field is triaxially deformed, collective
rotation about all three principal axes is possible, and therefore
the total angular-momentum vector may tilt away from either of
three principal axes. Then the quantized rotational spectrum of
the rigid rotor will emerge, which is called nuclear wobbling
[1]. Such rotational bands have been sought for a long time
and finally identified first in 163Lu [6]; see, e.g., Refs. [7,8] for
recent theoretical review articles. This wobbling motion has
been investigated in the first part of the present study [9]; we
refer to it as part I hereafter.

Another specific rotational motion expected in a triaxially
deformed nucleus are the chiral doublet bands, predicted for
the first time in Ref. [10], where the tilting of the angular-
momentum vector is caused by other degrees of freedom than
the collective rotation; see, e.g., Ref. [11] for a recent review.
For an odd-odd nucleus, where both an odd proton particle and
an odd neutron hole occupies a high-j intruder orbitals, as a
typical example, the odd particle angular-momentum aligns
along the short axis and the odd hole angular-momentum
along the long axis, because such alignments maximize the
overlap of the wave function of the aligned particle or hole with
triaxial density distribution of the core. If the three moments of
inertia of the core are in irrotational-like ordering, the collective
angular-momentum aligns along the medium axis, which has
the largest moment of inertia. For moderate high-spin states,
where all three kinds of angular momenta are sizable, these
three vectors are aplanar, and the chiral symmetry between
the right- and left-handedness is broken in such a system. It is
then expected that a pair of degenerate �I = 1 rotational bands
appear as a result of breaking this symmetry. In Ref. [12], it

is discussed that characteristic patterns are expected for the
electromagnetic transition rates, B(E2) and B(M1) in this
prototype situation with broken chiral symmetry.

These interesting types of rotational motion characteristic
for triaxially deformed nucleus have been investigated mainly
by phenomenological models such as the triaxial-rotor [1] or
the particle-hole coupled to triaxial-rotor [10]. Here we study
such rotational motion by employing the fully microscopic
framework, where the nuclear wave function is constructed
from the triaxially deformed mean field and the broken ro-
tational symmetry is recovered by angular-momentum pro-
jection; see, e.g., Ref. [13]. With the projection method,
the regular rotational spectrum is naturally obtained. Full
three-dimensional (3D) projection from the mean-field wave
function should be performed for triaxially deformed nuclei, so
that an efficient method is necessary. We have developed such
a method in Ref. [14], and applied it to the study of nuclear
tetrahedral deformation [15,16], the γ vibration [17], and the
ground-state rotational bands [18,19] in rare-earth nuclei. In
this second part of the present investigation we also employ
the same method to study the chiral doublet band for the case
where the prototype considered in Ref. [12] is realized.

It should be mentioned that chiral doublet bands have
been studied by a similar microscopic approach, the triaxial
projected shell model, for the first time in Ref. [20]; see
Refs. [21,22] for recent review articles. The authors are
successful to reproduce the experimental data. The purpose
of the present work is not to reproduce the experimental
data, but rather to understand how the chiral doublet bands
appear and how the ideal chiral geometry reflects to the
observable quantities such as the electromagnetic transition
rates. We believe that such an investigation is meaningful for
deeper comprehension of the rotational motion in the triaxially
deformed nucleus from the microscopic viewpoint.

The paper is organized as follows. We briefly recapitulate
our formulation in Sec. II, where only the necessary mathemati-
cal expressions for discussion of the present study are included.
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The more detailed content is presented in part I [9]. Possible
occurrence of the chiral doublet band and its properties of the
electromagnetic transition probabilities are studied for 128Cs
and 104Rh nuclei in Sec. III. Finally, the results of the present
study are summarized in Sec. IV. Preliminary results were
already published in Ref. [23].

II. BASIC FORMULATION

In the series of the present work, we study collective rotation
of triaxially deformed nucleus with the microscopic angular-
momentum-projection method. The quantum eigenstates of
rotational band are obtained by∣∣�I

Mα

〉 =
∑
K

gI
K,α P̂ I

MK |�〉 (1)

from the mean-field state |�〉, where the angular-momentum
projector is denoted by P̂ I

MK and the amplitude gI
K,α is

determined by the so-called Hill-Wheeler equation, see, e.g.,
Ref [13]; ∑

K ′
HI

K,K ′ gI
K ′,α = EI

α

∑
K ′

N I
K,K ′ gI

K ′,α, (2)

with the definition of the Hamiltonian and norm kernels,{
HI

K,K ′

N I
K,K ′

}
= 〈�|

{
Ĥ
1

}
P̂ I

KK ′ |�〉. (3)

To investigate how the interesting types of rotational motion
appear and what kind of properties they have, it is preferable
to be able to change the mean-field parameters, e.g., the
deformation parameters, arbitrarily. Therefore, we employ a
model Hamiltonian Ĥ composed of the phenomenological
Woods-Saxon potential and the schematic separable-type in-
teraction, which has been also utilized in Refs. [14,15]. Its
precise form is given in part I and we will not repeat it here.

When the projected wave function in Eq. (1) is obtained,
it is straightforward to calculate the electromagnetic transition
probabilities [13]. No effective charge is used for the calcu-
lation of B(E2) because the full model space is employed
without any kind of core. The effective spin g factor of
0.7 × gs,free is adopted for both neutrons and protons for the
calculation of B(M1). In this way there is no ambiguity for the
calculation of these transition probabilities.

The product-type mean-field wave function with the pairing
correlations, |�〉 in Eq. (1), is generated by the mean-field
Hamiltonian ĥmf composed of the deformed Woods-Saxon
potential and the monopole-type pairing potential, where the
pairing potential has the form factor of the derivative of the
Woods-Saxon potential, see part I for details. The deformation
in the body-fixed frame is specified with respect to the equipo-
tential surface at the half depth for the Woods-Saxon potential
with the usual radius parametrization,

R(θ,ϕ) = R0 cv({α})
[

1 +
∑
λμ

α∗
λμYλμ(θ,ϕ)

]
, (4)

with the quantity cv({α}) that guarantees the volume-
conservation condition. In the present work, we employ λ = 2
and 4 deformations with the parameters (β2,β4,γ ), where the

so-called Lund convention [24] is used for the sign of triaxiality
parameter γ , and therefore, for example, 〈x2〉 < 〈y2〉 < 〈z2〉
for 0◦ < γ < 60◦. Here 〈x2〉 etc. are abbreviated notations of
〈∑A

i=a(x2)a〉 etc., which will be also used in the following
discussions.

It is worthwhile mentioning that the triaxiality parameter in
the Woods-Saxon potential, γ ≡ γ (WS), and the correspond-
ing parameter in the Nilsson potential, γ (Nils), are somewhat
different from that of the density distribution for the mean-field
state, γ (den), which is defined by

γ (den) ≡ tan−1

[
−

√
2〈Q22〉
〈Q20〉

]
, (5)

where Q2μ is the quadrupole operator; see Ref. [25] for the
precise definitions of the various γ parameters and discussion
related to them. Although the difference between these quan-
tities, e.g., γ (WS) and γ (den), are not so large as in the case
of the wobbling motion for the triaxial superdeformed nuclei,
they are still sizable and one has to be careful for discussing
the triaxial deformation.

One of the interesting quantities studied in part I and also
in Ref. [17] is the expectation value of the angular-momentum
vector in the body-fixed frame specified by the mean-field,
from which the projection is performed. Following the previous
work [17], we define the expectation value of each component
of the angular-momentum vector in the intrinsic frame for the
projected eigenstate α in the following way,((

J 2
i

))
α

≡
∑
KK ′

f I∗
K,α 〈IK|J 2

i |IK ′〉 f I
K ′,α, (6)

where the index i = x,y,z denotes the axis specified by the
deformed mean-field wave function |�〉, and the (f I

K,α) are the
properly orthonormalized amplitudes [13], which are defined
with the help of the square-root matrix of the norm kernel by

f I
K,α =

∑
K ′

(
√
N I )K,K ′ gI

K ′,α. (7)

Needless to say, the purely algebraic quantity 〈IK|J 2
i |IK ′〉,

e.g., 〈IK|J 2
z |IK ′〉 = δKK ′K2, should be calculated in the

intrinsic frame with [Jx,Jy] = −ih̄Jz etc. The microscopic
geometrical information is contained in the amplitude f I

K,α .
A more microscopic definition by using the mean-field wave
function is necessary to obtain the neutron and proton contri-
butions separately; they are evaluated by (τ = n,p)〈〈

J
(τ )2
i

〉〉
α

≡ Re

[∑
KK ′

gI∗
K,α 〈�|J (τ )2

i P̂ I
KK ′ |�〉 gI

K ′,α

]
, (8)

which are shown to be consistent with the definition of the
total expectation value in Eq. (6); i.e., 〈〈J (n)2

i 〉〉α + 〈〈J (p)2
i 〉〉α ≈

((J 2
i ))α in a very good approximation, see the discussion in the

Appendix of Ref. [17].

III. APPLICATION TO A CHIRAL DOUBLET BAND

The possible existence of chiral doublet bands was first
pointed out by Frauendorf and Meng in Ref. [10], and has been
explored experimentally since then; see, e.g., Refs. [26,27].
This interesting rotational motion is characteristic for triaxially
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deformed nuclei. As it was already discussed in part I of the
study of nuclear wobbling motion, there are three distinct di-
rections in the body-fixed frame of triaxially deformed nucleus.
In the present work, we choose the intrinsic coordinate system
that satisfies 〈x2〉 < 〈y2〉 < 〈z2〉; namely, 0 < γ < 60◦, and
the short, medium, and long axes are x, y, and z axes, respec-
tively. If there are three different kinds of angular-momentum
vectors, which favor aligning their vectors along these three
principal axes, the three vectors are aplanar in the intrinsic
frame. In such a situation, the symmetry of the handedness
is broken; i.e., whether these three angular-momentum vectors
are right handed or left handed in the xyz intrinsic coordinate is
chosen by the self-consistent mean field. Just as in the case of
the parity doublet, two almost degenerate �I = 1 rotational
bands are expected as different linear combinations of the
right- and left-handed states, which appear as the chiral doublet
bands, see Sec. III A for details.

A prototype example, which was considered in Ref. [10] and
in Ref. [12] is the odd-odd nucleus with an odd proton sitting
in the high-j particlelike orbit and an odd neutron in the high-j
holelike orbit (or vice versa). The high-j particlelike orbit tends
to align its angular-momentum vector along the short (x) axis,
while the high-j holelike orbit tends to align along the long
(z) axis. Moreover, the collective angular momentum prefers
to align to the axis with the largest moment of inertia, which
is the medium (y) axis for the irrotational-like moments of
inertia. Thus an aplanar angular-momentum geometry, i.e.,
chiral geometry, is expected to appear at the critical spin
Ic Below Ic the collective angular momentum lies in the
xz plane, see discussion of transverse wobbling [8]. In the
present work we study the nucleus 128Cs, in which the odd
proton (neutron) occupies the quasiparticle state whose main
component is particlelike (holelike) h11/2 orbit, and discuss
how the chiral geometry comes about. Especially, it is shown
that the ideal situation considered in Ref. [12] is indeed realized
in our microscopic calculations. In order to demonstrate that
the appearance of such an ideal chiral doublet band is not
very rare in the calculation, we also briefly discuss another
example, 104Rh, in which the odd proton (neutron) occupies
the quasiparticle state whose main component is holelike g9/2

(particlelike h11/2) orbit.
In the following we investigate the chiral doublet bands by

the fully microscopic framework of the angular-momentum-
projection approach in contrast to the original work [10,12],
where the macroscopic model of the triaxial rotor coupled to
a particle and a hole is employed. The calculational procedure
is the same as in part I. The calculations are performed within
the isotropic harmonic oscillator basis and the basis states are
truncated up to the maximum oscillator shells, Nmax

osc = 12. As
it was explained in detail in part I the monopole-type pairing
force strengths are determined to reproduce the even-odd
mass differences for the neighboring even-even nuclei, and
the average of those is adopted for the odd-odd nucleus. In the
present calculation the average pairing gaps for both neutrons
and protons are calculated self-consistently using the strengths
thus determined. Since we do not intend to reproduce the
experimental data but perform explorational calculations, we
arbitrarily choose an appropriate value for the deformation
parameter β2, and β4 = 0.0 for simplicity, to obtain an ideal

chiral geometry. As for the triaxial deformation γ (WS) = 30◦
is adopted for the Woods-Saxon mean field.

A. Chiral geometry and selection rules for transition rates

Before showing the result of our angular-momentum-
projection calculation, we briefly discuss how the chiral ge-
ometry is realized and what is expected for it according to
Refs. [10,12]; see also the review articles [4,8,11]. In the simple
classical model, where a particle and a hole angular momenta,
jp and jh, align along the short (x) axis and the long (z) axis,
respectively, the trajectory of the angular-momentum vector
(Jx,Jy,Jz) is given by the intersection of the sphere and the
shifted ellipsoid, which are described by the equations,

J 2
x + J 2

y + J 2
z = I (I + 1),

(Jx − jp)2

2Jx

+ J 2
y

2Jy

+ (Jz − jh)2

2Jz

= E,
(9)

representing the angular-momentum conservation, I , and the
rotor model energy, E, respectively. The quantities, Jx,Jy ,
and Jz, are the moments of inertia of the core nucleus in the
body-fixed frame, and it is assumed that the medium axis has
the largest inertia, i.e.,Jy > Jx,Jz. At low spins the trajectory
of the lowest-energy state is mainly confined in the xz principal
plane, Jx ≈ jp, Jz ≈ jh, and Jy ≈ 0, and in the first excited
state the angular-momentum vector vibrates with respect to
this plane, i.e., the so-called chiral vibration [26]. This chiral
vibrational excitation has been studied microscopically by the
quasiparticle random-phase approximation in Ref. [28].

When the spin increases and exceeds the critical spin [29],

Ic =
[(

jpJy

Jy − Jx

)2

+
(

jhJy

Jy − Jz

)2
]1/2

, (10)

the chiral symmetry is broken in the yrast states; i.e., the aplanar
angular-momentum geometry is realized giving the lowest two
degenerate solutions, the right-handed (e.g., Jy > 0), and the
left-handed (e.g., Jy < 0) ones, which we denote by |r〉 and
|l〉, respectively. They are related by |l〉 = T R̂y(π )|r〉, where
the operation T is the time-reversal transformation and R̂y(π )
is the π rotation about the y axis. The mean-field solution,
which shows the aplanar chiral geometry, was obtained for
the first time in Ref. [30] by the microscopic framework of
shell-correction tilted axis cranking approach. With the same
approach, the transition to the chiral geometry and its critical
spin value were investigated from the microscopic view point
in Ref. [31] in comparison with the experimental data.

There is tunneling effect between the two solutions, |r〉 and
|l〉, and the quantum mechanical eigenstates are obtained by
the linear combinations,

|+〉 = 1√
2

(|r〉 + |l〉), |−〉 = i√
2

(|r〉 − |l〉), (11)

which are interpreted as the chiral doublet states just like the
parity doublet states. Note that the partner states in Eq. (11) are
constructed for each spin value, . . . , I − 1, I, I + 1, . . .. Now
let us consider the electromagnetic transition rates such as E2
and M1. Since the photon with these low multipolarities cannot
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FIG. 1. Schematic figure representing the selection rules of the electromagnetic transitions for the ideal chiral geometry considered in
Ref. [12], where the thick (thin) arrow denotes the large (small) transition rate.

turn the angular-momentum vector from the right- to the left-
hand position, the overlap 〈l|M̂|r〉 of the transition operator
M̂ is essentially vanishing after the static chiral geometry is
realized. Thus these transition rates satisfy the selection rules,

B(M; + → +) ≈ B(M; − → −),

B(M; − → +) ≈ B(M; + → −). (12)

Namely, both the in-band transitions and the out-of-band for
the pair of the doublet bands are the same.

In Ref. [12] an interesting typical case is considered, which
shows especially characteristic properties for the E2 and
M1 transition rates, when the chiral symmetry is broken.
Namely, the system is invariant with respect to the combined
operation of the π/2 rotation about the medium (y) axis and
an exchange of the valence neutron and proton; this operation
is called Â hereafter, and the eigenstates are classified by the
eigenvalues ±1 of Â. Within the simple model in Eq. (9) the
system is Â invariant if the moments of inertia satisfy the
condition, Jx = Jz and the valence neutron and proton sit
in the same high-j orbit, because the π/2 rotation about the
y axis interchanges the x and z axes and at the same time
the exchange of valence neutron and proton interchanges the
particle and hole alignments jp and jh. Considering that
the contribution of the valence neutron and proton is almost
negligible for the E2 operator and that the M1 operator has
approximate isovector character, it has been shown that these
transitions are almost prohibited between the states with same
eigenvalue of Â. Moreover, chirality requires that the partner
states in Eq. (11) at a given spin have different eigenvalues of Â,
because the exchange between the valence neutron and proton
while keeping the direction of the rotor angular momentum
changes the right- into left-handed states. Taking into account
the considerations on top of Eq. (12), the selection rules for the
E2 and M1 transition rates inside and/or between the chiral
doublet bands can be summarized in Fig. 1; see Ref. [12] for
more detailed discussions. An especially interesting property is
seen in the �I = 1 E2 and M1 transitions; the large in-band
and small out-of-band transitions and the small in-band and
large out-of-band transitions alternate with spin, which can
be more clearly observed for the ratio of in-band and out-

of-band transitions, e.g., B(M1)in/B(M1)out, as it is depicted
schematically in the right part of Fig. 1.

In the following we will show that the ideal chiral geometry
considered in Ref. [12] is indeed realized in our angular-
momentum-projection calculation. This is nontrivial because
we do not introduce any kind of rotor and/or valence nucleons
explicitly in our fully microscopic framework. However, it is
instructive to see moments of inertia of the even-even core
nuclei; i.e., 128Xe for the odd-odd nucleus 128Cs with an odd
proton particle and an odd neutron hole, and 104Pd for the
odd-odd nucleus 104Rh with an odd neutron particle and an
odd proton hole. Although we do not explicitly use the three
moments of inertia of the principal axes in our framework, their
values are of interest. They can be estimated by the cranking
procedure; Ji = limωi→0〈Ji〉/ωi , where ωi is the cranking
frequency about the ith axis (i = x,y,z) of the intrinsic frame.
Figures 2 and 3 display the calculated cranking moments
of inertia for 128Xe and 104Pd, respectively, as functions
of the triaxiality parameter, γ (WS), for the Woods-Saxon
potential. As it has been discussed for the wobbling motion
in part I, the different definitions of the triaxiality parameter
give considerably different values [25]. Therefore, we show
the same quantities as functions of the triaxiality parameter,
γ (den), for the density distribution defined in Eq. (5), although
the differences are not so large as in the case of the triaxial
superdeformed states in part I. It should be mentioned that the
used mean-field parameters other than the triaxiality are those
employed for the analysis of the chiral doublet bands for 128Cs
and 104Rh. Therefore the calculated moments of inertia may
not be very realistic for 128Xe and 104Pd nuclei themselves. The
dependence of three moments of inertia on γ (den) resembles
that of irrotational flow; see, e.g., Fig. 1 of part I. However,
the relative values are considerably different; at γ = 30◦ Jy

is larger than Jx = Jz by a factor 4 for the irrotational flow,
while the factor is 2.4–2.6 for the microscopic ones in Figs. 2
and 3. This result is similar to the triaxial superdeformed state
in 163Lu studied in part I. We adopt the value γ (WS) = 30◦ for
the analysis, and it can be seen that the necessary condition,
Jy > Jx ≈ Jz, is approximately satisfied in both 128Cs and
104Rh. With these cranking moments of inertia at γ (WS) = 30◦
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FIG. 2. Cranking moments of inertia of the three intrinsic axes, x, y, and z, which are the short, medium, and long axes, (denoted by dotted,
solid, and dashed lines, respectively) as functions of the triaxiality parameter γ for the even-even core nucleus 128Xe of 128Cs. The deformation
parameters are β2 = 0.30,β4 = 0.0 and the pairing gaps are �n = 0.85 MeV and �p = 1.07 MeV, which are are employed for the study of
chirality in 128Cs. The γ parameter of the Woods-Saxon potential is utilized in (a) and that of the density distribution, Eq. (5), in (b).

and assuming full alignments for the h11/2 and g9/2 orbits, the
critical angular momentum in Eq. (10) can be estimated to
Ic ≈ 12.9 for 128Cs and Ic ≈ 11.8 for 104Rh.

B. Chiral doublet band in 128Cs

In the course of our investigation we have found that it
is difficult to obtain the doublet bands if the mean field is
cranked with finite rotational frequencies. Therefore, we do not
crank the mean field or just try to make infinitesimal cranking
[17] with 10 keV frequencies about three principal axes as
was studied in part I. If the mean field is constructed without
cranking there is an ambiguity related to the fact that the
single-particle states are doubly degenerate (i.e., the Kramers
degeneracy), which was already discussed in part I for the
odd nucleus 163Lu. These doubly degenerate states are usually
classified by the signature, which is the symmetry with respect
to the π rotation about one of the intrinsic coordinate axes.
We choose the x axis and classify the single-particle orbits by
R̂x(π ); namely a favored signature state α and its conjugate
unfavored state ᾱ = −α. In the case of odd nucleus there is no

ambiguity, because the mean-field state with an odd particle
in the ᾱ state is obtained from the mean-field state with an
odd particle in the α state by the rotation R̂x(π ), and therefore
the result of the angular-momentum projection from these two
states is exactly the same. For an odd-odd nucleus, however,
there are four possible configurations for occupying the odd
neutron and odd proton; i.e.,

(i) (αν,απ ), (ii) (ᾱν,απ ), (iii) (αν,ᾱπ ), (iv) (ᾱν,ᾱπ ).

(13)

Among them the configuration (iv) is obtained from (i) by
R̂x(π ), and (iii) from (ii) by R̂x(π ), but the configurations (i)
and (ii) are independent for the angular-momentum projection
calculation. We have numerically confirmed this fact; i.e., the
result of projection from the blocked configuration (iv) is
exactly the same as that from (i), and the result from (iii) is
the same as that from (ii). However, the results of projection
from (i) and from (ii) are different, although the differences
are found to be very small. One possible way to get rid of the
ambiguity is to mix these two independent configurations (i)
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FIG. 3. The same as Fig. 2 but for the even-even core nucleus 104Pd of 104Rh. The deformation parameters are β2 = 0.25,β4 = 0.0 and the
pairing gaps are �n = 0.95 MeV and �p = 0.76 MeV, which are employed for the study of chirality in 104Rh.
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FIG. 4. Energy spectrum for 128Cs calculated by the angular-
momentum-projection method from the noncranked mean-field with
the configuration (i) in Eq. (13). A rigid-rotor reference energy
0.013 I (I + 1) MeV is subtracted.

and (ii) in Eq. (13). We will discuss this point in the following.
Practically, we use extremely small cranking frequency ωx =
10−10 MeV/h̄ and block the lowest quasiparticle state to
generate the configuration α and block the second lowest state
for the configuration ᾱ. In the following study of 128Cs the
blocking of the negative-parity quasiparticle-state originating
from the h11/2 orbit has been done for both neutron and proton.

The ideal chiral geometry for doublet band does not always
appear in the calculation; we need to choose proper deforma-
tion parameter. We found that it appears at the deformation
parameter β2 = 0.30 without hexadecapole deformation; thus
we have chosen β2 = 0.30, β4 = 0.0, and γ = 30◦ for the
Woods-Saxon mean field in the following investigation of
the chiral doublet band in 128Cs. Note that γ = γ (WS) = 30◦
corresponds to γ (den) = 24.0◦ in this case. Then, the average
pairing gaps calculated self-consistently are �n = 0.85 MeV
and �p = 1.07 MeV for neutrons and protons, respectively.
It should be mentioned that the adopted value, β2 = 0.30,
is considerably larger than the ordinary used value, β2 ≈
0.15–0.20, in the nuclear region around 128Cs. The resultant
rotational spectrum is displayed in Fig. 4, where the angular-
momentum projection is performed from the noncranked mean
field with configuration (i) in Eq. (13). We have done the
same calculation with configuration (ii), but the result is very
similar and is not shown. In this and the following figures the
even-I and odd-I sequences of the band are connected by the
solid and dashed lines, respectively, and a rigid-rotor reference
energy 0.013 I (I + 1) MeV is subtracted to see more clearly
the degeneracy of the bands. This reference energy is selected
such that the experimentally observed yrast band is almost
flat; see Fig. 5 below. At first sight the excitation spectrum of
the multiple-band structure is similar to the wobbling bands
in 163Lu studied in part I. However, the yrast wobbling band
in 163Lu has the spin values I − 1/2 being even, and the
first excited band has the spin values I − 1/2 being odd,
etc.; i.e., the bands are composed of the �I = 2 states and
the signature of the multiple wobbling band alternates with
increasing energy. In the present case of the multiple bands
in 128Cs, the even-I and odd-I bands are almost degenerate
and form �I = 1 rotational bands. This is because the odd

proton aligns its angular-momentum vector along the short (x)
axis, while the odd neutron hole aligns its angular-momentum
vector along the long (z) axis, and consequently the signature
symmetry is strongly broken already at low spins. This is
confirmed later by looking at the expectation values of the
intrinsic angular-momentum vector in Fig. 6 below. What is
important for the spectrum of 128Cs in Fig. 4 is that the energies
of the lowest (yrast) and the second lowest (yrare) �I = 1
bands become very close in the spin range, 15 <∼ I <∼ 25,
which can be well interpreted as the chiral doublet band [10].
The calculated minimum energy difference between the two
bands is about 120 keV at I = 18. The estimated critical spin
Ic ≈ 13 in Sec. III A is slightly smaller than the spin where the
two bands become almost degenerate.

There are two possible configurations for the odd-odd
nucleus, those of (i) and (ii) in Eq. (13). Although the resultant
spectra obtained from the two configurations are rather similar,
we have performed the projected configuration-mixing by
including these two configurations in order to obtain the
unambiguous result, which is shown in the left panel of Fig. 5.
Comparing with the result of Fig. 4, the higher-lying spec-
trum changes considerably; especially the excitation energies
become lower and the level density of the excited bands is
higher than those without configuration mixing. However, it
should be stressed that the yrast and the yrare bands, which
are almost degenerate and so interpreted as chiral doublet
bands, are almost the same as without configuration mixing
in Fig. 4. However, the agreement with the experimental data
is not very good as seen in the right panel of Fig. 5. The
calculated bands become degenerate at about I ≈ 15, while
experimentally two bands come together already at I ≈ 11.
Moreover, the slope of the bands is too steep in the calculated
bands; namely the moments of inertia are too small compared
with the experimental data, which is similar to the calculation
of the wobbling band in 163Lu studied in part I.

As it has been pointed out in Ref. [17] infinitesimal crank-
ing quite often improves the calculated moments of inertia.
Therefore, we have tried to apply it also to the present case of
128Cs with frequencies ωx = ωy = ωz = 0.01 MeV/h̄, where
the projection is performed from the single configuration of
the infinitesimally cranked mean-field state that is composed
of the lowest-energy quasiparticle state for both the odd
neutron and proton being blocked. We have found that the
result of calculation is very similar to that of mixing the
two configurations in Fig. 5, and it is not shown. Namely,
the moments of inertia of calculated rotational bands are not
improved in this particular case. This result indicates that
the time-odd components of the wave function induced by
the infinitesimal cranking do not contribute to increase the
moments of inertia in this case, although they contain the two
different configurations (i) and (ii) in Eq. (13) and their mixing
effect.

In order to study the dynamics of the angular-momentum
vector, the expectation values of its components in the intrinsic
frame, calculated by Eq. (6) for the yrast and yrare bands,
are shown in the left panel of Fig. 6. Here the results of the
configuration-mixed calculation corresponding to Fig. 5 are
displayed but the results are qualitatively similar for other
cases. As it is shown in the left panel, all the three components
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FIG. 5. Left: Energy spectrum for 128Cs calculated by the angular-momentum-projected configuration-mixing method with the two mean-
field configurations (i) and (ii) in Eq. (13). Right: Comparison of the calculated and experimental chiral doublet bands in 128Cs. Experimental
data are taken from Ref. [27].

of the expectation values of the intrinsic angular-momentum
vector are non-negligible. In the lower spin region, I <∼ 8,
the dominant components are those along the short (x) and
the long (z) axes for the yrast band. As the spin increases, the
component of the medium (y) axis, which is the axis with
the largest moment of inertia of the core nucleus (see Fig. 2)
quickly increases. In the spin range 15 <∼ I <∼ 25 the yrast and
yrare have nearly the same geometries, which is characteristic
for the chiral regime. The largest component of the angular-
momentum vector changes from being along the x axis to
along the y axis at I ≈ 18, which roughly corresponds to the
critical angular-momentum of the appearance of the chiral
doublet band in Fig. 5. This correspondence between the
critical angular momentum and the transition of direction of
the angular-momentum vector in the intrinsic frame has also
been discussed for the wobbling motion in the 163Lu nucleus
studied in part I.

It can be also seen in Fig. 6 that the y component of the yrast
band is considerably smaller than that of the yrare band for
I <∼ 17, which suggests that the vector of the yrast band stays
near the xz principal plane, while the vector of the yrare band
goes back and forth with respect to this plane; i.e., the system
is in the regime of chiral vibration [26]. Note that the quantities
〈〈J 2

i 〉〉 in Eq. (6) include such effect of angular-momentum

fluctuations. In contrast, the three components of angular-
momentum vectors for a pair of the yrast and yrare bands
are similar at I >∼ 18, and form the aplanar configuration,
i.e., the system is in the regime of the static chirality; this
situation is exactly what is expected for the chiral doublet
band to appear. The transition from the regime of the chiral
vibration to that of the static chirality occurs gradually. A
similar transition expected for the transverse wobbling and
related to the direction of the angular-momentum vector in
the intrinsic frame has been discussed in part I. How the
total angular-momentum vector changes the direction is shown
pictorially in Fig. 7 according to the calculation in Fig. 6: The
directions of two vectors for the yrast and yrare bands are rather
different at I = 11; in fact that of the yrare band vibrates with
respect to the xz principal plane. At I = 21 the two vectors
points almost to the same direction, and the yrast and yrare
bands can be interpreted as a pair of the doublet band. The x
and z components stays almost constants at I >∼ 18 and the y
component becomes dominant at higher spins, I >∼ 30.

In the chiral regime, the particlelike proton quasiparticle
aligns its angular momentum along the x axis and the holelike
neutron quasiparticle aligns its angular momentum along the z
axis, while the collective angular-momentum vector is mainly
along the y axis. To see how neutrons and protons contribute
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FIG. 6. The calculated expectation values of the angular-momentum vector in the intrinsic frame for the configuration-mixed calculation
of 128Cs corresponding to the spectrum in Fig. 5. The left panel shows the expectation values of the total vector for the yrast (filled symbols)
and yrare (open symbols) �I = 1 bands, while the right panel shows the neutron (filled symbols) and proton (open symbols) contributions in
Eq. (8) separately for the yrast band. Note that the x, y, and z axes are the short, medium, and long axes, respectively.
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according to the expectation values shown in Fig. 6.

to the expectation values of the angular-momentum vector, the
neutron and proton contributions for the yrast band are depicted
separately in the right panel of Fig. 6. The contribution of
neutrons or of protons cannot be calculated by Eq. (6); one
needs to look into the microscopic wave function explicitly,
and Eq. (8) should be used instead. It is seen in the right
panel of Fig. 6 that indeed the dominant contribution to the
x component comes from proton and that to the z component
from neutron, while both neutron and proton contribute to the
y component as expected for collective angular momentum.
Note that for increase of the x component in the lower spin
I <∼ 16, both neutron and proton contribute, which suggests
that there is non-negligible amount of collective angular
momentum for it. This is consistent with the classical model
in Eq. (9). Namely, collective angular momentum increases in
the xz plane below the critical spin Ic, while its y component
starts to increase after Ic with constant xz components. Thus,
the ideal situation of the chiral geometry is realized in this
case by our fully microscopic angular-momentum-projection
calculation. A similar analysis of the expectation values of
angular-momentum vectors has been performed within the
particle-rotor model in Refs. [32,33], which allows one to
discriminate between collective core and quasiparticle angular-
momenta in contrast to our microscopic analysis.

One of the merits of the angular-momentum-projection
method is that the electromagnetic transition rates between
any eigenstates can be calculated straightforwardly. In the
present work, we concentrate on the in-band and out-of-band
transitions for the two lowest �I = 1 bands, the yrast and
the yrare bands, obtained by configuration mixing of the
two configurations (i) and (ii) in Eq. (13). The I → I − 2

rotational E2 transition rates are shown in Fig. 8. The in-
band transitions are always large. In fact the large B(E2 :
I → I − 2) values are used to define each rotational band.
The in-band transition rates are similar for the pair of the
yrast and yrare bands, where those of the yrare band are
slightly larger at lower spins, I � 17, while those of the yrast
band are slightly larger at higher spins, I � 22. In contrast,
the out-of-band transition probabilities are generally small,
although they are non-negligible in 17 � I � 23, where the
splitting of the energies of the two bands are smallest and the
mixing between them is expected. Note that the out-of-band
transitions from the yrare to the yrast at low spins, I � 15,
are not so small, while those from the yrast to the yrare are
very small, which is characteristic for chiral vibrations. The
increasing behavior of the in-band E2 transitions results from
the change of direction of the angular-momentum vector in
the intrinsic frame for the fixed deformation of the mean
field. In the semiclassical approximation the B(E2) values
are proportional to |〈x2

j − x2
k 〉|2 for the rotation about the ith

principal axis (ijk-cyclic), and for rotation about the tilted axis
the transition amplitudes are given by the linear combination
of these moments 〈x2

j − x2
k 〉 depending on the angles of the

angular-momentum vector (c.f. the formulas in Refs. [34,35]).
In the present case, 0 < γ < 60◦, the moment 〈z2 − x2〉 is
largest and the maximum value of B(E2) is expected for the
rotation about they axis, which is realized at much higher spins,
see the left panel of Fig. 6. This increase of the rotational B(E2)
values has been also seen in the particle-rotor model calculation
of Ref. [33]. However, the measured rotational B(E2) values
[36] do not show such increase with spin; they even slightly
decrease at highest spins observed. Moreover, the calculated
B(E2) values are about factor two larger than the measured
values; this is because the value of β2 employed in the present
study is too large as mentioned previously. Therefore, we do
not attempt to make detailed comparison with experimental
data except for the B(M1)in/B(M1)out ratio.

The characteristic geometry of the static chirality is reflected
in the �I = 1 electromagnetic transition rates as it is reviewed
in Sec. III A. We show the I → I − 1 E2 and M1 transition
rates as functions of spin in Fig. 9 (both in-band and out-of-
band transitions). It is clearly seen that the behavior of both
E2 and M1 transitions changes around I = 16. The B(E2)
and B(M1) for the yrast and yrare bands become similar after
the chiral geometry is realized in I >∼ 16. For I <∼ 15 the
in-band transitions are larger than the out-of-band transitions.
For I >∼ 16 the in-band and out-of-band transitions are of
similar magnitude, and both of them show the characteristic
zigzag pattern. Especially, the in-band (out-of-band) transition
rates are prohibitively small at even (odd) spins, and which
transition is stronger, the in-band or the out-of-band, changes
alternatively as a function of spin. This is exactly what is
expected from the prototype model of Ref. [12] (see Fig. 1). As
often shown in the experimental data, the B(M1)/B(E2) ratios
for the yrast and yrare bands are displayed in a logarithmic
scale in the left panel of Fig. 10. Again, the behavior of the
ratios changes after the critical spin and clearly shows a regular
zigzag pattern, which comes from the M1 transitions. As it is
discussed in Sec. III A, the clear signature of this ideal scenario
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from that in the left panel. Shown are the results of the configuration-mixed projection calculation corresponding to Fig. 5.

can be seen for the ratio of in-band versus out-of-band M1
transitions, which is compared with experimental data [27]
in the right panel of Fig. 10. For I >∼ 17 this ratio alternates
values greater than one at odd spin and smaller than one at even
spin alternatively, which well corresponds to experimentally
observed feature, although the spin range is slightly shifted
as expected from the excitation energies in the right panel
of Fig. 5. In this way, the result of the present microscopic
calculation clearly shows the characteristic behavior of the
chiral geometry predicted by the phenomenological model of
Ref. [12] not only for the energy spectrum but also for the
transition rates.

To see the effect of the triaxial deformation we have done
the same calculation using smaller values of γ than 30◦:
The resultant energy difference between the yrast and yrare
bands increases and the amplitude of the zigzag behavior of

the I → I − 1 E2 and M1 transitions decreases, while the
I → I − 2 rotational E2 transitions do not essentially change.
As an example, we show the result of the B(M1)/B(E2)
and B(M1)in/B(M1)out ratios in Fig. 11, which is obtained
by the calculation using γ (WS) = 25◦ and keeping the other
parameters unchanged. Note that γ (WS) = 25◦ corresponds to
γ (den) = 19.3◦. As it is seen in Fig. 2, the moment of inertia
Jx is about factor two larger than Jz in contrast to the case of
γ (WS) = 30◦ with Jx ≈ Jz, which is the necessary condition
for the model of Ref. [12]. The minimum energy difference
between the yrast and yrare bands in this case is about 340 keV
at I = 21, which is about a factor of three larger than that in
the case of γ (WS) = 30◦. As it is clearly seen by comparing
Fig. 11 with Fig. 10, the amplitude of the zigzag behavior is
reduced by one to two orders of magnitude. Therefore, as it
is emphasized in Ref. [12], the B(M1)in/B(M1)out ratio tells
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lines) as functions of spin in 128Cs. The top (bottom) panels show the in-band (out-of-band) transition rates. These are the results of the
configuration-mixed projection calculation corresponding to Fig. 5.
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how well the situation of the model is realized. These results are
consistent with those of the particle-rotor model in Ref. [33],
where the results of calculations with several different γ values
are presented.

C. Chiral doublet band in 104Rh

As another example of a chiral doublet band in an odd-odd
nucleus, we present the result of calculations for 104Rh, where
the odd neutron occupies the particlelike negative parity orbit
(mainly h11/2) and the odd proton occupies the holelike positive
parity orbit (mainly g9/2). In this case the high-j orbits of the
odd neutron and proton are different. The resultant rotational
band has negative parity. The calculational procedure is the
same as for 128Cs. The adopted deformation parameters are
β2 = 0.25, β4 = 0.0, and γ = 30◦, for which we have found
that a chiral doublet band appears in the calculations. Note
that γ = γ (WS) = 30◦ corresponds to γ (den) = 24.9◦ in this
case. The average pairing gaps, calculated self-consistently,
are �n = 0.95 MeV and �p = 0.76 MeV for neutrons and
protons, respectively. The adopted value, β2 = 0.25, is again
larger than the commonly used value, β2 ≈ 0.18–0.23, in the
nuclear region around 104Rh. For this nucleus we show only
the result of projection from the non-cranked mean-field state
constructed by the configuration (i) in Eq. (13) for simplicity;
other results are qualitatively similar.

The calculated spectrum is displayed in the left panel of
Fig. 12. The rigid-rotor reference energy 0.017 I (I + 1) MeV
is subtracted to see the details more clearly. Just like the
case of 128Cs in Fig. 4, the even-I and odd-I sequences
are nearly degenerate indicating the signature symmetry is
strongly broken. The lowest two �I = 1 bands, which are
separated by more than 1 MeV at low spins, quickly approach
each other within about 200 − 350 keV in the spin range
14 <∼ I <∼ 20. The estimated critical spin Ic ≈ 12 in Eq. (10)
is slightly smaller than the spin where the two bands become
almost degenerate. This behavior rather well corresponds to
the observed one [37], although the moments of inertia of these
bands are underestimated compared with the experimental data
as it is shown in the right panel of Fig. 12. The chiral geometry
is confirmed also in this case by the expectation values of the
angular-momentum vector in the intrinsic frame, which are
depicted in Fig. 13. At the low spins, I <∼ 8, the components
of the short (x) and long (z) axes are dominant for the yrast
band, while the component of the medium (y) axis quickly
grows. All three components give important contributions at
the intermediate spin region; see the left panel of Fig. 13. As
it is discussed in the case of 128Cs, the y component of the
angular-momentum vector for the yrare band is considerably
larger than that for the yrast band at I <∼ 15, which indicates
that the yrare band can be interpreted as one-phonon excitation
of the chiral vibration at this lower spin region. As expected,

 0.01

 0.1

 1

 10

 100

 10  15  20  25  30

128Cs

(a)

γ (WS)=25˚

B(
M

1)
 / 

B(
E2

)  [
(μ

N
/e

b)
2 ]

I [−h]

B(M1)/B(E2) (yrare)
B(M1)/B(E2) (yrast)

 0.01

 0.1

 1

 10

 100

 10  15  20  25  30

(b)

γ (WS)=25˚B(
M

1)
in

 / 
B(

M
1)

ou
t

I [−h]

Cal.
Exp.
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for I >∼ 16 the behavior of the angular-momentum vectors
indicates that the system is in the regime of the static chirality.

Looking into the right panel of Fig. 13, where the neutron
and proton contributions are displayed separately, the main
contribution comes from the neutron for the x component and
from the proton for the z component, while both neutron and
proton coherently contribute to the y component as expected
for collective angular momentum. The axis with the largest
moment inertia is the y axis as it is seen from the cranking
inertias of the core nucleus in Fig. 3. This collective angular-
momentum component is very small below Ic and starts to
increase at higher spins I > Ic. Below Ic, the collective part
lies mainly in the xz plane with the x component being more
favored as in the case of 128Cs, but neutrons contribute to it
more than protons in contrast to 128Cs. This behavior is again
consistent with the model in Sec. III A. Thus, the expected
transition from the regime of the chiral vibration to that of the
static chirality is also confirmed in this case.

The B(E2) and B(M1) values inside the yrast and yrare
bands as well between the two bands are also calculated for
104Rh. The I → I − 2 stretched B(E2) values are displayed
in Fig. 14. It is seen that the in-band values are large and
are similar for the yrast and the yrare bands. These rotational

transition probabilities increase as functions of spin, which cor-
responds to the fact that the direction of the angular-momentum
vector changes gradually to the medium (y) axis as the spin
increases, as it is shown in Fig. 13. The out-of-band transitions
are non-negligible for 16 � I � 19, where the difference of
energies between the two bands is very small and band mixing
is expected. These features are very similar to the case of 128Cs.
The B(E2) values seem to be overestimated compared with
the experimental data [38], because the deformation parameter
β2 = 0.25 may be too large.

The calculated B(E2 : I → I − 1) and B(M1 : I → I −
1) values are shown in Fig. 15 in the same way as in the case
of 128Cs. The behavior of both B(E2) and B(M1) as functions
of spin changes at around I ≈ 15; after this spin they exhibit
typical zigzag behavior, which is expected after the static
chirality is realized. As it is predicted in the prototype model
of Ref. [12], the in-band transitions are large when the out-of-
band transitions are small and vice versa. In case of 104Rh the
in-band (out-of-band) transitions are almost negligible for odd
(even) spins, which is opposite to the case of 128Cs. This may be
expected because both the particle and hole orbits are mainly
h11/2 in 128Cs, while the proton hole orbit in 104Rh is mainly
g9/2: If one h11/2 hole is replaced with gg/2, the coupled total
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FIG. 13. The calculated expectation values of the angular-momentum vector in the intrinsic frame for the noncranked mean-field of 104Rh
corresponding to the spectrum in Fig. 12. The left panel shows the expectation values of the total vector for the yrast (filled symbols) and yrare
(open symbols) �I = 1 bands, while the right panel shows the neutron (filled symbols) and proton (open symbols) contributions in Eq. (8)
separately for the yrast band. Note that the x, y, and z axes are the short, medium, and long axes, respectively.
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different from that in the left panel. These are the results of projection from the non-cranked lowest configuration (i) in Eq. (13) corresponding
to Fig. 12.

spin may be reduced by one unit. Finally, the B(M1)/B(E2)
ratio and the in-band versus out-of-band B(M1) ratio are
shown in the logarithmic scale in the left and right panels of
Fig. 16, respectively. As discussed in the case of 128Cs, The
B(M1)/B(E2) ratio changes to the regular zigzag behavior
after the chiral geometry is realized, which reflects the behavior
of the B(M1) values. The in-band versus out-of-band B(M1)
ratio also shows a characteristic pattern, namely it alternates
between values greater than one and smaller than one as a
function of spin. This is the expected behavior from the model
in Ref. [12] (see Fig. 1). However, it should be noted that the
neutron-proton symmetry prerequisite in the model of Ref. [12]
is not precisely satisfied in the present example, because the
high-j orbits of the odd neutron and proton are different.
It is interesting that the calculation shows the characteristic

selection rules of the model even in this case. In fact, the
particle-rotor model calculation with proton g9/2 and neutron
h11/2 orbits in Ref. [39] shows similar zigzag behavior for
B(M1) for the neighboring nucleus 106Rh. Although the zigzag
behavior of B(M1) are observed in the experimental data
[37,38], its amplitude is too large in the present calculation.
The observed doublet band may not come as close to the model
of Ref. [12] as our calculations.

Finally, we show the results of a calculation using γ =
γ (WS) = 25◦ for this nucleus. Note that γ = γ (WS) = 25◦
corresponds to γ (den) = 20.2◦ in this case. The moment of
inertia Jx is about factor two larger than Jz (see Fig. 3).
Figure 17 depicts the B(M1)/B(E2) and B(M1)in/B(M1)out

ratios like Fig. 16. Apparently, the magnitude of the os-
cillation of the B(M1) values are reduced by one to two

0.00

0.05

0.10

0.15

0.20

0.25

 10  15  20  25  30

(a) 104Rh

B(
E2

:I
→

I−
1)

in
 [e

2 b2 ]

yrast
yrare

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 10  15  20  25  30

(b) 104Rh

B(
M

1:
I →

I−
1)

in
 [μ

N
2 ]

yrast
yrare

0.00

0.05

0.10

0.15

0.20

0.25

 10  15  20  25  30

(c) 104Rh

B(
E2

:I
→

I−
1)

ou
t [

e2 b2 ]

I [−h]

yrast→yrare
yrare→yrast

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 10  15  20  25  30

(d) 104Rh

B(
M

1:
I→

I−
1)

ou
t [

μ N
2 ]

I [−h]

yrast→yrare
yrare→yrast

FIG. 15. The calculated B(E2 : I → I − 1) and B(M1 : I → I − 1) values for the yrast band (solid lines) and the yrare band (dashed
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from the noncranked lowest configuration (i) in Eq. (13) corresponding to Fig. 12.
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where the in-band transitions are those inside the yrare band and the out-of-band transitions are those from the yrare to the yrast band. These
are the results of projection from the noncranked mean-field corresponding to Fig. 12.

orders of magnitude. The out-of-band B(M1) values become
smaller than the in-band values, and the center of the oscil-
lations is changed to a value that is considerably larger than
one.

IV. SUMMARY

In this series of investigation, we have studied rotational
motion that is characteristic for nuclei with triaxial deforma-
tion. The basic method we employed is the fully microscopic
framework of angular-momentum projection from the mean-
field wave function, where the microscopic Hamiltonian is
composed of the Woods-Saxon mean-field and the separable
schematic interaction. Among various interesting types of ro-
tational motion, we have concentrated on the nuclear wobbling
motion and the chiral vibrations and rotations. The former is
the subject of part I and the latter is the subject of the present
part II in the series.

The nuclear chirality of rotating triaxially deformed nucleus
is a relatively new concept and it is expected in odd-odd
nuclei as typical examples. We have applied our microscopic
framework to the typical cases of two odd-odd nuclei, 128Cs
and 104Rh, where the odd proton (neutron) occupies the high-j
particlelike orbit and the odd neutron (proton) occupies the
high-j holelike orbit in the former (latter) nucleus. The odd
nucleons occupying the particlelike and holelike orbits align

their angular-momentum vectors along the short and long axes,
respectively. Combined with the collective rotation around the
medium axis, which has the largest moment of inertia, these
three angular-momentum vectors form an aplanar configura-
tion, i.e., the chiral geometry is realized in the body-fixed
frame of the triaxial mean field. In such a situation the chiral
symmetry between the right- and left-handedness is broken,
which is the reason why the chiral doublet band emerges [10].
Adjusting the quadrupole deformation parameter β2 and fixing
the triaxiality parameter at γ (WS) = 30◦ we are able to obtain
the yrast and yrare bands as a chiral doublet by our fully
microscopic angular-momentum-projection calculation. By
calculating the expectation values of the angular-momentum
vector with respect to the three principal axes, it is confirmed
that the chiral geometry is realized for the selected examples
of 128Cs and 104Rh. However, the moments of inertia of the
calculated bands are too small compared with the experimental
data. One of the merits of the angular-momentum-projection
method is feasibility for calculating the electromagnetic transi-
tion probabilities. We have studied the E2 and M1 transitions
between the members of the doublet bands. It is demonstrated
that the I → I − 1 transition rates completely change their
behavior after the static chirality is reached. Large and small
reduced probabilities alternate as functions of spin, and this
behavior is out of phase for the in-band and out-of-band
transitions. This characteristic feature is in accordance with
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the prototype model proposed in Ref. [12], and qualitatively
corresponds to the experimental data for both 128Cs and 104Rh.

In this way, we have confirmed that the two interesting types
of rotational motion, the wobbling motion and the chiral rota-
tion, which are characteristic for the triaxially deformed nuclei,
naturally emerge as results of our fully microscopic angular-
momentum-projection calculation. The wobbling bands and
chiral doublet bands were originally predicted based on the

macroscopic rotor model or the phenomenological particle-
rotor coupling model. Considering the fact that the predicted
properties by these models are confirmed by our microscopic
calculations, the macroscopic rotor model picture is well
realized for the triaxially deformed nucleus. It should, however,
be noticed that a quantitative description of these rotational
bands is not achieved in the present series of work. Further
investigation is needed for a quantitative description of the data.
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M. Kisieliński, S. G. Rohoziński, T. Koike, K. Starosta, A.
Kordyasz, P. J. Napiorkowski, M. Wolińska-Cichocka, E. Ru-
chowska, W. Płóciennik, and J. Perkowski, Phys. Rev. Lett. 97,
172501 (2006).

[37] C. Vaman, D. B. Fossan, T. Koike, K. Starosta, I. Y.
Lee, and A. O. Macchiavelli, Phys. Rev. Lett. 92, 032501
(2004).

[38] T. Suzuki, G. Rainovski, T. Koike, T. Ahn, M. P. Carpenter,
A. Costin, M. Danchev, A. Dewald, R. V. F. Janssens, P. Joshi,
C. J. Lister, O. Möller, N. Pietralla, T. Shinozuka, J. Timár, R.
Wadsworth, C. Vaman, and S. Zhu, Phys. Rev. C 78, 031302(R)
(2008).

[39] P. Joshi et al., Phys. Lett. B 595, 135 (2004).

024319-14

https://doi.org/10.1103/PhysRevLett.97.162502
https://doi.org/10.1103/PhysRevLett.97.162502
https://doi.org/10.1103/PhysRevLett.97.162502
https://doi.org/10.1103/PhysRevLett.97.162502
https://doi.org/10.1103/RevModPhys.55.949
https://doi.org/10.1103/RevModPhys.55.949
https://doi.org/10.1103/RevModPhys.55.949
https://doi.org/10.1103/RevModPhys.55.949
https://doi.org/10.1103/RevModPhys.73.463
https://doi.org/10.1103/RevModPhys.73.463
https://doi.org/10.1103/RevModPhys.73.463
https://doi.org/10.1103/RevModPhys.73.463
https://doi.org/10.1103/PhysRevLett.86.5866
https://doi.org/10.1103/PhysRevLett.86.5866
https://doi.org/10.1103/PhysRevLett.86.5866
https://doi.org/10.1103/PhysRevLett.86.5866
https://doi.org/10.1088/0031-8949/91/7/073008
https://doi.org/10.1088/0031-8949/91/7/073008
https://doi.org/10.1088/0031-8949/91/7/073008
https://doi.org/10.1088/0031-8949/91/7/073008
https://doi.org/10.1103/PhysRevC.97.024318
https://doi.org/10.1103/PhysRevC.97.024318
https://doi.org/10.1103/PhysRevC.97.024318
https://doi.org/10.1103/PhysRevC.97.024318
https://doi.org/10.1016/S0375-9474(97)00004-3
https://doi.org/10.1016/S0375-9474(97)00004-3
https://doi.org/10.1016/S0375-9474(97)00004-3
https://doi.org/10.1016/S0375-9474(97)00004-3
https://doi.org/10.1088/1402-4896/aa800e
https://doi.org/10.1088/1402-4896/aa800e
https://doi.org/10.1088/1402-4896/aa800e
https://doi.org/10.1088/1402-4896/aa800e
https://doi.org/10.1103/PhysRevLett.93.172502
https://doi.org/10.1103/PhysRevLett.93.172502
https://doi.org/10.1103/PhysRevLett.93.172502
https://doi.org/10.1103/PhysRevLett.93.172502
https://doi.org/10.1143/PTP.127.79
https://doi.org/10.1143/PTP.127.79
https://doi.org/10.1143/PTP.127.79
https://doi.org/10.1143/PTP.127.79
https://doi.org/10.1103/PhysRevC.87.054306
https://doi.org/10.1103/PhysRevC.87.054306
https://doi.org/10.1103/PhysRevC.87.054306
https://doi.org/10.1103/PhysRevC.87.054306
https://doi.org/10.1088/0954-3899/42/1/015106
https://doi.org/10.1088/0954-3899/42/1/015106
https://doi.org/10.1088/0954-3899/42/1/015106
https://doi.org/10.1088/0954-3899/42/1/015106
https://doi.org/10.1103/PhysRevC.93.024323
https://doi.org/10.1103/PhysRevC.93.024323
https://doi.org/10.1103/PhysRevC.93.024323
https://doi.org/10.1103/PhysRevC.93.024323
https://doi.org/10.1093/ptep/ptv073
https://doi.org/10.1093/ptep/ptv073
https://doi.org/10.1093/ptep/ptv073
https://doi.org/10.1093/ptep/ptv073
https://doi.org/10.1103/PhysRevC.93.044317
https://doi.org/10.1103/PhysRevC.93.044317
https://doi.org/10.1103/PhysRevC.93.044317
https://doi.org/10.1103/PhysRevC.93.044317
https://doi.org/10.1016/j.physletb.2011.12.035
https://doi.org/10.1016/j.physletb.2011.12.035
https://doi.org/10.1016/j.physletb.2011.12.035
https://doi.org/10.1016/j.physletb.2011.12.035
https://doi.org/10.1088/0031-8949/91/4/043005
https://doi.org/10.1088/0031-8949/91/4/043005
https://doi.org/10.1088/0031-8949/91/4/043005
https://doi.org/10.1088/0031-8949/91/4/043005
https://doi.org/10.1088/0031-8949/91/6/063015
https://doi.org/10.1088/0031-8949/91/6/063015
https://doi.org/10.1088/0031-8949/91/6/063015
https://doi.org/10.1088/0031-8949/91/6/063015
https://doi.org/10.1088/0031-8949/89/5/054013
https://doi.org/10.1088/0031-8949/89/5/054013
https://doi.org/10.1088/0031-8949/89/5/054013
https://doi.org/10.1088/0031-8949/89/5/054013
https://doi.org/10.1016/0375-9474(85)90541-X
https://doi.org/10.1016/0375-9474(85)90541-X
https://doi.org/10.1016/0375-9474(85)90541-X
https://doi.org/10.1016/0375-9474(85)90541-X
https://doi.org/10.1103/PhysRevC.77.024319
https://doi.org/10.1103/PhysRevC.77.024319
https://doi.org/10.1103/PhysRevC.77.024319
https://doi.org/10.1103/PhysRevC.77.024319
https://doi.org/10.1103/PhysRevLett.86.971
https://doi.org/10.1103/PhysRevLett.86.971
https://doi.org/10.1103/PhysRevLett.86.971
https://doi.org/10.1103/PhysRevLett.86.971
https://doi.org/10.1103/PhysRevC.67.044319
https://doi.org/10.1103/PhysRevC.67.044319
https://doi.org/10.1103/PhysRevC.67.044319
https://doi.org/10.1103/PhysRevC.67.044319
https://doi.org/10.1103/PhysRevC.83.054308
https://doi.org/10.1103/PhysRevC.83.054308
https://doi.org/10.1103/PhysRevC.83.054308
https://doi.org/10.1103/PhysRevC.83.054308
https://doi.org/10.1103/PhysRevLett.93.052501
https://doi.org/10.1103/PhysRevLett.93.052501
https://doi.org/10.1103/PhysRevLett.93.052501
https://doi.org/10.1103/PhysRevLett.93.052501
https://doi.org/10.1103/PhysRevLett.84.5732
https://doi.org/10.1103/PhysRevLett.84.5732
https://doi.org/10.1103/PhysRevLett.84.5732
https://doi.org/10.1103/PhysRevLett.84.5732
https://doi.org/10.1103/PhysRevLett.91.132501
https://doi.org/10.1103/PhysRevLett.91.132501
https://doi.org/10.1103/PhysRevLett.91.132501
https://doi.org/10.1103/PhysRevLett.91.132501
https://doi.org/10.1016/j.physletb.2009.02.061
https://doi.org/10.1016/j.physletb.2009.02.061
https://doi.org/10.1016/j.physletb.2009.02.061
https://doi.org/10.1016/j.physletb.2009.02.061
https://doi.org/10.1103/PhysRevC.79.041302
https://doi.org/10.1103/PhysRevC.79.041302
https://doi.org/10.1103/PhysRevC.79.041302
https://doi.org/10.1103/PhysRevC.79.041302
https://doi.org/10.1016/0375-9474(93)90546-A
https://doi.org/10.1016/0375-9474(93)90546-A
https://doi.org/10.1016/0375-9474(93)90546-A
https://doi.org/10.1016/0375-9474(93)90546-A
https://doi.org/10.1016/S0375-9474(00)00308-0
https://doi.org/10.1016/S0375-9474(00)00308-0
https://doi.org/10.1016/S0375-9474(00)00308-0
https://doi.org/10.1016/S0375-9474(00)00308-0
https://doi.org/10.1103/PhysRevLett.97.172501
https://doi.org/10.1103/PhysRevLett.97.172501
https://doi.org/10.1103/PhysRevLett.97.172501
https://doi.org/10.1103/PhysRevLett.97.172501
https://doi.org/10.1103/PhysRevLett.92.032501
https://doi.org/10.1103/PhysRevLett.92.032501
https://doi.org/10.1103/PhysRevLett.92.032501
https://doi.org/10.1103/PhysRevLett.92.032501
https://doi.org/10.1103/PhysRevC.78.031302
https://doi.org/10.1103/PhysRevC.78.031302
https://doi.org/10.1103/PhysRevC.78.031302
https://doi.org/10.1103/PhysRevC.78.031302
https://doi.org/10.1016/j.physletb.2004.05.066
https://doi.org/10.1016/j.physletb.2004.05.066
https://doi.org/10.1016/j.physletb.2004.05.066
https://doi.org/10.1016/j.physletb.2004.05.066



