
PHYSICAL REVIEW C 97, 024318 (2018)

Rotational motion of triaxially deformed nuclei studied by the microscopic
angular-momentum-projection method. I. Nuclear wobbling motion
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Rotation of triaxially deformed nucleus has been an interesting subject in the study of nuclear structure. In
the present series of work, we investigate wobbling motion and chiral rotation by employing the microscopic
framework of angular-momentum projection from cranked triaxially deformed mean-field states. In this first part,
the wobbling motion is studied in detail. The consequences of the three-dimensional cranking are investigated.
It is demonstrated that the multiple wobbling rotational bands naturally appear as a result of fully microscopic
calculation. They have the characteristic properties that are expected from the macroscopic triaxial-rotor model
or the phenomenological particle-triaxial-rotor model, although quantitative agreement with the existing data is
not achieved. It is also found that the excitation spectrum reflects dynamics of the angular-momentum vector
in the intrinsic frame of the mean field (transverse vs longitudinal wobbling). The results obtained by using the
Woods-Saxon potential and the schematic separable interaction are mainly discussed, while some results with
the Gogny D1S interaction are also presented.
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I. INTRODUCTION

Nuclear triaxial deformation has been a long-standing issue
in the field of nuclear structure [1]. It is predicted that rather a
small number of nuclei are triaxially deformed in their ground
states (see, e.g., Ref. [2]). Near the ground state, however,
it is very difficult to confirm that a deformed nucleus has a
triaxial shape. Sometimes the existence of theγ band is taken as
evidence of triaxiality. However, its excitation energy, typically
about 800 keV–1 MeV in the rare-earth-metal region, is about
an order of magnitude larger than the typical rotational (first
2+) energy and its standard interpretation is a low-lying shape
vibration around the (nearly) axially symmetric shape [1].

The situation changes at high spin (see, e.g., Refs. [3–5]
and references therein). In the region of the sizable amount
of the angular momentum, the orientation of the angular-
momentum vector relative to the intrinsic nuclear shape comes
into play. Collective rotation about all three principal axes is
allowed in the triaxially deformed case so that the angular-
momentum vector can tilt from the principal axes, which
leads to multiple-band structure called wobbling [1]. Note
that the spectrum is quite different from much simpler ones
in nuclei with axially symmetric deformed mean fields. In
fact, the characteristic band structure of the wobbling motion
has been measured first in the 163Lu nucleus [6] (see, e.g.,
Refs. [7,8] for recent theoretical review articles). Another
specific rotational structure expected in triaxially deformed
nuclei is the appearance of chiral doublet bands, first predicted
in Ref. [9]. Their analysis is reported in the second part of this
study.

It must be emphasized that these interesting types of
rotational motion associated with the triaxial deformation
have been predicted by phenomenological models such as the
triaxial-rotor model [1] and the particle-triaxial-rotor model

[9]. It is certainly desirable to confirm that such rotational
motion appears by employing a fully microscopic framework,
which is the main purpose of the present work. If necessary
for the description of high-spin states, we rely on the cranking
procedure applied to the triaxially deformed mean field (see,
e.g., Ref. [4]). In order to recover the rotational symmetry of
the states, we apply the angular-momentum-projection method
(see, e.g., Ref. [10]). Since almost all the symmetries except
for the space inversion (parity) are broken by the triaxial mean-
field state in the present investigation, an efficient method of
performing the projection calculation is necessary. We employ
the method developed in Ref. [11], which has been successfully
applied to the study of the nuclear tetrahedral deformation
[12,13], the γ vibration [14], and the ground-state rotational
bands [15,16] in rare-earth-metal nuclei.

It is worth mentioning that the angular-momentum-
projection technique has been utilized with great success by
the so-called projected shell model (PSM) [17] (see also recent
review articles [18,19]). Although both our approach and the
PSM rely on the angular-momentum-projection technique, the
basic philosophy is different: In order to improve the results
for high-spin states, the multiquasiparticle configurations are
successively included in the PSM basis with the goal that the
shell-model configuration mixing will converge. We optimize
the mean-field states as much as possible by the cranking
procedure, which has been known to be a powerful method
for the description of high-spin states [4]. We believe that
our approach provides a good alternative to the PSM, since
the cranked mean-field efficiently incorporates the important
multiquasiparticle configurations.

The paper is organized as follows. We briefly present our
approach in Sec. II, where it is explained how to construct the
mean field and choose the Hamiltonian. In Sec. III, the wob-
bling band in the 163Lu nucleus is investigated. The differences
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between recently proposed “transverse” and “longitudinal”
wobbling [20] are studied in detail by our fully microscopic
approach. We should admit that we are not able to obtain good
agreement with existing experimental data in the present work.
However, we believe that it is totally nontrivial to show that
the wobbling motion naturally appears as a result of the fully
microscopic calculation. Section IV is devoted to summary
of the present study. Few preliminary results were already
published in Ref. [21].

II. BASIC FORMULATION

The purpose of the present work is to study, with the
microscopic angular-momentum-projection method, how the
characteristic rotational features of the triaxially deformed
nuclei appear and what kind of properties they have. For
such a purpose, it is preferable to be able to change the
mean-field parameters, like the deformation parameters and
the pairing gaps, arbitrarily. Therefore, we employ a model
composed of the phenomenological Woods-Saxon potential
and a schematic separable interaction, which has been utilized
in Refs. [11,12]. The eigenstates of rotational band are obtained
by angular-momentum projection from the mean-field state
|�〉, ∣∣�I

Mα

〉 =
∑
K

gI
K,α P̂ I

MK |�〉, (1)

where the operator P̂ I
MK is the angular-momentum projector.

The amplitudes gI
K,α are determined by the Hill-Wheeler

equation (see, e.g., Ref. [10]),∑
K ′

HI
K,K ′ gI

K ′,α = EI
α

∑
K ′

N I
K,K ′ gI

K ′,α, (2)

with the definition of the Hamiltonian and norm kernels,{
HI

K,K ′

N I
K,K ′

}
= 〈�|

{
Ĥ
1

}
P̂ I

KK ′ |�〉. (3)

For some purpose, the properly normalized amplitudes f I
K,α

are needed instead of the amplitudes gI
K,α , which are defined

[10] by

f I
K,α =

∑
K ′

(
√
N I )K,K ′ gI

K ′,α, (4)

where the quantity
√
N I denotes the square-root matrix of

the norm kernel, from which the zero-norm states are properly
eliminated.

The Hamiltonian Ĥ in the present work is given by

Ĥ = ĥsph − 1

2
χ

∑
λ=2,3,4

: F̂
†
λ · F̂λ : −

∑
τ=n,p

∑
λ=0,2

gτ
λ Ĝ

τ†
λ · Ĝτ

λ,

(5)
where the index τ distinguishes the neutron and proton
contributions. The spherical mean field is composed of the
kinetic energy and Woods-Saxon potential terms, ĥsph =∑

τ=n,p(tτ + Vτ ), and the particle-hole interaction is isoscalar,

F̂λμ = ∑
τ=n,p F̂ τ

λμ, with F̂ τ
λμ = ∑

ij 〈i|F τ
λμ|j 〉c†i cj , while the

particle-particle (or pairing channel) interaction is given

for neutrons and protons (τ = n,p) separately with Ĝ
τ†
λμ ≡

1
2

∑
ij 〈i|Gτ

λμ|j 〉c†i c†j̃ (j̃ is the time-reversed conjugate state
of j ). In previous works [11,12], we have used different
form factors for the particle-hole and the pairing channel
interactions, while in the present work, we make use of a
common form factor for both of them, i.e.,

F τ
λμ(r) = Gτ

λμ(r) = R0τ

dV C
τ

dr
Yλμ(θ,φ), (6)

where V C
τ (r) is the central part of the spherical Woods-Saxon

potential and R0τ is its radius parameter. We believe that this
choice is more consistent, although the final results of the
angular-momentum-projection calculation do not differ very
much from the previous work, if the force strengths are suitably
chosen. Note that the smooth cutoff of the pairing model space
for the operator Ĝ should be done in exactly the same way as
in the previous work (see Refs. [11,12] for details).

The product-type mean-field state with the pairing correla-
tions, |�〉 in Eq. (1), is generated by the following mean-field
Hamiltonian:

ĥmf = ĥdef −
∑
τ=n,p

pτ
0

(
Ĝ

τ†
00 + Ĝτ

00

) −
∑
τ=n,p

λτ N̂τ − ωrot · Ĵ .

(7)

The first term ĥdef = ∑
τ (tτ + V (def)

τ ) is the deformed Woods-
Saxon single-particle Hamiltonian with the usual radius
parametrization,

R(θ,ϕ) = R0 cv({α})
⎡
⎣1 +

∑
λμ

α∗
λμYλμ(θ,ϕ)

⎤
⎦, (8)

which describes the deformed nuclear surface at the half depth
of the potential and the quantity cv({α}) guarantees volume
conservation. It is noted that the mean-field Hamiltonian is not
fully self-consistent with the two-body Hamiltonian in Eq. (5).
In this work, we employ λ = 2 and 4 deformations with the
parameters (β2,β4,γ ), where the so-called Lund convention
[22] is used for the sign of triaxiality parameter γ , which
means, for example, 〈x2〉 < 〈y2〉 < 〈z2〉 for 0◦ < γ < 60◦.
Here 〈x2〉 etc. are abbreviated notations of 〈∑A

a=1(x2)a〉 etc.,
which will be also used in the following discussions. The
parameter pτ

0 in the second term in Eq. (7) fixes the strength of
the monopole (L = 0) pairing potential. The third term takes
care the number conservation on average; i.e., the chemical
potential λτ is determined such that the particle number
condition, 〈N̂τ 〉 = Nτ is satisfied. Since the form factor of
the operator Ĝ

†
00 is not the simple (usual) monopole-pairing

operator, Ĝ
†
00 	= P̂ † ≡ 1

2

∑
i c

†
i c

†
ī
= ∑

i>0 c
†
i c

†
ī
, the parameter

pτ
0 is not the usual pairing gap, 
τ , which corresponds to

the even-odd mass difference. Instead we utilize the average
pairing gap,


τ ≡ pτ
0

〈
Ĝτ

00

〉/〈P̂ τ 〉, (9)

which is always uniquely related to the parameter pτ
0 . The last

term in Eq. (7) is the tilted-axis cranking term [23] with three
rotational frequencies, ωrot = (ωx,ωy,ωz). Since the cranking
procedure is performed for any (generally tilted) rotation axis,
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we can restrict the triaxial deformation parameter to the range,
0◦ � γ � 60◦.

Once the projected wave function (1) is obtained, it is
straightforward to calculate the electromagnetic transition
probabilities [10]. We use no effective charge for the cal-
culation of the B(E2) values because a large model space
(Nmax

osc = 12) is employed without any kind of “core.” The
effective spin g factor of 0.7gs,free is adopted for both neutrons
and protons for the calculation of the B(M1) values. In this
way, there is no ambiguity for the calculation of these reduced
transition probabilities.

We employ the parameter set of the Woods-Saxon potential
proposed by Wyss [24], the values of which are listed in
Ref. [25]. In Ref. [25], the wobbling motion was studied based
on the same Woods-Saxon mean field but with a different
microscopic framework [26], the quasiparticle random-phase-
approximation (QRPA), where only the excitation energy of the
one-phonon wobbling band can be calculated microscopically.
As for the force strengths of the interaction in Eq. (5), the
so-called self-consistent value given in Ref. [1] is used for the
particle-hole interaction, χ (see Refs. [11,12] for details). For
the particle-particle channels, gτ

λ , the monopole strength gτ
0

is determined so that the self-consistently determined pairing
parameter pτ

0 = gτ
0 〈Ĝτ

00〉 gives the proper average pairing
gap in Eq. (9). The values of the latter are set equal to the
even-odd mass difference for the ground state of even-even
nucleus, where the deformation parameters are determined by
the Woods-Saxon Strutinsky calculation of Ref. [27]. For the
odd-A or odd-odd nuclei, we use the average of the neighboring
even-even nuclei. The quadrupole pairing parameter gτ

2 is
assumed to be proportional to gτ

0 and the proportionality
constant is chosen to be gτ

2/gτ
0 = 1.980, which gives the

correct 2+ excitation energy of the ground-state rotational
band in a typical rare-earth-metal nucleus 164Er. Thus, the
Hamiltonian is not devised with the intention to describe the
wobbling bands or the chiral doublet bands.

In most of the present investigation, we employ the Woods-
Saxon mean field and the schematic interaction in Eq. (5). How-
ever, we also show some results of a more fully self-consistent
approach, the angular-momentum projection from the mean
field obtained by the self-consistent Hartree-Fock-Bogoliubov
(HFB) method with the finite-range Gogny D1S interaction
[28]. Recently, we have developed a computer code to perform
such calculations, and it has been applied in our previous works
[13–16]. For example, the ground-state rotational bands of the
rare-earth-metal nuclei can be naturally reproduced [15,16].
The self-consistent cranking procedure is employed just like in
Eq. (7), i.e., for Ĥ ′ = Ĥ − ωrot · Ĵ with the Gogny interaction
included in Ĥ . The calculational method is exactly the same
as in these references; in particular, the Slater approximation
is used in order to prevent vanishing pairing correlation for
protons in the ground state, although we can perform the
calculation without this approximation. In contrast to the
Woods-Saxon potential, the mean field is generated from
the effective interaction in the Gogny-HFB approach and the
self-consistent potential is nonlocal. Therefore, it is not easy
to characterize the nuclear shape by the mean-field potential in
this case: The shape of the mean field is specified by the density
distribution. We use the deformation parameters defined, as

usual, by

αλμ(den) ≡ 4π 〈Qλμ〉
3A R̄λ

, R̄ ≡
√√√√ 5

3A

〈
A∑

i=1

(r2)i

〉
, (10)

where Qλμ = rλYλμ is the mass λ-pole operator. In the same
way, the amount of the pairing correlation is characterized by
the average pairing gap,


̄ =
[
−

∑
a>b


abκ
∗
ab

][∑
a>0

κ∗
aã

]−1

,


ab =
∑
c>d

v̄ab,cd κcd, (11)

where the quantities v̄ab,cd and κab are the antisymmetrized
matrix element of the two-body interaction and the abnormal
pairing tensor, respectively [10]. In order to specify the intrinsic
coordinate system of the mean field, we impose the constraints
[29], α21(den) = α2−1(den) = 0 and α22(den) = α2−2(den),
and select the xyz coordinate axes to satisfy 〈x2〉 � 〈y2〉 �
〈z2〉 corresponding to the Lund convention of the triaxiality
parameter, 0 � γ � 60◦.

In the present work, we mainly report the result for single
mean field |�〉 with finite cranking frequencies [see Eq. (7)].
We employ the cranking procedure for changing the alignment
and moments of inertia in our microscopic framework. It
should, however, be emphasized that the cranking frequency is
not an adjustable parameter from the theoretical point of view.
It should be treated as a second generator coordinate combined
with the angular-momentum projection∣∣�I

M,α

〉 =
∫ ∑

K

gI
K,α(ωrot) P̂ I

MK |�cr(ωrot)〉 dωrot, (12)

which was originally proposed by Peierls and Thouless [30].
There are three cranking frequencies for triaxial cases. For
simplicity, only one dimension is shown in Eq. (12). We
have investigated this method, for the first time, for axially
deformed cases in Refs. [15,16] with the Gogny interaction.
The result is promising. We call it the angular-momentum-
projected multicranked configuration-mixing method. Practi-
cally, several cranked mean-field states, e.g., |�n〉 = |�(ω(n)

rot )〉,
n = 1,2, . . . ,Nmf , are configuration mixed,

∣∣�I
Mα

〉 =
Nmf∑
n=1

∑
K

gI
Kn,α P̂ I

MK |�n〉, (13)

which is the discrete approximation of Eq. (12). This extended
formulation is as straightforward as any generator-coordinate
method (GCM), although the numerical task becomes much
(N2

mf times) heavier because the norm and Hamiltonian kernels
should be evaluated between these several mean-field states.
An application of this method will be discussed in Sec. III G.

III. APPLICATION TO WOBBLING BAND

Wobbling motion is the quantized rotational motion of the
rigid rotor, which is a characteristic collective motion for
the triaxially deformed nucleus; see, e.g., Chaps. 4 and 5 of
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Ref. [1]. After long-lasting experimental efforts, it has been
first identified in 163Lu [6]. Nuclei in this region, Z ∼ 70–72
and N ∼ 92–98, exhibit the so-called triaxial superdeformed
(TSD) bands at high spin [31–33]. Therefore, we take the
nucleus 163Lu as a typical example. The Nilsson-Strutinsky cal-
culations predict deformation of ε2 ∼ 0.4 andγ ∼ 20◦ [36,43],
where ε2 is rather constant and the parameter γ only slightly
increases as a function of angular momentum. By converting
the deformation parameters to those of the Woods-Saxon
potential in Sec. II, we use mainly β2 = 0.42, β4 = 0.02, and
γ = 18◦ in the present work. The values of these parameters
are the same as the previous work [25]. Since we do not aim at
a detailed comparison with the experimental data, the pairing
gaps for neutrons and protons are chosen to be constant, 
n ≈

p ≈ 0.5 MeV, because the wobbling excitation is observed at
high-spin states where the pairing correlations are considerably
reduced. The calculations are performed within the isotropic
harmonic oscillator basis. The basis states are included up to the
maximum oscillator shells, Nmax

osc = 12. As for the number of
mesh points for the integration with respect to the Euler angles
(α,β,γ ) in the angular-momentum-projector [10], we mainly
use Nα = Nγ = 42, Nβ = 80, but sometimes increase them up
to Nα = Nγ = 68, Nβ = 126 to obtain the convergent result.
For solving the Hill-Wheeler Eq. (2), small-norm solutions
appear, which cause difficulties, see, e.g., Ref. [10], and should
be discarded. We solve the equation several times with different
norm cutoff values from 10−13 to 10−6, i.e., the solutions
that have smaller norm eigenvalues than these values are
eliminated, and we adopt the reasonable result with the smallest
possible value of the cutoff values. Here “reasonable” means
that, for example, the spectrum as a function of the spin I is
smooth enough.

We would like to mention that the self-consistently deter-
mined triaxiality parameter of the Nilsson potential γ (Nils) ∼
20◦, or of the Woods-Saxon potential γ (WS) ∼ 18◦, corre-
sponds to much smaller triaxial deformation γ (den) of the
density distribution for the mean-field state, which is defined
by

γ (den) ≡ tan−1

[
−

√
2〈Q22〉
〈Q20〉

]
; (14)

see Ref. [34] for the precise definitions of these various γ
parameters and discussion related to them. Namely,

γ (Nils) ∼ 20◦, γ (WS) ∼ 18◦ ⇔ γ (den) ∼ 11 − 12◦,

(15)

for the considered large deformation of ε2 ∼ 0.4 or β2 ∼
0.42. We have already confirmed in Ref. [35], which will
be discussed later in Sec. III F, that the self-consistent HFB
calculation with the Gogny D1S interaction also gives similar
triaxial deformation, γ (den) ≈ 11–12◦. With this relatively
small value of the triaxial deformation, the out-of-band B(E2)
for the excited TSD bands, which is a characteristic quantity to
identify the wobbling motion, is considerably underestimated
[25,34] (see also Ref. [36]). In Sec. III D, we will present
also the results of angular-momentum-projection calculations
with larger triaxial deformation than this self-consistently
determined value.

A. Longitudinal and transverse wobbling

Although the observed B(E2) values show the expected
property for wobbling-phonon bands [6,37,38], the phonon
excitation energy in the Lu isotopes decreases as a function
of angular momentum, which is in contrast to the original pre-
diction of the triaxial-rotor model [1]. Recently Frauendorf and
Dönau gave an interpretation [20] for this decreasing behavior
of the wobbling excitation energy within the simple triaxial
particle-rotor model: The presence of the odd proton in the
high-j i13/2 orbit can change the dependence of the excitation
energy on the angular momentum. This was already pointed out
in Ref. [39] but the interpretation was not appropriate (see also
Refs. [7,8]). We briefly discuss the essence below, following
Ref. [20].

Within the simple classical approximation, which is called
“frozen alignment” approximation in Ref. [20], the total
angular-momentum vector (Jx,Jy,Jz) with the aligned high-j
particle along the x axis of the deformed intrinsic body satisfies
the equations

J 2
x + J 2

y + J 2
z = I (I + 1),

(Jx − j )2

2Jx

+ J 2
y

2Jy

+ J 2
z

2Jz

= E, (16)

where the first one describes the conservation of angular
momentum and the second is the rotor model energy. Here the
quantitiesJx ,Jy , andJz are the moments of inertia of the core
nucleus in the intrinsic frame. For the fixed angular momentum
I , energy E, and the alignment j , the angular-momentum
vector moves along the trajectory given by the intersection
of the sphere and the ellipsoid shifted by the amount j in the
x direction as in Eq. (16). If the moments of inertia satisfy the
condition that the alignment axis is the axis with the largest
moment of inertia, i.e., Jx > Jy , Jz, the excitation energy
of the quantized wobbling motion monotonically increases
as a function of spin I in the same way as for the original
rotor model without the aligned particle. In this case, the
angular-momentum vector precesses always around the largest
inertia axis x. However, if the inertia of the alignment axis is
not the largest, for example, Jy > Jx > Jz, it is shown that
the excitation energy first increases and then decreases as a
function of I [20]: The one-phonon excitation energy vanishes
at the critical angular-momentum,

Ic = j
Jy

Jy − Jx

, (17)

which gives a transition from the principal-axis rotation (PAC)
to the tilted-axis rotation (TAC) [40]. In this case, the angular-
momentum vector precesses first around the alignment axis x,
but then its direction moves to the largest inertia axis y when
the spin increases; namely, a kind of transition of the main
rotation axis from one of the principal axes to the other occurs.
An instructive argument for the mechanism of this transition
can be found in Sec. 3.8.6 of Ref. [8]. It will be discussed
that the spin dependence of the excitation energies reflects this
change of the direction of the angular-momentum vector in the
intrinsic frame. Frauendorf-Dönau called these two different
cases longitudinal and transverse wobbling, respectively, in
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Ref. [20] to indicate the different center of the intersection
trajectory of Eq. (16) in each case. We will show that the simple
picture is indeed realized in the fully microscopic calculation
of angular-momentum projection.

B. Wobbling motion in even-even core nucleus

In order to study the wobbling spectrum, we first investigate
the “core” nucleus, i.e., the even-even neighbor 162Yb of the
odd-proton nucleus 163Lu. A brief research of the wobbling
motion in the even-even nucleus 164Er using the angular-
momentum-projection approach has been recently performed
in Ref. [14] in relation to the study of the γ vibrational band.
In fact, it is expected [41] that the high-spin extension of the
γ vibrational band changes its character to wobbling motion.
In contrast to Ref. [14], where the Gogny interaction has been
employed, we use in Sec. II the Woods-Saxon mean field and
the schematic interaction consistent with it. The mean-field
parameters, the deformations and the average pairing gaps, are
simply chosen to be the same as in 163Lu, which are explained
in the beginning of this section. It is shown that the result is
not very different from that in 164Er. It should, however, be
noted that this analysis is not realistic for the nucleus 162Yb:
The TSD state appears in the yrast region by occupying the
Nilsson orbits originating from the proton i13/2 state, which is
not occupied in the Yb isotopes in normal situations. So the
TSD states of the 162Yb in the present work has just a meaning
of the possible core state of the TSD bands of 163Lu.

As mentioned in the previous subsection, Sec. III A, the
values of the moments of inertia of the core nucleus are very
important to interpret the wobbling excitation energy [see, e.g.,
Eq. (16)]. In the fully microscopic framework of the present
work, the moments of inertia are not introduced explicitly but
they should be extracted from the resultant spectrum of calcu-
lation. However, there is no unique way to relate the calculated
energy spectrum to the three moments of inertia. We show the
cranking moments of inertia [10] in Fig. 1 as functions of the
γ deformation. They are calculated as Ji = limωi→0〈Ji〉/ωi ,
where ωi is the cranking frequency about the ith axis (i =
x,y,z) in Eq. (7). In Eq. (15), the values of the triaxiality
parameter specifying the Woods-Saxon potential shape γ (WS)
and that of the density distribution γ (den) are considerably
different, so that the inertias as functions of γ (WS) are shown
in Fig. 1(a), while those as functions of γ (den) are shown in
Fig. 1(b). The moments of inertia calculated with larger pairing
gaps, 
n = 
p = 1.0 MeV, which roughly correspond to the
ground-state values, are also shown in Fig. 1(c). For reference,
the macroscopic irrotational-flow inertias are also included in
Fig. 1(d). It can can be seen that the largest inertia is that of the
medium axis, i.e., the one of the y axis for 0 < γ < 60◦, as in
the case of irrotational flow. The calculated moments of inertia
as functions of γ (den) resemble more the irrotational-flow
inertias than those as functions of γ (WS), which is usually used
to specify the triaxiality of the Woods-Saxon potential. The γ
parameter of the irrotational moments of inertia is naturally
interpreted as that of the density distribution. However, the
relative values of three calculated moments of inertia are con-
siderably different from those of irrotational flow. For example,
at γ = 30◦, the irrotational flow Jy is four times larger than

Jx = Jz, while the microscopically calculatedJy is only about
two times larger. Moreover, the symmetry with respect to
γ = 30◦ is not present in the microscopic cranking moments
of inertia. It is known that the values of the cranking inertia are
generally different for the prolate and oblate shapes even with
the same β2 deformation. The “unnatural” bumplike behavior
of the calculated inertia Jx at γ (WS) ≈ 24◦ (γ (den) ≈ 16◦)
is due to a sharp level crossing of the neutron single-particle
Routhians at the Fermi surface (see, e.g., Fig. 1 of Ref. [25]).
Thus, the moments of inertia Jx and Jy at the triaxiality
parameter in Eq. (15) are comparable and satisfy Jy >∼ Jx �
Jz. An estimated value for the critical angular momentum
in Eq. (17) at γ (WS) = 18◦ is rather large, Ic ≈ 50.1, for
j = 13/2. It should be noticed that these values of the inertias
at the triaxiality in Eq. (15) are very similar to those in Ref. [20].

Now we show in Fig. 2 the spectrum calculated by angular-
momentum projection from the Woods-Saxon mean field with
the deformation parameters specified in the beginning of this
section, especially the γ deformation parameter in Eq. (15).
No cranking is performed for the mean-field state in the
upper panels. The lowest energy is chosen to be the energy
origin (E(I = 0) = 0), and the rigid-rotor reference energy
0.007 I (I + 1) MeV is subtracted here and in the following
calculations. The value 0.007 roughly corresponds to the one
obtained by the moment of inertia of the observed TSD1 band
in 163Lu. As is clearly seen in the figure, the spectrum shows
the multiple-band structure characteristic for the wobbling
motion. Note that only one rotational band appears if the mean
field is axially symmetric. In the right panels of the figure,
the excitation energies of the lowest bands are depicted as
functions of the angular momentum. The excitation energies
of the excited bands increase just as they are expected for
even-even nuclei [1]. The first excited band has odd spin and
the second excited band has even spin, etc. The signature of
the excited band changes alternatively. At the low-spin states,
the first and the second excited bands are almost degenerate
and compose the γ -band-like structure, 2+, 3+, 4+, . . . , but the
degeneracy is lifted after I >∼ 10. Note that we always refer the
spin values I in units of h̄. It should be mentioned, however,
that the calculated moment of inertia for the yrast band is rather
small, about J (1) ≈ 32 h̄2/MeV at I ≈ 20, where the first
moment of inertia is defined by

J (1)(I ) = (2I + 1)h̄2

E(I + 1) − E(I − 1)
. (18)

Compared with moment of inertia obtained for the observed
TSD1 band of 163Lu, the calculated value is less than half. It
has been pointed out that it is important to include the time-
odd components into the wave function to obtain the correct
moment of inertia. The easiest way to incorporate them is to use
small frequency cranking. We called it “infinitesimal cranking”
in Ref. [14], where it has been shown that the excitation energy
of the γ vibration and the moments of inertia both of the
ground-state band and of the γ band are improved. We show the
result of the projection from the infinitesimally cranked mean
field with ωx = ωy = ωz = 0.01 MeV/h̄ in the lower panels
in Fig. 2. Here the small cranking frequency 10 keV is chosen
to include the time-odd contributions without the higher order
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FIG. 1. Cranking moments of inertia of the three intrinsic axes, x, y, and z, which are the short, medium, and long axes and denoted by
dotted, solid, and dashed lines, respectively, as functions of the triaxiality parameter γ for the even-even core nucleus 162Yb of 163Lu. The
deformation parameters β2 = 0.42,β4 = 0.02 and the pairing gaps 
n = 
p = 0.5 MeV are employed for the upper panels, (a) and (b), and
the larger pairing gaps 
n = 
p = 1.0 MeV for panel (c). The γ parameter of the Woods-Saxon potential is utilized in panel (a) and that of
the density distribution, Eq. (14), in panels (b) and (c). Panel (d) shows the irrotational-flow moments of inertia in arbitrary units.

effects. The result is independent of the particular choice of
this value (see Ref. [14] for the proof). Comparing the upper
and lower panels of Fig. 2, the moment of inertia for the yrast
band is increased by infinitesimal cranking. However, the value
of J (1) ≈ 44 h̄2/MeV at I ≈ 20, is still considerably smaller
than experimental one even if one considers the fact that the
effect of alignment is present for J (1) of 163Lu. Therefore, we
are mainly concerned about the excitation energies from the
yrast band. The effect of infinitesimal cranking is also large for
the excitation energies of the multiple wobbling bands, and the
energies of the first and second excited bands start to split at
lower spin values. It is, however, noted that the basic feature of
the multiple wobbling bands are the same; e.g., the excitation
energies increase as functions of spin.

In order to study the dynamical motion of the angular-
momentum vector, we consider the expectation values of the
angular-momentum vector in the body-fixed frame specified
by the mean field, from which the projection is performed.
The expectation values of the components of the angular-

momentum vector in the intrinsic frame are not well-defined
quantities for the angular-momentum projected wave function
in Eq. (1). We follow the previous work [14] and define them
for the projected eigenstate α in the following way,

((
J 2

i

))
α

≡
∑
KK ′

f I∗
K,α 〈IK|J 2

i |IK ′〉 f I
K ′,α, (19)

where the index i = x,y,z denotes the axis specified by the
deformed intrinsic mean-field wave function |�〉, and the
amplitudes (f I

K,α) are the properly normalized ones in Eq. (4)
obtained by the projection calculation. Needless to say, the
purely algebraic quantity 〈IK|J 2

i |IK ′〉, e.g., 〈IK|J 2
z |IK ′〉 =

δKK ′K2, should be calculated in the intrinsic frame with
[Jx,Jy] = −ih̄Jz, etc. The microscopic geometrical informa-
tion is contained in the amplitudes f I

K,α . A more microscopic
definition by using the mean-field wave function with the
projection operator can be introduced, which is shown to be
consistent with the definition above; see the discussion in the
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FIG. 2. The calculated spectrum (left panels) and the relative excitation energies (right panels) for 162Yb obtained by the angular-momentum-
projection method. The rigid-rotor reference energy 0.007 I (I + 1) MeV is subtracted in the left panels. The upper panels are the result of
projection from the noncranked mean field, while the lower panels are from the infinitesimally cranked mean field, with ωx = ωy = ωz =
0.01 MeV/h̄.

appendix of Ref. [14]. We show the result for the infinitesimal
cranking case in Fig. 3, which corresponds to the lower panels
of Fig. 2. The result for the no-cranking case is very similar and
is not shown. As can be seen from the behavior of the three
moments of inertia in Fig. 1, the angular-momentum vector
precesses mainly about the largest inertia axis, i.e., the medium
(y) axis, and tilts slightly to the second-largest inertia axis, i.e.,
the short (x) axis, for both the yrast and the first excited bands.
For the first excited band, the vector more tilts to the direction
of the x axis, with essentially no components along the smallest
inertia axis, i.e., the long (z) axis, for both the yrast and the

first excited bands. This behavior of the expectation values
of the angular-momentum vector in the body-fixed frame
are very similar to the case of 164Er studied in the previous
work [14].

We study the wobbling spectrum obtained by the angular-
momentum projection from the cranked mean field. In the up-
per and lower panels of Fig. 4, we show the excitation energies
and the expectation values of angular-momentum vector for
the case with ωx = 0.30 MeV/h̄, ωy = ωz = 0.01 MeV/h̄
and with ωx = 0.40 MeV/h̄, ωy = ωz = 0.01 MeV/h̄, re-
spectively. For the case with ωx = 0.30 MeV/h̄, there is
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FIG. 3. The calculated behavior of the angular-momentum vector in the body-fixed frame for the yrast and the first excited bands in 162Yb.
Here the mean field is infinitesimally cranked with ωx = ωy = ωz = 0.01 MeV/h̄ corresponding to the lower panels of Fig. 2. The left panel
shows the expectation values of the components of squared angular-momentum operator defined by Eq. (19), while the right panel shows the
square root of them.
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FIG. 4. The calculated excitation energy (left panels) and the expectation values of the angular-momentum vector (right panels) in 162Yb
calculated by the projection from the cranked mean field with the frequencies ωx = 0.30, ωy = ωz = 0.01 MeV/h̄ (upper panels) and those
with the frequencies ωx = 0.40, ωy = ωz = 0.01 MeV/h̄ (lower panels).

still no sharp alignment in the cranked wave function, but
the mean-field contains a considerable amount of collective
rotational angular momentum of 〈Jx〉 ≈ 16.5 h̄. Therefore, the
components of the angular-momentum vector for the x and y
axes are comparable and then the excitation energy of the first
excited band does not increase but is almost constant as a func-
tion of spin. Just after ωx = 0.30 MeV/h̄, the two i13/2 proton
quasiparticles align their angular momenta along the x axis
(see, e.g., the quasiparticle energy diagram, Fig. 2 in Ref. [25]),
and the mean-field expectation value jumps to 〈Jx〉 ≈ 33 h̄
for ωx = 0.40 MeV/h̄ (the collective angular momentum also
contributes when increasing the rotational frequency from
ωx = 0.30 to 0.40 MeV/h̄). Thus, the expectation value of the
angular-momentum vector has the largest component for the x
axis in this case, as is seen in the lower right panel of Fig. 4, and
the behavior of the excitation energy completely changes from
that of the lower cranking frequencies in the upper panel of
Fig. 4 or in Fig. 2. Apparently, in this case, the excitation energy
first increases and then gradually decreases as a function of
spin, which resembles the behavior of the transverse wobbling.
However, the whole spectrum looks also very different from
those in the case of the noncranked or of the infinitesimally
cranked mean field in Fig. 2, as it is displayed in Fig. 5, where
the lowest state is not I = 0+ state but I = 16+ state, because
of the large aligned angular momentum along the short (x) axis.
In this way, the effect of alignment changes the dynamical
behavior of the angular-momentum vector in the body-fixed
frame, which seems to be reflected to the wobbling-phonon
excitation energy. We will confirm this interesting relation in
more detail in the following for the odd nucleus 163Lu.

C. Wobbling motion in odd nucleus 163Lu

For the study of the wobbling motion in the odd nucleus
163Lu, it is important to recognize which orbit the odd proton
occupies. With the deformation (β2,β4) = (0.42,0.02) and the
triaxiality parameter in Eq. (15), the positive-parity proton orbit
at the Fermi surface originates from the high-j i13/2 particle,
which strongly favors aligning its angular momentum along the
short axis, i.e., the x axis for 0 < γ < 60◦. In fact, the occu-
pation of this orbit strongly polarizes nucleus to have sizable
positive-γ triaxial deformation (see, e.g., Refs. [31,32,43]).
Considering that the even-even core nucleus has the moments
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FIG. 5. The spectrum of the angular-momentum projection ob-
tained from the cranked mean field with the frequencies ωx = 0.40,
ωy = ωz = 0.01 MeV/h̄ in 162Yb, corresponding to the lower panels
of Fig. 4.
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FIG. 6. Wobbling spectrum for 163Lu calculated by the angular-momentum-projection method from the noncranked mean field (left panel)
and from the infinitesimally cranked mean field with the frequencies ωx = ωy = ωz = 0.01 MeV/h̄ (right panel). The rigid-rotor reference
energy 0.007 I (I + 1) MeV is subtracted for both the calculated and experimental energies. The energy of the experimental TSD1 [37] is also
included in each panel.

of inertia satisfying Jy >∼ Jx � Jz (see Fig. 1), the condition
for the transverse wobbling discussed in Sec. III A is satisfied.

To construct the mean-field state with odd proton num-
ber, one has to block a proton quasiparticle [10]. When
the cranking procedure is employed, there is no ambiguity
because the cranked quasiparticle energies are nondegenerate,
and the lowest proton quasiparticle state is blocked. In the
case of no cranking, however, there is the Kramers twofold
degeneracy. The mean-field state is ambiguous because any
linear combinations of the two degenerate quasiparticle states
can be taken to construct it. It should be stressed that this
ambiguity of the mean field with the odd particle number
causes no problem for angular-momentum projection; i.e., the
projected energy is unique. This is because the two independent
quasiparticle states are transformed by the π rotation around
one of the coordinate axes into each other, and therefore they
produce exactly the same spectrum by the angular-momentum
projection (cf., the identity, P̂ I

MKR̂|�〉 = P̂ I
MK |�〉, where R̂ is

a rotational operator at any Euler angle). We have numerically
confirmed this fact.

We first show in Fig. 6 the calculated spectrum of angular-
momentum projection from the noncranked mean field (left
panel) and from the infinitesimally cranked mean field with
ωx = ωy = ωz = 0.01 MeV/h̄ (right panel), where the ex-
perimental energy of the TSD1 band is also included. The
rigid-rotor reference energy 0.007 I (I + 1) MeV is subtracted
from both the calculated and experimental energies. The lowest
energy state, whose energy is chosen to be the origin (zero
energy), has Iπ = 9/2+ for no cranking (left panel), while
it has Iπ = 13/2+ for infinitesimal cranking (right panel).
The experimental data for the lowest band, i.e., the TSD1
band, is also shown, in which the lowest observed state has
Iπ = 13/2+. It is confirmed that the lowest (yrast) band has
the signature α = +1/2, the first excited band α = −1/2, etc.;
the signatures of the excited bands change alternatively as is
expected for the wobbling motion with a πi13/2 odd nucleon.
In both cases, the multiple-band structure expected for the
wobbling motion appears naturally. However, the calculated
moments of inertia of the wobbling bands are considerably
underestimated compared with those of the experimental TSD1

band: The calculated J (1) in Eq. (18) for the noncranked
mean field is about 38 h̄2/MeV at I ≈ 20, in contrast to the
experimentally measured value about 69 h̄2/MeV. Infinites-
imal cranking improves the situation, J (1) ≈ 46h̄2/MeV at
I ≈ 20, though not enough, which is similar to the results
of the even-even core nucleus 162Yb. Some improvement
for the microscopic Hamiltonian and/or some adjustment of
the interaction strengths may be necessary to reproduce the
experimental spectrum, which is out of the scope of the present
investigation. Therefore, we mainly concentrate on the excita-
tion energies of the wobbling-phonon bands.

It may be worth mentioning that an extra multiple-band
structure appears at higher excitation energy�5 MeV, when in-
finitesimally cranked in the right panel of Fig. 6. It is interpreted
as wobbling bands excited on some of higher quasiparticle
configurations that are included by infinitesimal cranking. A
similar structure at higher excitation energy �9 MeV is also
seen for 162Yb in the lower-left panel in Fig. 2. Such excited
wobbling structures appear in the result of projection from
cranked mean fields, but how many they are and what excitation
energies they have depends on each case.

Figure 7 displays the calculated excitation energies and
the expectation values of the angular-momentum vector in
the intrinsic frame for the cases with the noncranked and the
infinitesimally cranked mean fields in the upper and lower
panels, respectively. The experimental excitation energies are
also included in the left panels. It can be seen from the left
panels that the characteristic features of the transverse wob-
bling are realized in these calculations. Namely, the excitation
energy of the one-phonon wobbling band first increase and then
decrease as spin increases, and it vanishes at the critical angular
momentum, Ic ≈ 36 (Ic ≈ 20), in the upper-left (lower-left)
panel of Fig. 7. The excitation energy does not exactly vanishes
but the energies of the lowest and the first excited bands repel
with each other, i.e., there is a virtual crossing. Comparing the
upper and lower panels in Fig. 7, the infinitesimal cranking re-
duces the excitation energies and therefore the critical angular
momentum of the vanishing one-phonon wobbling excitation
energy becomes lower. Moreover, the main component of the
angular-momentum vector in the intrinsic frame is along the
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FIG. 7. The calculated excitation energy (left panels) and the expectation values of the angular-momentum vector (right panels) in 163Lu
calculated by the projection from the noncranked mean field (upper panels) and those from the infinitesimally cranked mean field with
ωx = ωy = ωz = 0.01 MeV/h̄ (lower panels). The experimental excitation energies of TSD1, TSD2, and TSD3 [37] are also included in the
left panels.

alignment axis (short axis), x axis, at low spins, and it changes
to be along the largest inertia axis, y axis, at high spins. As
expected, the spin value, where the main component exchanges
from that of x axis to that of y axis, ((J 2

x ))1/2 ≈ ((J 2
y ))1/2, almost

corresponds to the critical angular momentum. Note that the
collective rotation takes place around the short (x) axis at
low-spin states induced by the alignment of πi13/2 particle,
even if the core moments of inertia satisfyJx <∼ Jy (see Fig. 1):
The maximum values of ((J 2

x ))1/2 are about 27 and 15 in the
upper and lower panels of Fig. 7, respectively, which are much
larger than the maximum alignment of one i13/2 quasiparticle,
j = 13/2. This behavior of the angular-momentum vector is
consistent with transverse wobbling in the classical model in
Eq. (16) (see also the discussion in Ref. [8]).

This correspondence between the wobbling-phonon excita-
tion energy and the behavior of the angular-momentum vector
in the intrinsic frame seems to be rather general. Figure 8 shows
the result of calculation using cranked mean fields with higher
rotational frequencies ωx = 0.20 and 0.40 MeV/h̄ in the upper
and lower panels, respectively, on top of the infinitesimal
cranking. As it is seen, the wobbling-phonon excitation energy
increases by increasing the rotational frequency around the
alignment axis (x axis), and the critical angular momentum
of the vanishing one-phonon energy becomes higher. This
is consistent with the macroscopic particle-rotor model of
the transverse wobbling referred to in Sec. III A; the higher
cranking frequency ωx effectively increases the alignment
and/or the moment of inertia about the x axis, so that the critical
angular momentum Ic = j (1 − Jx/Jy)−1 delays. Compared

with the experimental data, the one-phonon excitation energy
decreases too quickly as a function of spin. Moreover, the
two-phonon excitation energy is almost double of the one-
phonon energy, which is too large in comparison with the data.
The experimental TSD3 excitation energy is much smaller
than the double of the TSD2 excitation energy. Thus, our
results of the projection calculation are not very successful
in reproducing the experimental spectrum.

In this way it is demonstrated that the wobbling excitation
energy is sensitive to the dynamics of the angular-momentum
vector in the intrinsic frame, which is controlled by cranking
of the mean field. The decrease of the one-phonon energy is
related to the change of the main component of the angular-
momentum vector, i.e., the decrease of ((J 2

x ))1/2 − ((J 2
y ))1/2,

which changes sign near the critical angular momentum of
the vanishing excitation energy. We show two more exam-
ples, where the cranking with the frequency 0.2 MeV/h̄ is
performed around the largest and smallest inertia axes (y and
z axes) in the upper and lower panels of Fig. 9, respectively, on
top of the infinitesimal cranking. As it is seen, the result of the
cranking around the largest inertia axis in the upper panels is
not very different from that of the simple infinitesimal cranking
in the lower panels of Fig. 7. Although the cranking around y
axis increases ((J 2

y ))1/2, the frequency, ωy = 0.2 MeV/h̄, is not
large enough to change the alignment pattern: The main rota-
tion axis is still the short axis at low spins, and only the critical
angular momentum becomes smaller, which is also consistent
with the simple model estimate, Ic = j (1 − Jx/Jy)−1. The
excitation energies of the wobbling motion look like those of
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FIG. 8. The calculated excitation energy (left panels) and the expectation values of the angular-momentum vector (right panels) in 163Lu
calculated by the projection from the cranked mean field with the frequencies ωx = 0.20, ωy = ωz = 0.01 MeV/h̄ (upper panels), and those
with the frequencies ωx = 0.40, ωy = ωz = 0.01 MeV/h̄ (lower panels).

the longitudinal wobbling at spins higher than the critical one.
On the other hand, cranking around the long axis in the lower
panels of Fig. 9 changes the result of projection in a different
way compared with the lower panels of Fig. 7. The critical
angular momentum is increased but the excitation energies of
the wobbling phonon become considerably smaller, and the
multiple-band structure is more clearly exhibited. The critical
angular momentum is similar to the result of cranking around
the intermediate-inertia axis (x axis) in the upper panels of
Fig. 8, while the wobbling excitation energies are considerably
smaller. In the case of the z axis cranking, the component of
angular-momentum along the largest-inertia axis (y axis) is
more reduced at lower spins as it can be seen by comparing
the lower panels of Figs. 9 and the upper panels of Figs. 8. It
is interesting that such a difference between the expectation
values of the angular-momentum vector in the intrinsic frame
is clearly reflected in the wobbling excitation energies.

It is demonstrated that the cranking of the mean field around
the x axis increases the wobbling excitation energies while
the cranking around the z axis reduces them. However, the
cranking procedure also change the slope of the rotational
spectrum, i.e., the moment of inertia of the rotational band.
We compare the spectrum calculated with cranking around the
x axis and the z axis in Fig. 10. The cranking around the z axis
makes the moment of inertia of the TSD1 band considerably
smaller, J (1) ≈ 38h̄2/MeV at I ≈ 20, as it is displayed in the
right panel in comparison with the cranking around the x axis
in the left panel, in this case, J (1) ≈ 53h̄2/MeV at I ≈ 20.
Therefore, the cranking only around the long axis (z axis) is
not favorable for high-spin states.

In comparison with the experimental data, all the results
presented for the wobbling excitation energies, Figs. 7–9 are
not satisfactory. Especially, the critical angular-momentum, Ic,
where the one-wobbling-phonon excitation energy vanishes
and the main component of angular-momentum vector in the
intrinsic frame changes from that of the alignment axis (x) to
the largest inertia axis (y), is too small. The experimental exci-
tation energy does not vanish in the observed range of angular
momentum, and therefore Ic > 91/2 at least. The calculated
result presented so far, which satisfies this inequality, is the case
of the high-frequency cranking around the x axis with ωx =
0.4, ωy = ωz = 0.01 MeV/h̄ displayed in the lower panels of
Fig. 8; the wobbling excitation energy is, however, too high in
this case. In order to study the properties of the electromagnetic
transition probabilities, the intrinsic nuclear shape, which is
kept constant in the present work, and the geometry of the
angular-momentum vector in the intrinsic frame are important.
Therefore, we slightly change the cranking frequencies and
make the critical angular momentum higher, still keeping the
one-wobbling-phonon excitation energy relatively low as in the
experimental data: Figure 11 depicts the wobbling-excitation
energies and the expectation values of the angular-momentum
vector for the cranked mean field with the frequencies, ωx =
0.20, ωy = 0.0, ωz = 0.01 MeV/h̄. The agreement of the
excitation energy is much better, although that of the two-
phonon-wobbling band is still too high. We found it difficult to
obtain such low excitation energy for the two-phonon wobbling
band in the present calculation.

With this choice of the cranking frequencies and the excita-
tion spectrum of Fig. 11, the calculated I → I − 2 in-band E2
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FIG. 9. The calculated excitation energy (left panels) and the expectation values of the angular-momentum vector (right panels) in 163Lu
calculated by the projection from the cranked mean-field with the frequencies ωx = 0.01, ωy = 0.20, ωz = 0.01 MeV/h̄ (upper panels), and
those with the frequencies ωx = ωy = 0.01, ωz = 0.20 MeV/h̄ (lower panels).

transition probabilities and the ratios of the I → I ± 1 out-of-
band to in-band B(E2) are compared with the experimental
data in Fig. 12. As seen, the in-band B(E2) values are almost
constant and agree with the experimental value at low spin,
I ≈ 20. However, the measured values decrease as a function
of spin in contrast to the calculation. As for the out-of-band
B(E2) values from TSD2 to TSD1, there are two possible
transitions with I → I ± 1. The rotor model predicts [1] that
the I → I − 1 transitions are much stronger for the so-called
positive-γ rotation (see below for explanation) in agreement
with the projection calculation. Only the I → I − 1 transitions
are measured in the experiment, which is considered to be
consistent with the rotor model prediction. The calculated

I → I − 1 B(E2)out/B(E2)in ratio from TSD2 to TSD1 at
low spin, I ≈ 15, is also comparable with the experimentally
measured value, but the calculated ratios decrease as functions
of spin, which is in agreement with the rotor model prediction
because of the 1/I factor of the relevant squared Clebsch-
Gordan coefficients [1]. In contrast, the measured values are
almost constant or even increase at the highest spins observed.
The observed B(E2)out/B(E2)in ratio from TSD3 to TSD2 is
larger by almost a factor of 2 than that from TSD2 to TSD1,
but the calculated values for both transitions are considerably
smaller at higher spins, I >∼ 22. As for the B(M1) transitions,
the calculated out-of-band B(M1) to in-band B(E2) ratio is
displayed in Fig. 13. The out-of-band B(M1) transitions with
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FIG. 10. Wobbling spectrum for 163Lu calculated by the projection from the cranked mean field with ωx = 0.20, ωy = ωz = 0.01 MeV/h̄,
corresponding to the upper panels of Fig. 8 (left panel), and with ωx = ωy = 0.01, ωz = 0.20 MeV/h̄, corresponding to the lower panels of
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FIG. 11. The calculated excitation energy (left panel) and the expectation values (right panel) of the angular-momentum vector for the
cranked mean-field with ωx = 0.20, ωy = 0.0, ωz = 0.01 MeV/h̄ in 163Lu. The experimental excitation energies of TSD1, TSD2, and TSD3
are also included in the left panel.

I → I − 1 are also larger than those with I → I + 1, but the
calculated values of the B(M1) ratio are about one order of
magnitude larger than the measured values: The measured
values of the B(M1 : I → I − 1) are of the same order of
magnitude as the calculated values for I → I + 1 transitions.
These results are very similar to those obtained in the previous
calculation [25], where another microscopic approach, the
QRPA formalism, is employed. It should be emphasized that in
both the QRPA and the present projection method the obtained
results for B(E2) strongly support the validity of the basic
picture of the simple triaxial-rotor model (see also Ref. [14] for
the similar conclusion). Recently, it was suggested [36] that the
inclusion of the isovector-type schematic interaction composed
of the orbital angular momentum resolves the difficulty of an
order of magnitude overestimation of the out-of-band B(M1)
values, but we were not able to confirm it. Further study of this
point is needed.

The almost constant in-band B(E2) values and the 1/I -
decreasing trend of the out-of-band B(E2) values are the
result of the fixed triaxial deformation and the fixed rotational
axis (see, e.g., Refs. [1,26]). The dominance of I → I − 1
transitions for the out-of-band B(E2) and B(M1) values is
characteristic for the positive-γ rotation, namely, the rotation
about the short axis (x axis with 0 < γ < 60◦). This feature

is realized for the transverse wobbling. If the nucleus rotates
around the largest-inertia axis (medium axis) of the core (y axis
with 0 < γ < 60◦), the I → I + 1 out-of-band transitions
dominate in the rotor model [1,26]: This feature is realized
for simple wobbling of the core (even-even nucleus) [14] and
also for the longitudinal wobbling. Since the rotation axis is
quite often chosen to be the x axis for the study of the high-spin
states, such a rotation scheme around the largest inertia axis
corresponds to the triaxial deformation with −60◦ < γ < 0,
i.e., the negative-γ rotation. Therefore, which out-of-band
B(E2) transition is stronger, that with I → I + 1 or with I →
I − 1, is crucial to distinguish the positive-γ or negative-γ
rotation, which was first emphasized in Ref. [44]. In the case
of the odd-A nucleus with a highly alignable quasiparticle,
these positive-γ and negative-γ rotations just correspond to the
difference between the transverse and longitudinal wobbling,
respectively, and the observed data for 163Lu clearly indicate
transverse wobbling [20].

In this way, the axis of rotation is also important for the
electromagnetic properties of the nuclear wobbling motion.
Although it does not correspond to the observed case in 163Lu,
we show in Fig. 14 the in-band B(E2) values and the out-of-
band to in-band B(E2) ratios for the case of the infinitesimally
cranked mean field with ωx = ωy = ωz = 0.01 MeV/h̄, for
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data are taken from [42].

which the excitation spectrum and the expectation values of
the angular-momentum vector are shown in the lower panels
of Fig. 7. In this case, the in-band B(E2) values in the left panel
of Fig. 14 increase as a function of spin even if the deformation
is kept constant. This is because the main component of the
angular-momentum vector in the intrinsic frame changes from
that of the x axis to the y axis, as shown in the lower right
panel of Fig. 7. The in-band B(E2) values are proportional to
|〈y2 − z2〉|2 when rotating around the x axis, while they are
proportional to |〈z2 − x2〉|2 when rotating around the y axis.
The latter is larger for the present triaxial deformation with
γ (WS) = 18◦. Therefore, the gradual change of the rotation
axis from the x axis to the y axis increases the in-band B(E2)
value, as displayed in the left panel of Fig. 14. This effect
is visible as very tiny effect in Fig. 12. The in-band B(E2)
values only slightly increase as a function of spin due to the
gradual increase of the component of the angular momentum
along the y axis in the right panel of Fig. 11. Although the
absolute value of the out-of-band B(E2) is too small in this
case, the effect of changing the rotation axis is even more
drastic for the out-of-band B(E2) as shown in the right panel of

Fig. 14. The dominance of the I → I − 1 or of the I → I + 1
transitions exchanges near the critical angular momentum of
the vanishing one-phonon energy, Ic ≈ 22, in the lower panel
of Fig. 7. The I → I + 1 out-of-band B(E2) values of both
the transitions from TSD2 to TSD1 and from TSD3 to TSD2
are much larger for I >∼ Ic in contrast to the opposite feature at
low spins.

D. Results with larger γ deformation

Until now, we have used the triaxial deformation in
Eq. (15), which is the self-consistent value for the Nilsson
or Woods-Saxon–Strutinsky method. The triaxiality parameter
also affects the wobbling motion, especially the B(E2) values
[1]. Therefore, we show here some results of the projection
calculation with larger triaxial deformation for the mean
field. We choose rather arbitrarily γ (WS) = 30◦, keeping the
other deformation parameters β2 = 0.42 and β4 = 0.02. It is
noted again that γ (WS) = 30◦ of the Woods-Saxon potential
corresponds to smaller triaxial deformation of the density
distribution; for β2 ∼ 0.42,

γ (WS) ∼ 30◦ ⇔ γ (den) ∼ 21 − 22◦. (20)

It should be mentioned that the positive-parity proton orbit
at the Fermi surface is not the one originating from the i13/2

state for [β2,β4,γ (WS)] = (0.42,0.02,30◦), which is crossed
at γ (WS) ≈ 25◦ by a orbit which is mainly of Nosc = 4 (see
Fig. 1 of Ref. [25]). We choose to occupy the second excited
quasiparticle near the Fermi surface originating from the i13/2

particle for an odd proton, which is necessary to realize the
TSD states.

In Fig. 15, we show the calculated spectrum with the
noncranked mean field (left panel) and with the infinitesimally
cranked mean field with ωx = ωy = ωz = 0.01 MeV/h̄ (right
panel), just like in Fig. 6. As in the case of γ (WS) = 18◦, the
multiple band structure characteristic for the wobbling motion
appears. Compared with Fig. 6, the moments of inertia for the
rotational bands are slightly smaller in Fig. 15 than in Fig. 6.
This can be naturally understood. As already studied in the
previous section, the main rotation axis is the short (x) axis
due to the presence of the aligned πi13/2 particle, and the core
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FIG. 14. The I → I − 2 in-band E2 transition probabilities (left panel) and the I → I ± 1 out-of-band to in-band B(E2) ratios (right
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FIG. 15. Same as Fig. 6 but the result of projection from the mean field with larger triaxial deformation γ (WS) = 30◦.

moment of inertia around this axis decreases as a function of
γ ; see Fig. 1. However, the value of the cranking inertia of the
x axis does not change so much at γ (WS) = 30◦ compared
with that at γ (WS) = 18◦ because of the bumplike behavior
in Fig. 1. Therefore, the moments of inertia of the wobbling
bands are only slightly reduced in Fig. 15 in comparison with
those in Fig. 6.

The excitation spectrum and the expectation values of the
angular-momentum components in the intrinsic frame are
displayed in the upper and lower panels of Fig. 16 for the
cases of the noncranked and infinitesimally cranked mean
fields, respectively. By comparing Figs. 7 and 16, it can be
seen that the excitation energy of the wobbling phonon is
smaller for the mean field with larger triaxiality, γ (WS) = 30◦,
i.e., the wobbling-phonon excitation energy decreases when
the triaxiality increases. Because of this, the critical angular
momentum of the vanishing one-phonon excitation energy

is shifted to lower spins in Fig. 16. It is worth mentioning
that in the case of larger triaxial deformation of Eq. (20),
the excitation spectrum after the critical frequency is different
from the one in the case of smaller triaxial deformation of
Eq. (15). The signature partner bands with α = ± 1

2 are almost
degenerate after the critical spin in the this case, i.e., there is
one 
I = 1 band instead of two 
I = 2 bands, for I >∼ 32
in the upper panels of Fig. 16 and for I >∼ 20 in the lower
panels of Fig. 16, while the signature splittings are significant
in Fig. 7, even though the behavior of the expectation values of
angular-momentum vectors are rather similar in Figs. 16 and
7. The “signature quantum number” is severely broken in the
case of larger triaxial deformation in Fig. 16. We think that the
reason is the following: In the present case, the component of
angular momentum along the long axis (z axis) is always small,
so that the rotational axis lies in the xy plane. If both the x and y
components are sizable, the symmetry with respect to the 180◦
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FIG. 16. Same as Fig. 7 but the result of projection from the mean field with larger triaxial deformation γ (WS) = 30◦.
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FIG. 17. Same as Fig. 11 but the result of projection from the mean field with larger triaxial deformation γ (WS) = 30◦.

rotation around the rotation axis is broken. However, if the
mean field is axially symmetric about the z axis, the signature
symmetry is still present. In the case of the smaller triaxial
deformation in Eq. (15) [γ (den) ≈ 11 − 12◦], the signature
symmetry is not so strongly broken and sizable signature
splitting appears for the wobbling bands based on the highly
alignable πi13/2 particle. In contrast, the triaxial deformation
in Eq. (20) [γ (den) ≈ 21 − 22◦] is large enough to strongly
break the signature symmetry. The signature splitting is getting
sizable at highest spins displayed in the lower panels of Fig. 16,
because the x component is getting smaller compared to the y
component and the nucleus rotates mainly around the principal
y axis, which makes the signature an approximately good
quantum number again. Thus, these are interesting examples
of the interplay of the dynamical motion of the angular-
momentum vector and the triaxial deformed mean field in the
intrinsic frame.

It is well known that the effect of triaxial deformation is
more important for the E2 transition probabilities [1]. As in
the previous case of smaller triaxial deformation, we present,
for the case of larger triaxiality γ (WS) = 30◦, the result
of projection from the cranked mean field with ωx = 0.20,
ωy = 0.0, ωz = 0.01 MeV/h̄, in which the value of the critical
angular momentum is relatively large and still the one-phonon
excitation energy is relatively low. We first show in Fig. 17
the excitation spectrum and the expectation values of the
angular-momentum vector in the intrinsic frame, just like in
Fig. 11, where the triaxiality is smaller, γ (WS) = 18◦. As in the
case of the noncranked or of the infinitesimally cranked mean
field, the excitation energies are smaller and the agreement of
the TSD1 excitation energy is better, although the calculated
TSD2 excitation energies are still higher than the experimental
data. The calculated in-band B(E2) values and the out-of-band
to in-band B(E2) ratios are compared with the experimental
data in Fig. 18. Comparing in-band B(E2) values for the cases
with γ (WS) = 18◦ and 30◦ in the left panels of Figs. 12 and 18,
the latter is considerably smaller. This can be understood by the
rotor model [1]. As the rotation axis is mainly the x axis in both
cases (see the right panels of Figs. 11 and 17), the B(E2) values
are proportional to |〈y2 − z2〉|2 ∝ cos2 (γ + 30◦), which is a
decreasing function of γ for 0 < γ < 60◦. On the other hand,
the out-of-band to in-band B(E2) ratios are considerably larger
for larger γ deformation, which can be also understood by the

rotor model [1]. The large average value of B(E2)out/B(E2)in

ratios for the TSD2 to TSD1 transitions, which is considered to
be crucial to identify the wobbling motion, is better described
by the calculation with the larger γ value in Eq. (20). The
calculated B(M1)out/B(E2)in ratios are about factor two lager
for the I → I − 1 transitions than for γ (WS) = 18◦ (not
shown), while those for the I → I + 1 transitions are similar;
i.e., the overestimation of the B(M1) values is a little bit more
serious.

The experimental in-band B(E2) values decrease as a
function of spin, and B(E2)out/B(E2)in ratios are almost
constant or even increase at the highest spins. It is very
difficult to reproduce these trends in the calculation as long
as constant deformation is assumed. It is discussed [25] that
a considerable increase of the γ deformation as a function
of spin can explain these features of the in-band and out-of-
band B(E2) values, although the self-consistent mean-field
calculations suggest that the deformation does not change so
much. In order to perform the angular-momentum-projection
calculation for such mean field changing with spin, one has
to prepare several mean fields with different triaxiality γ and
employ the configuration-mixing calculation like in Ref. [14],
where no cranking is performed. Such calculations combined
with the finite cranking frequencies are interesting but out of
scope in the present investigation.

E. Example for the case of the odd proton in a nonintruder orbit

For the sake of completeness we briefly discuss the spectrum
obtained by projection from the mean-field state, where the
odd proton in 163Lu does not occupy the high-j intruder orbit
i13/2. As mentioned in the previous subsection, the lowest
proton orbit near the Fermi surface at γ (WS) = 30◦ originates
mainly from Nosc = 4 (see Fig. 1 of Ref. [25]). This relatively
low-j orbit is now occupied by the odd proton quasiparticle
to generate the mean-field state, from which the projection
calculation is performed.

Figure 19 displays the calculated spectrum with the non-
cranked mean-field (left panel) and with the infinitesimally
cranked mean field with ωx = ωy = ωz = 0.01 MeV/h̄ (right
panel) just like in Figs. 6 and 15. The multiple-band structure
emerges in both cases as in the previous cases. However,
apparently the slopes of the wobbling bands are steeper than
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FIG. 18. Same as Fig. 12 but the result of projection from the mean field with larger triaxial deformation γ (WS) = 30◦.

those in Fig. 15; namely, their calculated moments of inertia
are even smaller than the case with the high-j orbit being
occupied. The lowest energy state has Iπ = 1/2+ for the case
of no cranking and Iπ = 3/2+ for the case of infinitesimal
cranking.

The excitation energies and the expectation values of the
angular-momentum components in the intrinsic frame are
displayed in the upper and lower panels of Fig. 20 for the
cases of the noncranked and of the infinitesimally cranked
mean field, respectively. The dominant component of the
angular momentum is always along the largest inertia axis (y
axis) in both cases, and, consequently, the excitation energies
increase monotonically as functions of spin, just like for the
even-even core nucleus. The odd proton aligns its angular-
momentum vector mainly along the y axis, although the
alignment is rather small, and this case roughly corresponds
to the longitudinal wobbling. In this way, the basic picture
of the transverse wobbling and of the longitudinal wobbling,
proposed in Ref. [20] and discussed in Sec. III A, is justified
by our fully microscopic calculations in the framework of
the angular-momentum-projection method. It is interesting to
mention that the signatures of the yrast and excited bands are
α = +1/2,−1/2,−1/2,+1/2,+1/2, . . . in the result with
the noncranked mean field in the upper left panel of Fig. 20,
which is different from the simple alternating pattern in the
case of occupying the high-j intruder orbit. This is because
the nonintruder orbit of the odd proton is a strongly mixed

state of the spherical shell-model orbits, s1/2, d3/2, d5/2, and
g7/2, and its angular momentum j is not definite. Consequently,
the coupling scheme between the angular momenta of the odd
proton and the even-even core is not so simple as in the case of
the high-j intruder orbit. Moreover, the excitation energy of the
second excited band is smaller than twice the excitation energy
of the first excited band. In contrast, the alternating pattern of
the signatures is recovered with the infinitesimal cranking in
the lower left panel of Fig. 20, and the second wobbling energy
is considerably larger than twice the first wobbling energy. At
present, we do not see a clear reason why this kind of qualitative
difference appears as a result of the infinitesimal cranking.

F. Result with Gogny D1S interaction

It is known that the density-dependent term in the Gogny or
Skyrme interactions causes fundamental problems for beyond
mean-field calculations including the angular-momentum pro-
jection (see, e.g., Refs. [45,46] and references therein). The
problem seems to be more serious for odd and odd-odd nuclei
than for even-even nuclei. Although infinitesimal cranking
around all three principal axes has been applied in the even-
even nucleus 164Er in Ref. [14], we found for 163Lu that
infinitesimal cranking with respect to more than one axis
suffers from these problems. We were able to obtain reasonable
result of the projection calculation for the mean field with
only one-dimensional cranking. Therefore, we only show the
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FIG. 19. Same as Fig. 15 but the odd-proton particle occupies low-j orbit in this calculation.
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FIG. 20. Same as Fig. 16 but the odd-proton particle occupies low-j orbit in this calculation.

result of such a case. All the calculations have been done
by expanding the HFB states within the isotropic harmonic
oscillator basis as for the calculation of the Woods-Saxon
mean field. We have used the same model space composed
of the basis states with the maximum oscillator shells up to
Nmax

osc = 12.
In this Gogny-HFB approach, the mean-field potential is

generated by the self-consistent HFB procedure. Since the
πi13/2 particle favors aligning its angular-momentum along the
short (x) axis, we have performed the Gogny HFB calculation
by blocking the lowest positive-parity quasiproton with x axis
cranking. With finite rotational frequencies, we have found
essentially the same TSD mean-field parameters as obtained
by the Nilsson-Strutinsky calculation [e.g., in Ref. [43]; note
the relation of the triaxiality parameter in Eq. (15)]. We
were not able to obtain a convergent solution near zero
rotational frequency. The average pairing gaps in Eq. (11)

and deformation parameters in Eq. (10) of the HFB mean
field are tabulated in Table I as functions of the rotational
frequency ωx , where the expectation value of the angular
momentum 〈Jx〉 is also included. Clearly there exists aligned
angular momentum along the x axis of the odd i13/2 proton.
Note that for one-dimensional cranking around the x axis, all
nonzero deformation parameters are real. Here the parameters
(β2,γ ) are determined, as usual, by β2(den) ≡ [α20(den)2 +
2α22(den)2]1/2 and γ (den) ≡ tan−1[−√

2α22(den)/α20(den)],
which is exactly the same as in Eq. (14). The average pairing
gaps at the lowest frequency, ωx = 0.05 MeV/h̄, for both
neutrons and protons are smaller than the even-odd mass differ-
ences of the ground states in the neighboring even-even nuclei.
The proton gap is especially small because of the blocking
effect. The proton (neutron) pairing correlations vanish for
ωx >∼ 0.25 (ωx >∼ 0.40) MeV/h̄ as it is shown in Table I. The
obtained triaxiality parameter γ (den) just corresponds to the

TABLE I. The expectation value 〈Jx〉, the neutron and proton average pairing gaps in Eq. (11), and nuclear radius and various nonzero
deformation parameters in Eq. (10) with λ � 4 as functions of the rotational frequency with respect to the x axis, ωx , of mean field obtained by
the cranked Gogny-HFB calculation for the TSD yrast states of 163Lu.

ωx[MeV] 〈Jx〉[h̄] 
̄n [MeV] 
̄p [MeV] R̄ [fm] β2 (den) γ (den) α40 (den) α42 (den) α44 (den)

0.050 8.1 0.776 0.496 6.880 0.443 10.7◦ 0.162 −0.0394 −0.00386
0.100 11.1 0.753 0.470 6.880 0.443 10.9◦ 0.163 −0.0406 −0.00373
0.150 14.1 0.722 0.416 6.880 0.443 11.0◦ 0.162 −0.0416 −0.00359
0.200 17.3 0.677 0.322 6.880 0.443 11.2◦ 0.160 -0.0429 −0.00342
0.250 20.8 0.610 0.0867 6.878 0.442 11.4◦ 0.157 −0.0449 −0.00320
0.300 24.4 0.515 0.000 6.877 0.440 11.7◦ 0.156 −0.0470 −0.00305
0.350 28.0 0.373 0.000 6.874 0.438 12.0◦ 0.155 −0.0494 −0.00310
0.400 31.7 0.0536 0.000 6.870 0.434 12.3◦ 0.154 −0.0520 −0.00366
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FIG. 21. Wobbling spectrum for 163Lu calculated by the angular-momentum-projection method with the Gogny D1S effective interaction.
The cranked mean field with ωx = 0.10 (ωx = 0.20), ωy = ωz = 0.0 MeV/h̄ is employed in the left (right) panel. The energy of the experimental
TSD1 [37] is also included in each panel.

value in Eq. (15), and it is almost constant or only slightly
increases as the frequency ωx increases, which is consistent
with the result of Ref. [36] considering the different definition
of the triaxiality parameter as it is mentioned in Eqs. (15) and
(20); see Ref. [34] for the relation between (β2(WS),γ (WS))
[or (β2(Nils),γ (Nils))] and (β2(den),γ (den)).

Figure 21 shows the calculated spectrum with using the
Gogny-D1S interaction, where the mean field is cranked
with the rotational frequencies ωx = 0.10 (ωx = 0.20), ωy =
ωz = 0.0 MeV/h̄ in the left (right) panel (see the mean-field
parameters in Table I). The multiple-band structure, which
is characteristic for the nuclear wobbling motion, emerges

also in this case. Compared with the result of the Woods-
Saxon mean field and the schematic interaction in Fig. 6 or
in Fig. 10, the slopes of the wobbling bands are less steep.
Namely, the moments of inertia are larger in the result with
the Gogny-D1S interaction; J (1) ≈ 51h̄2/MeV at I ≈ 20 for
the calculation with ωx = 0.10 MeV/h̄ (the left panel), and
J (1) ≈ 65h̄2/MeV with ωx = 0.20 MeV/h̄ (the right panel).

The excitation energy and the expectation values of the
angular-momentum vector in the intrinsic frame are displayed
in the upper and lower panels of Fig. 22, for the case of the
cranking frequency ωx = 0.10 and 0.20 MeV/h̄, respectively.
Clearly the phonon excitations can also be seen for the
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FIG. 22. The calculated excitation energy (left panels) and the expectation values of the angular-momentum vector (right panels) with using
the Gogny-D1S interaction in 163Lu. The mean field is cranked with the frequencies, ωx = 0.10, ωy = ωz = 0.0 MeV/h̄ (upper panels) and
ωx = 0.20, ωy = ωz = 0.0 MeV/h̄ (lower panels), The experimental excitation energies of TSD1, TSD2, and TSD3 [37] are also included in
the left panels.
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FIG. 23. The I → I − 2 in-band E2 transition probabilities (left panel) and the I → I ± 1 out-of-band to in-band B(E2) ratios (right
panel), which are calculated with the Gogny-D1S interaction, are compared with the experimental data in 163Lu. The cranked mean field with
the frequencies, ωx = 0.20, ωy = ωz = 0.0 MeV/h̄, are used corresponding to the lower panels of Fig. 22.

calculation with using the Gogny-D1S interaction, where the
excitation energy first increases and then decreases, showing
the characteristic behavior of transverse wobbling. Apparently
the resultant excitation spectrum is very similar to the one in
the case of the Woods-Saxon mean field and the schematic
interaction. The critical point of vanishing one-phonon exci-
tation energy just corresponds to the point where the main
component of the expectation values of the angular-momentum
vector changes from the x axis to the y axis as shown in the
right panels in Fig. 22. The excitation energy increases when
the cranking frequency ωx is increased in the same way as in
the case of the Woods-Saxon mean field.

We show the in-band B(E2) values and the out-of-band to
in-band B(E2) and B(M1) ratios for the calculation using the
Gogny-D1S interaction in Figs. 23 and 24, which are calculated
for the mean field with ωx = 0.20, ωy = ωz = 0.0 MeV/h̄,
corresponding to the excitation spectrum in the lower panels of
Fig. 22. The in-band B(E2) values and the B(E2)out/B(E2)in

ratios are very similar to the ones of the Woods-Saxon mean
field in Figs. 12. The B(M1)out/B(E2)in ratios are also similar,
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FIG. 24. The I → I ± 1 out-of-band B(M1) to in-band B(E2)
ratios calculated with the Gogny-D1S interaction, are compared with
the experimental data in 163Lu. The cranked mean field with the fre-
quencies ωx = 0.20, ωy = ωz = 0.0 MeV/h̄, are used, corresponding
to the lower panels of Fig. 22.

although the ratio with I → I − 1 transition are slightly
smaller and that with I → I + 1 transition are larger than
those in Fig. 13. All the characteristic features of the excitation
energy spectrum and of the transition probabilities are the
same as in the case of the Woods-Saxon mean field and
the schematic interaction. If the same cranking frequencies
are used in the Woods-Saxon mean field, i.e., ωx = 0.20,
ωy = ωz = 0.0 MeV/h̄, the results of the Gogny-HFB and
the Woods-Saxon mean field are much more similar: The only
difference is that the absolute value of the moment of inertia for
the wobbling band is larger in the calculation with the Gogny
interaction. This result clearly tells us that the wobbling motion
calculated by the microscopic angular-momentum-projection
method does not essentially depend on the details of the
used effective interaction. Therefore, we confirmed that the
rotor-model picture of the wobbling motion is validated by our
microscopic projection calculations.
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FIG. 25. Wobbling spectrum for 163Lu calculated by the angular-
momentum-projection method with multicranked configuration mix-
ing employing the Gogny-D1S effective interaction. The four cranked
HFB states with ωx = 0.10, 0.25, 0.40, 0.55 MeV/h̄ are configu-
ration mixed. The energy of the experimental TSD1 [37] is also
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FIG. 26. Left panel: Absolute energy of the yrast band obtained by the multicranked configuration mixing in comparison with those
calculated with a single HFB state with ωx = 0.10, 0.25, 0.40, 0.55 MeV/h̄. Right panel: Moments of inertia defined in Eq. (18) for the lowest
two TSD bands calculated by the angular-momentum-projection method with multicranked configuration mixing corresponding to Fig. 25. The
experimental data are also included for comparison.

G. Multicranked configuration mixing
with Gogny-D1S interaction

Recently, we have proposed the method of projected mul-
ticranked configuration mixing for a reliable description of
the rotational band in Ref. [15], and it has been successfully
applied to nuclei in the rare-earth-metal region employing
the Gogny-D1S interaction [16]. One of the problems in the
present investigation up to here is that the calculated moment
of inertia of the TSD bands in 163Lu is considerably smaller
than the measured one; see, e.g., Fig. 21. This is mainly
because only one mean-field state is employed. In fact, the
calculated inertia with a single mean-field state decreases
as spin increases, for example, J (1) ≈ 51 (64) h̄2/MeV at
I ≈ 20 whileJ (1) ≈ 42 (44) h̄2/MeV at I ≈ 45 if the cranking
frequency ωx = 0.10 (0.20) MeV/h̄ is used. The moment of
inertia increases when the cranking frequency ωx is increased.
Therefore, we have performed the multicranked configuration-
mixing calculation including four cranked HFB states with
cranking frequencies, ωx = 0.10, 0.25, 0.40, 0.55 MeV/h̄, in
Eq. (13) with Nmf = 4.

The resultant spectrum is displayed in Fig. 25. Clearly, the
lowest band nicely corresponds to the measured TSD1 band
and the result is much better than those in Fig. 21. The level
density of higher excited bands is considerably increased. Even

with a single mean-field wobbling bands appear at higher exci-
tation energy if the cranking procedure is applied, as is shown
in the previous sections (see, e.g., Fig. 6). If the four mean fields
with different cranking frequencies are mixed, various higher
quasiparticle configurations are effectively included and more
excited multiple-wobbling bands are expected to come about.
This is the reason of increasing level density. In order to see the
effect of configuration mixing, we show the calculated yrast
band before and after the mixing in the left panel of Fig. 26.
It is clearly seen that the main configuration of the mixed
band smoothly changes as a function of spin. The calculated
moments of inertia J (1) are compared with the experimental
data for the lowest two TSD bands in the right panel of Fig. 26.
Rather good agreement is achieved, although the calculated
moment of inertia is slightly overestimated in the low-spin
region. Thus, the property of the rotational bands are better
described by the present multicranked configuration mixing.

However, the spin dependence of the wobbling excitation
energies shown in Fig. 27 are changed to increase monoton-
ically compared with those in Fig. 22, and looks more like
that of the original wobbling bands without the alignment or
of the longitudinal wobbling, which are quite different from
the experimental data. This change can be understood; it was
already shown that if the higher cranking frequency ωx is
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FIG. 27. The excitation energy (left) and the expectation values of the angular-momentum vector (right) in 163Lu calculated by the
multicranked configuration mixing corresponding to Fig. 25. The experimental excitation energies of TSD1, TSD2, and TSD3 [37] are also
included in the left panel.
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FIG. 28. The I → I − 2 in-band E2 transition probabilities (left panel) and the I → I ± 1 out-of-band to in-band B(E2) ratio (right panel),
which are calculated by the multicranked configuration mixing with the Gogny-D1S interaction in 163Lu, corresponding to Fig. 25.

employed, the resultant wobbling excitation energy increases.
Because the main component of the mixed band at higher spin
states is composed of the projected states from the HFB state
with higher cranking frequency, it is natural that the wobbling
excitation energy increases when the spin increases. In fact, the
main component of the angular-momentum vector is always
along the x axis as is shown in the right panel of Fig. 27, and
the direction of the vector never changes. Namely, ((J 2

x ))1/2 −
((J 2

y ))1/2 increases monotonically and never decreases in the
calculated spin range: This is the same behavior as in the case of
the original wobbling or of the longitudinal wobbling, although
the main component is along the short (x) axis in Fig. 27 in
contrast to the case, e.g., of Fig. 20, where the main component
is along the medium (y) axis.

The in-band B(E2) values and the out-of-band versus
in-band B(E2) ratios calculated with the multicranked con-
figuration mixing are depicted in Fig. 28. The out-of-band
B(M1) ratio is slightly smaller at higher spins but still about
one order of magnitude larger (not shown). Compared with
the result obtained by the projection from a single HFB
state (e.g., Fig. 23), the in-band B(E2) values very gradually
decrease with spin because the β2 decreases and γ increases
slightly as functions of the cranking frequency (see Table I).
This trend continues at higher frequency, ωx � 0.40 MeV/h̄,
e.g., β2(den) = 0.423 and γ (den) = 13.1◦, and 〈Jx〉 = 41.2 h̄
at ωx = 0.55 MeV/h̄. As for the B(E2)out/B(E2)in ratios,
the results are not very different from those obtained by
the projection from a single HFB state (e.g., in Fig. 23).
The spin dependence is slightly changed; for example, the
B(E2)out/B(E2)in ratios are a little bit larger at higher spins,
I >∼ 25. In any case, as it is already discussed, the calculated
self-consistent triaxial deformation is too small to account
for the experimentally measured B(E2)out/B(E2)in ratios at
high-spin states.

In this way, we are not able to reproduce the observed excita-
tion energy, which shows the characteristic feature of the trans-
verse wobbling decreasing as a function of spin. We have only
tried the multicranked configuration mixing with respect to the
cranking about the x axis. However, there is the possibility to
mix configurations with cranking about all three axes, although
the problem of the density-dependent term seems to appear
for the Gogny (or Skyrme) interaction. Such a possibility is

interesting to be explored with different effective interactions,
although it requires much heavier numerical efforts.

IV. SUMMARY

In the present work, we have investigated the nuclear
rotational motion in triaxially deformed nuclei by employ-
ing the fully microscopic framework of angular-momentum
projection from the mean-field wave function. As the first
part of investigation, we have concentrated on the nuclear
wobbling motion, which is quantized rotational motion of the
rigid rotor. By employing the triaxially deformed mean-field
wave function, we have confirmed that the characteristic energy
spectrum of the multiple-band structure naturally emerges in
the nucleus 163Lu by our projection calculation. Using the
deformation parameters consistent with the Nilsson-Strutinsky
calculation [43], a reasonable excitation energy is obtained for
the one-phonon wobbling band but the excitation energy of
two-phonon band is too large. Note that the excitation energies
decrease as functions of spin, i.e., the transverse wobbling
behavior [20] comes out, though the spin dependence is slightly
too strong compared with the experimental data. However,
the obtained moments of inertia for the TSD bands in 163Lu
are generally too small for the employed Hamiltonian of the
Woods-Saxon potential and the schematic interaction. To im-
prove the moments of inertia, we have performed infinitesimal
cranking [14] to include the time-odd components into the
mean fields. The moments of inertia increase but not enough
and the excitation energy of the one-phonon band is too small
compared with the experimental data. Therefore, we do not aim
to fit the experimental data but rather perform explorational
calculations to understand the general property of the nuclear
wobbling motion from the microscopic view point.

By making use of the freedom to crank the mean field around
all three intrinsic axes, we have investigated how the transverse
wobbling picture appears and what are its implications. We
have found that the dynamics of the angular-momentum vector
in the intrinsic coordinate frame of the mean field are reflected
by the excitation energies of the wobbling phonon band.
Namely, the transverse-wobbling behavior, i.e., the decrease of
the wobbling excitation energy as a function of spin, emerges
when the nucleus starts to rotate around the alignment axis of
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the odd particle, which is the axis with the intermediate moment
of inertia. Increasing the spin, the rotational axis changes
to the axis with the largest moment of inertia. The critical
spin value for vanishing excitation energy of the one-phonon
wobbling band corresponds to the transition point of changing
the direction of the angular-momentum vector from the axis
with the intermediate moment of inertia to the axis with the
largest moment of inertia. Although the moments of inertia
are not explicitly introduced in our microscopic framework,
the calculated cranking inertias (Fig. 1) have the order Jy >
Jx > Jz for the medium, short, and long axes, respectively,
which is needed for transverse wobbling. Note that the rotation
around the axis with the intermediate inertia is known to be
unstable for rotation of the rigid body without the alignment.
The unusual decreasing behavior of excitation energy is most
probably related to this fact.

As for the transition probabilities, the main conclusion is
the same as in previous work [25,34,36]. With fixed triaxial
deformation, the in-band B(E2) values are almost constant
and the out-of-band B(E2) values decrease as a function of
spin. The comparison of these calculated B(E2) values with
the experimental data suggests that the triaxial deformation
of the charge density predicted by the Nilsson-Strutinsky
calculation [43], γ (den) ≈ 11–12◦ in Eq. (15), is too small.
The decrease of the in-band B(E2) and possible increase
of the ratio B(E2)out/B(E2)in observed in the experimental
data may suggest that the triaxiality increases at higher spins
[25]. The problem of the too large out-of-band B(M1) values
compared with the experimental data remains also in the
present angular-momentum-projection calculation.

For the wobbling motion in the 163Lu nucleus, the
angular-momentum-projection calculations from the fully self-
consistent HFB mean field have been also performed by em-
ploying the Gogny-D1S interaction. We have found deformed
HFB states whose triaxiality is consistent with the one deter-
mined by the Nilsson-Strutinsky calculation, i.e., γ (den) ≈
11–12◦. The resultant spectrum of the angular-momentum
projection is very similar to the one obtained by the Woods-
Saxon potential and the simple schematic interaction. This
strongly suggests that the collective wobbling does not depend
on the details of the effective interaction. It should, however, be
stressed that the more elaborate multicranked configuration-
mixing calculation around the short axis can reproduce the
moments of inertia of the TSD bands in a good approximation.
On the other hand, the wobbling-phonon excitation energies
are not reproduced in this configuration-mixing calculation. In
the present work, only the possibility of the one-dimensional
cranking is explored because of the problem of the density-
dependent term in the Gogny interaction. The possibilities of
cranking around all three axes should be explored in future
studies with different effective interactions.

It should be emphasized that the wobbling motion was
predicted based on the macroscopic rotor model, and the
predicted properties are nicely confirmed by our microscopic
calculation. Thus, the present study suggests that the macro-
scopic rotor model picture is realized in a good approximation
for triaxially deformed atomic nuclei. It is, however, noted
that a quantitative description of the wobbling motion is not
obtained in the present work, and further investigations are
necessary to achieve its fully microscopic understanding.
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