
PHYSICAL REVIEW C 97, 024316 (2018)

Shell model and Hartree-Fock calculations of longitudinal and transverse electroexcitation
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The nuclear structure of the 17O nucleus has been investigated using shell model and self-consistent
Hartree-Fock calculations. In particular, elastic and inelastic electron scattering form factors, energy levels, and
transition probabilities are calculated for positive and negative low-lying states. Two different shell model spaces
have been used for this purpose. The first one is the psdpn model space for positive parity states and the second
one is p1/2sd model space for negative parity states. For all selected excited states, Skyrme interactions are
adopted to generate from them a one-body potential in Hartrre-Fock theory to calculate the single-particle matrix
elements. The deduced results are discussed for the longitudinal and transverse form factors and compared with
the available experimental data. It has been confirmed that combining the shell model plus Hartree-Fock mean
field method with the Skyrme interaction can accommodate very well the nuclear excitation properties, and work
better for low lying states than for higher excitations. Furthermore, the combination can be used to reproduce the
positive and negative parity states after choosing the suitable model space, effective two-body interaction, and
parameterization to reach highly descriptive and predictive results.
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I. INTRODUCTION

The study of nuclear structure is usually performed with
two major approaches: the well-established shell model (SM)
and the self-consistent mean-field (SCMF) method. Both
approaches work at a microscopic level but employ effective
interactions to allow a treatment in either restricted spaces or
forms of many body wave functions [1].

The SM techniques with empirical interactions can be
applied to many regions of the nuclear chart, including exotic
nuclei, with great success in a detailed description of their
spectroscopy and decays. In contrast to the mean-field tech-
niques, the SM does not involve a single, global Hamiltonian
for the whole nuclear chart. Furthermore, the SCMF has a
wide applicability across the nuclear chart in evaluating the
ground state nuclear properties, for instance the binding energy,
nuclear size, form factors, and surface deformation parameters.
However, it does not give detailed spectra of excited states and
wave functions. The SCMF is based on an independent particle
picture, where the nucleons are considered to be self-bound
by the average of the two-body interactions over the states
occupied by the other particles. The resulting field is created in
a self-consistent manner. Such a field is considered to be static,
so that dynamical corrections are neglected. Specifically, this
approach can be realized by means of an adopted effective
interaction, solved at the level of the Hartree-Fock (HF)
approximation.

The SM allows for configuration mixing (CM) beyond the
mean field [2], so one can take for the mean field a standard
phenomenological single-particle model, but then perform a
CM calculation involving all many-body states that can be
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constructed using a more or less broad band of single-nucleon
states around the Fermi energy [3].

In the present work, we continue our research [4] into
applying the SM and HF approaches in calculating the inelastic
electron scattering form factors for positive and negative parity
states in the 17O nucleus. The nucleus 17O is known to have
approximately 112 excited states below 24 MeV energy of
excitation [5]. This nuclear system presents an interesting
opportunity to understand some rich excited levels in a light,
stable nucleus. Numerous experimental and theoretical studies
have been performed to investigate the static and dynamic
nuclear properties of this interesting nuclear system. Arnke
[6] employed the SM calculations to evaluate the energy
levels for lowest parity states 1/2− and 3/2− in 17O. Hicks
[7] calculated the M1 and M3 form factors and the root-
mean-square (rms) radius of the 1d5/2 neutron orbit of 17O.
Quantitative information on the quenching of the M3 and M5
multipoles was also deduced.

Elastic magnetic electron scattering from 17O was studied
by G. Bohannon et al. using spherical and deformed mean
field models taking into account core polarization effects, for
the first time [8]. Elastic charge and magnetic form factors of
17O were calculated by Kim [9] using a consistent relativistic
formalism for momentum transfers up to 7.5 fm−1. Excited
states of 17O up to the excitation energy of 15MeV were
studied by Manley et al. [10] using high-resolution electron
scattering for momentum transfers between 0.8 and 2.6 fm−1.
Gattone and Vary [11] studied the elastic magnetic form factor
of 17O using the relativistic direct-interaction-based impulse
approximation model. Coon and Jaqua [12] determined the
parameters of an algebraic radial wave function corresponding
to the 1d5/2 valence neutron orbital of 17O by making a fit
to the high-q magnetic electron scattering data. Zheng et al.
[13] calculated the elastic magnetic form factor of 17O by
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including the 2h̄ω particle-hole excitation and the Zuker-type
multiparticle-multihole CM in the momentum transfer range
0.5 − 1.5 fm−1. Shell model and deformed HF plus Bardeen-
Cooper-Schrieffer (BCS) calculations for even-even isotopes
18−30O were reported by Siiskonen et al. [14]. Ground-state
binding energies and 2+

1 quadrupole moments are calculated
by both models. Radhi et al. [15] investigated the elastic
magnetic electron scattering form factors for the 5/2+ state
of the stable odd-A nuclei including 17O in the sd shell, taking
into consideration core polarization effects.

Our concern in the present work is to calculate the elastic
and inelastic longitudinal and transverse electron scattering
form factors for positive and negative parity states in the
17O nucleus. Two different model spaces are used for this
purpose. The first one is the psdpn model space for positive
parity states, which consists of the active shells 1p1/2, 1p3/2,
1d3/2, 1d5/2, and 2s1/2 above the inert 4He nucleus core (1s)4,
which remains closed. The interaction used is the PSDMOD
Hamiltonian [16] which has been used to provide realistic
psdpn-shell wave functions for the positive parity states 1/2+
0.8707 MeV, 1/2+

2 6.356 MeV, 1/2+
3 7.956 MeV, 3/2+ 5.084

MeV, 3/2+
2 5.869 MeV, 5/2+ 6.862 MeV, 5/2+

3 8.402 MeV,
7/2+ 7.576 MeV, and 9/2+ 8.470 MeV. In this Hamiltonian,
the multiparticle-multihole states around 16O are accounted for
by reproducing the correct binding energy relative to the 16O
energy with inclusion of correlation. It takes more elaborate
way than shifting the overall p-sd-shell gap. The PSDMOD
interaction was modified so that the energies of the 1/2− and
3/2− of 15O, the 5/2+, 1/2+, and 3/2+ of 17O, the 0+ of 12C,
and the 0+ of 20Ne measured from the ground state of 16O were
exactly reproduced [16]. The second model space is the Zuker-
Buck-McGrory (zbme) model space [17], which is adopted
for negative parity states, 1/2− 3.055 MeV, 1/2−

2 5.939 MeV,
3/2− 4.553 MeV, 3/2−

2 5.379 MeV, 5/2− 3.842 MeV, 5/2−
2

5.732 MeV, 7/2− 5.697 MeV, 9/2− 5.215 MeV, and 11/2−
7.757 MeV. For this model, the orbits ls1/2 and lp3/2 are filled
(inert 12C nucleus core) and the active (valence) particles were
restricted to 1p1/2, 2s1/2, and 1d5/3 orbits with the REWILE
effective Hamiltonians [18]. The REWILE two-body effective
Hamiltonian was specified by 30 two-body matrix elements
(TBMEs). The one-body part of the Hamiltonian is specified
by three single-particle energies, which in this model are in-
terpreted as the binding energies of particles in the three active
orbits to the assumed inert 12C core. These 33 matrix elements
were treated as free parameters in the least-squares fit of SM
eigenvalues to 19 ground state binding energies and 134 excita-
tion energies of selected levels in nuclei with A = 13−22 [19].

It would be an interesting advance to unify the interactions
used for HF calculations of closed-shell nuclei with those
used for the valence spectra. One of the most successful
and commonly used phenomenological interactions for HF
calculations is the zero-range density-dependent Skyrme-type
interaction. So, for all excited states, Skyrme interactions
are adopted to generate from them a one-body potential in
Hartrre-Fock theory to calculate the single-particle matrix ele-
ments. The single-particle matrix elements are calculated with
the Skyrme-Hartree-Fock (SHF) potential with two different
parametrizations in addition to realistic Wood-Saxon (WS)
and harmonic oscillator (HO) potentials for comparison. The

SHF is a mean-field (MF) potential. The essential aspect of
the MF method is that for a given two-body interaction, the
energy of a single Slater determinant is minimized [19]. For
a spherical basis, the Skyrme interaction provides an analytic
energy density functional which can be computationally solved
very quickly in order to give the minimum energy, the self-
consistent potential, and single-particle densities. The MF can
also be carried out in a deformed or general basis.

II. THEORY AND METHODOLOGY

The reduced matrix element of the electron scattering
operator for an n-particle model space wave function of
multipolarity λ is expressed as the sum of the product over
the one-body density matrix (OBDM) elements times reduced
single-particle matrix elements, and is given by [20]

〈f ‖Ôλ‖ i〉 = 〈nωf Jf ‖Ôλ‖nωiJi〉
=

∑
kαkβ

OBDM(f ikαkβλ)〈kα‖Ôλ‖kβ〉, (1)

where k stands for the single-particle states (n l j ) and i and f
labels are a shorthand notation for the initial and final model
space states, (nωiJi)and(nωf Jf ), respectively. The ω indices
distinguish the various basis states with the same J value. The
OBDM in the proton-neutron formalism is given by [20]

OBDM(f ikα,tzkβ,tzλ) =
〈
nωf Jf

∥∥[
a+

kα,tz
⊗ ãkβ,tz

]λ∥∥nωiJi

〉
√

2λ + 1
,

(2)

where tz = 1/2 for a neutron and tz = −1/2 for a proton.
For the central potential, we use the Skyrme potential; it is

a two-body interaction. One may generate from it a one-body
potential in Hartree-Fock theory, as in the codes used. It is
supposed to provide the mean field due to all the nucleons
which compose the nucleus, and approximates the realistic
nucleon-nucleon (and nucleon-nucleon-nucleon) forces. The
Skyrme potential VSkyrme can be written as [21]

VSkyrme(�r1,�r2)

= t0(1 + x0 P̂σ )δ12 + t1

2
(1 + x1P̂σ )[ �k′2δ12 + δ12�k2]

+ t2(1 + x2P̂σ ) �k′δ12�k

+ t3

6
(1 + x3P̂σ )ρ

( �r1 + �r2

2

)α

δ12

+ iW0 �k′δ12( �̂σ 1 + �̂σ 2) × �k
+ te

2
([3( �̂σ 1 · �k′)( �̂σ 2 · �k′) − ( �̂σ 1 · �̂σ 2) �k′2]δ12

+ δ12[3( �̂σ 1 · �k)( �̂σ 2 · �k) − ( �̂σ 1 · �̂σ 2)�k2])

+ t0[3( �̂σ 1 · �k)δ12( �̂σ 2 · �k) − ( �̂σ 1 · �̂σ 2) �k′δ12�k], (3)
where

δ12 = δ(�r1 − �r2) (4)
and

k̂ = 1

2i
( �∇1 − �∇2), k̂′ = − 1

2i
(

←
∇1 −

←
∇2), (5)

which are the relative momentum operators which operate
on the wave functions to the right and to the left. P̂σ is the
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spin-exchange operator given by

P̂σ = 1
2 (1 + �̂σ 1 · �̂σ 2). (6)

The momentum-dependent terms are introduced to take into
account the effect of the finite-range force and are important
for the surface properties [22].

In the present calculations, two Skyrme parametriza-
tions, SLy4 [23] and SkXcsb [24], are implemented. These
parametrizations give a good reproduction of the binding
energy as well as the root-mean-square (rms) radii. In SLy4,
the pairing correlations are included using a density dependent
zero-range force. The SkXcsb includes charge symmetry
breaking (CSB) in the s-wave part of the Skyrme interaction
together with the usual Coulomb direct (CD) and exchange
(CE) terms. The direct Coulomb potential is obtained by
folding the calculated charge distribution, ρch(r), with the
two-body Coulomb interaction, and is given by [25]

HCD = e2

2

∫ ∞

0

∫ ∞

0

ρp(r)ρp(r ′)
| r − r ′| d3r d3r ′. (7)

The exchange part of the Coulomb interaction comes from
the Slater approximation, and is the first term of the density
matrix expansion in the local density approximation; it is given
by

HCE = −3

4
e2

(
3

π

)1/3 ∫ ∞

0
ρp(r)4/3d3r (8)

Longitudinal (Coulomb) electron scattering form factors for
inelastic scattering between an initial (i) and final (f ) state or,
for elastic scattering (i = f ), are denoted by F (Cλ,q,f,i).
The transverse electric and transverse magnetic form factors
are denoted by F (Eλ,q,f,i) and F (Mλ,q,f,i), respectively,
where λ is the multipolarity [26]. The last two types of
form factors can be divided into components according to
the convection currents λc (due to the orbital motion of the
nucleons) and the magnetization currents λm (due to the
intrinsic magnetic moments of the nucleons) [27]:

F (Eλ,q,f,i) = F (Eλc,q,f,i) + F (Eλm,q,f,i), (9)

F (Mλ,q,f,i) = F (Mλc,q,f,i) + F (Mλm,q,f,i). (10)

So we can write the total longitudinal form factor as

|FC(q,f,i)|2 =
∑
λ�0

|F (Cλ,q,i,f )|2 (11)

and the total transverse form factor as

|FT (q,f,i)|2 =
∑
λ>0

{|F (Eλ,q,i,f )|2 + |F (Mλ,q,i,f )|2}.

(12)

Electron scattering form factors involving angular momen-
tum λ and momentum transfer q, between initial and final

nuclear SM states of spin Ji,f , are given by [27]

|F (Xλ,q,f,i)|2 = NP

∣∣∣∣∣
∑

tz

〈nωf Jf ||Ôλ(X, q, tz)||nωi Ji〉
∣∣∣∣∣
2

×F 2
cm(q) F 2

f s(q), (13)

where NP = 4π/Z2(2Ji + 1), and the variable X selects the
longitudinal (L or C) and transverse (T) form factors. Some of
the most important nuclear physics information is contained in
these two form factors.

Fcm(q) is the correction for the lack of translational invari-
ance in the SM (center-of-mass correction) and Ff s(q) is the
nucleon finite size (fs) form factor.

The total form factor is the sum of the longitudinal and
transverse terms:

|F (q)|2 = |FC(q,f,i)|2 + [1/2 + tan2(θ/2)] |FT (q,f,i)|2,
(14)

where θ is the electron scattering angle.
The reduced transition probability is given by [20]

B(X λ) = Z2

4π

[
(2λ + 1)!!

kλ

]2

|F (Xλ,k)|2, (15)

where k = Ex/h̄c.
B(M1) is in units of u2

N , B(E2) is in units of e2fm4, B(M2)
is in units of u2

N fm2, and B(E1) is in units of e2fm2, where
uN is the nuclear magneton uN = eh̄

2mpc
= 0.1051 efm

III. RESULTS AND DISCUSSION

In the present work, the OBDM elements are calculated us-
ing the SM code NUSHELLX@MSU [28]. NUSHELLX@MSU
is a set of wrapper codes written by Alex Brown that use data
files for model spaces and Hamiltonians to generate input for
NUSHELLX. NUSHELLX is a set of computer codes written by
Bill Rae [29] that are used to obtain exact energies, eigenvec-
tors, and spectroscopic overlaps for low-lying states in shell
model Hamiltonian matrix calculations with very large basis
dimensions. It uses a J-coupled proton-neutron basis, and J-
scheme matrix dimensions of up to the order of 100 million can
be considered. The wrapper codes also convert the NUSHELLX
output into figures and tables for energy levels, gamma decay,
and beta decay. The OBDM elements are then used to calculate
the matrix elements of Cλ,Eλ, and Mλ operators. As we
mentioned previously, in all our calculations, the radial wave
functions of the single-particle matrix elements are calculated
using a two-body Skyrme interaction potential, from which
a one-body potential in Hartrre-Fock theory of types SLy4
and SkXcsb can be generated. These parametrizations give
the rms charge radii equal to 2.786 and 2.739 fm, respectively,
in a good agreement with the experimental value 2.6932 fm
[30]. Also, the calculated total binding energies are 134.37
and 133.163 MeV, respectively, which are in good agreement
with the experimental value 131.765 MeV [5]. Furthermore,
the calculations with Skyrme parametrizations are compared
with those of the HO and WS single-particle potentials. The
oscillator size parameter b = 1.747 fm chosen to reproduce the
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TABLE I. rms radii (fm) for 17O nucleus using different single-
particle potentials.

Potential Proton Neutron Mass Charge Charge expt. [30]

SLy4 2.717 2.787 2.754 2.786 2.6932
SkXcsb 2.669 2.731 2.702 2.739
HO 2.620 2.700 2.663 2.693
WS 2.653 2.718 2.688 2.724

measured rms charge radius. For all electric transitions (λ > 0),
the standard effective charges with ep = 1.5e and en = 0.5e
are used, using the Tassie model for core polarization [31]. For
magnetic transitions, free g factors are used.

The calculated proton, neutron, mass, and charge radii
for 17O using different single-particle potentials are given in
Table I along with the experimental data [30]. The agreement
with the experimental values is seen to be good.

Discussion of the results will be divided into two parts. The
first one pertains to the elastic electron scattering form factors.
The second one is related to the inelastic electron scattering
form factors, energy levels, and transition probabilities for (i)
positive parity states ordered according to increasing angular
momentum and (ii) the corresponding negative parity states.

A. Elastic electron scattering form factors ( Jπ = 5/2+)

The ground-state spin and parity assignment for 17O is 5/2+.
Thus, in elastic scattering the allowed longitudinal multipoles
are C0, C2, and C4, and the transverse multipoles are Ml, M3,
and M5. The contributions of these multipoles are calculated
using the full psdpn model space with the PSDMOD two-body
effective interaction [16] with SkXcsb parametrization and are
depicted in Figs. 1(a) and 1(b). From this figure, it can be
seen that the total longitudinal form factor is dominated by
the contribution of C0 in the low momentum transfer region,
and shows further diffraction structures at higher q. The elastic

transverse magnetic electron scattering experimental data for
17O are available from Ref. [32], covering a momentum transfer
region up to q = 2.8 fm−1. A comparison of the present results
with experimental data is made in order to account for the
effects of the variation of the single-particle potentials. From
this figure, it is obvious that the total magnetic form factor
is dominated by the contribution of M1 effects in the low
momentum transfer region. In the intermediate region, the M3
contribution has the dominant effect on the calculated total
form factor, whereas it was confirmed experimentally that the
M3 part is strongly depressed in the experimental data. In
this region, the discrepancy with the experimental data can be
reduced by hindering the M3 part by using core polarization.

At high momentum transfer, the main contribution to the
total form factor is coming from the M5 values. Generally,
the calculated total transverse magnetic form factor is broadly
consistent with the major trends of the experimental data.

In order to determine the sensitivity of the elastic electron
scattering form factors with the variation of the single particle
potentials, the total elastic transverse magnetic form factors
are calculated using the full psdpn model space with SLy4,
SkXcsb parametrizations, HO, and WS, and they are presented
in Fig. 2 along with the available experimental data. A similar
hindrance of the M3 form factor is observed. Also, it illustrates
that the best potential for reproducing the experimental data is
SkXcsb.

B. Inelastic electron scattering form factors

1. Positive parity states

In all selected positive parity states, the psdpn SM space
with the PSDMOD two-body effective interaction [16] is
used in reproducing the longitudinal and transverse electron
scattering form factor profiles.

Inelastic longitudinal Coulomb C2 form factors for the first
1/2+ state of the 17O nucleus at 0.870 MeV are shown in
Fig. 3(a). Comparison is made with the available experimental

FIG. 1. Theoretical elastic longitudinal (a) and transverse (b) form factors for 5/2+, and their multipole contributions using SkXcsb
parametrization, compared with the experimental data taken from Ref. [32].
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FIG. 2. Theoretical elastic transverse form factors for 5/2+, using
SLy4, SkXcsb parametrizations, HO, and WS compared with the
experimental data taken from Ref. [32].

data taken from Ref. [10]. It can be seen that the SHF (solid
and dashed curves) results are in a good agreement with the
experimental data within the experimental errors in all regions
of momentum transfer. Also, HO and Woods-Saxon results
agree with the experimental data. The transverse form factors
are shown in Fig. 3(b). Both E2 and M3 multipoles contribute
to the transverse form factor as shown in Fig. 3(c). This
behavior is evidence for the collective components in their
wave functions.

To establish the reliability of SHF implementation with SM,
the form factors for some higher-lying states are calculated in
the present work. In these states, the longitudinal multipoles
are generally predicted to be dominant. For this purpose, the
longitudinal C2 form factor for the states at 1/2+

2 , 6.356 MeV
and 1/2+

3 , 7.956 MeV are plotted in Figs. 4(a) and 4(b). In
comparisons with available experimental data, it is clear that
the predicted form factors are in reasonable agreement with
the experimental data.

The total longitudinal form factors for the 3/2+, 5.084
MeV state are shown in Fig. 5(a). The predicted total form
factors are compared with the experimental data. Inspection of
these curves reveals that the psdpn predictions with Skyrme
parametrizations and WS potential exhibit qualitative similar-
ity to the shape of the experimental data, although they con-
siderably overestimate its magnitude. The radial single-particle
wave functions from the self-consistent mean field code that we
use are optimal for hole states, but not necessarily so for particle
states. Hence, excited states containing large contributions
from particle states may give unreliable form factors. Likewise,
the shell model code is optimal for spectroscopic properties,
not necessarily so for the nuclear charge density. It seems that
the core polarization effects with polarization charge 0.5e give
a large contribution for Skyrme and WS potentials, but not for
the HO oscillator potential, which gives a good description of

FIG. 3. Theoretical longitudinal (a) and transverse (b) form fac-
tors for the 1/2+, 0.870 MeV state using SLy4, SkXcsb parametriza-
tions, HO, and WS compared with the experimental data taken from
Ref. [10]. The E2 and M3 multipole contributions are shown for the
HO potential (c).

the data. The C2 and C4 multipole contributions shown in this
figure are for the HO potential.

Encouraged by the reasonable agreement between the cal-
culated longitudinal form factor using the HO single-particle
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FIG. 4. Theoretical longitudinal C2 form factors using SLy4 parameterization for the (a) 1/2+
2 , 6.356 MeV state and (b) 1/2+

3 , 7.956 MeV
state compared with the experimental data taken from Ref. [10].

potential with experimental data in 3/2+ state, we use this
potential to calculate the total transverse form factor and its
mixed multipolarities M1, E2, M3, and E4. As shown in
Fig. 5(b), the psdpn predictions with HO wave functions over-
estimate the measured transverse from factor. This behavior
is additional evidence for collective components in their wave
functions. As stated above, the shell model code is optimal for
spectroscopic properties, not necessarily so for the convection
and magnetization current densities. Also, core polarization
effects are not considered for transverse form factors.

Due to the reasonable agreement between the calculated
longitudinal form factor using the HO single-particle potential
with the experimental data in the 3/2+

1 state, we use this
potential to calculate the longitudinal C2 form factor for the
3/2+

2 state with an excitation energy of 5.869 MeV, as shown in
Fig. 6. The HO single-particle potential for this state gives a re-
markable agreement with the available experimental data [10].

The longitudinal C0 and C2 electron scattering form factors
for the 5/2+, 6.862 MeV state are shown in Fig. 7. It is

obvious that the shape of the experimental form factor is well
described by the psdpn model space using the four potentials,
although a slight deviation exists. In the light of the best
agreement in Fig. 7, the SLy4 parametrization is selected to
calculate the longitudinal C2 form factor for the 5/2+

3 , 8.402
MeV transition, and it is plotted in Fig. 8 together with the
existing experimental data. The q dependence of the calculated
form factor for this transition indicates that the experimental
data falls off slightly less rapidly than those of the SLy4
parametrization.

Inelastic longitudinal C2 form factor for the 7/2+, 7.576
MeV state is shown in Fig. 9. Inspection of these curves
reveals that the psdpn predictions with all selected single-
particle potentials do not yield an adequate description of the
experimental data for the momentum transfer region belowq =
1.4 fm−1. Beyond this region, the psdpn prediction reproduces
more precisely the experimental data.

Finally, inelastic longitudinal C2 form factors for the first
observed level of 9/2+, 8.470 MeV are shown in Fig. 10 using

FIG. 5. Theoretical longitudinal (a) and transverse (b) form factors and their multipole contributions for 3/2+, 5.084 MeV using SLy4,
SkXcsb parametrizations, HO, and WS compared with the experimental data taken from Ref. [10]. The multipole contributions are shown for
the HO potential.
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FIG. 6. Theoretical longitudinal C2 form factors using the HO po-
tential for the 3/2+

2 , 5.869 MeV state compared with the experimental
data taken from Ref. [10].

the four potentials along with the available experimental data.
The available experimental data are well reproduced.

2. Negative parity states

The zbme SM space predictions of the longitudinal and
transverse form factors for the first excitation of the 1/2−
state, 3.055 MeV, are depicted in Figs. 11(a), 11(b), and
11(c) along with the available experimental data. The mul-
tipolarities included in this transition are pure longitudinal
C3 and transverse M2 and E3. It is obvious that the shape
of the calculated C3 form factor using the HO potential is

FIG. 7. Theoretical longitudinal form factors for the 5/2+, 6.862
MeV state using SLy4, SkXcsb parametrizations, HO, and WS
compared with the experimental data taken from Ref. [10]. Multipole
contributions are shown for the SLy4 parametrization.

FIG. 8. Theoretical longitudinal C2 form factors using the SLy4
parametrization for the 5/2+

3 , 8.402 MeV state compared with the
experimental data taken from Ref. [10].

in qualitative agreement with the experimental data over all
momentum transfer regions, and the agreement is better than
that of other selected potentials. Also, it can be noticed that
the zbme prediction for the transverse M2 form factors exceed
the corresponding experimental data. The deviation decreases
gradually. The consistency of zbme predictions for the second
excitation of the 1/2− state, 5.939 MeV, is shown in Figs. 12(a)
and 12(b). The experimental longitudinal C3 form factor data
for this state is compared with those ones determined by using
SLy4, SkXcsb, HO, and WS potentials. All results in this
state are close to each other and slightly underpredict the

FIG. 9. Theoretical longitudinal form factors for the 7/2+, 7.576
MeV state using SLy4, SkXcsb parametrizations, HO, and WS
compared with the experimental data taken from Ref. [10]. Multipole
contributions are shown for the SLy4 parametrization.
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FIG. 10. Theoretical longitudinal form factors and their multi-
poles contributions for the 9/2+, 8.470 MeV state using SLy4, SkXcsb
parametrizations, HO, and WS compared with the experimental data
taken from Ref. [10].

experimental data. Figure 11(b) illustrates the transverse form
factor for the same state and the multipole contributions using
SLy4 parametrization in comparison with the experimental
data. From this figure, it can be seen that the transverse
form factor is ascribed mainly to the M2 transition and is in
reasonable agreement with the experimental data.

The measured longitudinal form factors for the first ob-
served 3/2− state at 4.553 MeV is depicted in Fig. 13 in
comparison with the predictions of the corresponding zbme.
The individual multipoles for this transition, C1 and C3,
calculated with SLy4 parametrization are also shown. It is
obvious from Fig. 13 that the zbme prediction readily shows
a rapid increase in the low-lying C3 strength. This, of course,
means that it is the 16O core excitations that are responsible
for the considerable C3 strength. The longitudinal form factor
extracted for the 3/2−

2 , 5.379 MeV state and its individual
multipoles are shown in Fig. 14 along with experimental data.
As can be seen from this figure, the zbme prediction is in
general agreement with the experimental data for all observed
q dependence regions.

In Fig. 15 the experimental longitudinal form factor for
the first 5/2− state at 3.842 MeV is compared to the zbme
predictions, which clearly gives another indication of a C3
strength. The observed momentum transfer dependence is con-
sistent with the theory, although a notable aspect is the extent
to which the zbme predictions underestimate the experimental
data. Figure 16 shows the longitudinal form factor for the first
5/2−

2 state at 5.732 MeV. In this state, a longitudinal form factor
is dominated by a C3 component and there is no measurable
C1 component [10]. The consistency of the zbme predictions
is seen to be good and the shape agrees well with experimental
data, but the magnitude is underestimated.

Figure 17 shows the longitudinal form factors for the first
observed 7/2− state at 5.697 MeV. The consistency of the

FIG. 11. Theoretical longitudinal (a) and transverse (b) form fac-
tors for the 1/2−, 3.055 MeV state using SLy4, SkXcsb parametriza-
tions, HO, and WS compared with the experimental data taken
from Ref. [10]. M2 and E3 multipole contributions for the Sly4
parametrization are shown in (c).

experimental data with those obtained using the four potentials
is seen to be excellent. Furthermore, the shapes exhibit that the
C1 component has a dominant contribution to the total form
factor in a low momentum transfer region up to q = 1 fm−1,
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FIG. 12. Theoretical longitudinal (a) form factors for the 1/2−
2 , 5.939 MeV state using SLy4, SkXcsb parametrizations, HO, and WS

compared with the experimental data taken from Ref. [10]. Transverse form factors and their M2 and E3 multipole contributions calculated
with the Sly4 parametrization are shown in (c) in comparison with the experimental data of Ref. [10].

whereas the C3 component is dominant within the momentum
transfer range from 0.4 to 2.5 fm−1.

The first state with 9/2− spin-parity assignments is iden-
tified in 17O at 5.215 MeV. The experimental longitudinal
form factor and zbme predictions are shown in Fig. 18. In this
state only the C3 component should contribute noticeably to
the longitudinal form factor. It is obvious that the predictions
are in reasonable agreement, failing only in falling below the
experimental data at high q values.

Finally, the experimental longitudinal form factor of the first
observed 11/2− state at 7.757 MeV is shown in Fig. 19 in com-
parison with the corresponding zbme predictions. Inspection
of these curves reveals that the predictions are in good overall

FIG. 13. Theoretical longitudinal form factors for the 3/2−, 4.553
MeV state using SLy4, SkXcsb parametrizations, HO, and WS
compared with the experimental data taken from Ref. [10]. Multipole
contributions are shown for the SLy4 parametrization.

agreement with the global aspects of the experimental data.
Furthermore, the zbme prediction reproduces more precisely
the experimental data at high q values with HO and WS than
with Skyrme potentials.

C. Energy level and reduced transition probabilities

The energy levels for low-lying and some second and third
sequences of positive and negative parity states in 17O are
calculated in the psdpn and zbme SM spaces without using any
restrictions with PSDMOD and REWILE two-body effective
interactions. Concerning the comparison with the experimental
energy levels [5], Fig. 20 depicts the calculated energy level

FIG. 14. Theoretical longitudinal form factors and their multipole
contributions for 3/2−

2 , 5.379 MeV using the SLy4 parametrization
compared with the experimental data taken from Ref. [10].
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FIG. 15. Theoretical longitudinal form factors for 5/2−,
3.84 MeV using SLy4, SkXcsb parametrizations, HO, and WS
compared with the experimental data taken from Ref. [10]. Multipole
contributions are shown for the SLy4 parametrization.

schemes in comparison with the experimental data taken from
Ref. [5]. The spectrum is shown by energy levels (lines);
blue and red lines are for positive and negative parity states,
respectively. From Fig. 20, it is clear that most of the calculated
excitation energies in the psdpn model space agree reasonably
well with the experimental data, on the whole, except for a
few levels. Those levels for which the discrepancies are larger
than 1 MeV are the first excited 1/2− level at 3.055 MeV, the
first excited 5/2− level at 3.842 MeV, and first excited 3/2−
level at 4.553 MeV. These discrepancies may be attributed to
the coupling between the states, for instance the 1p1/2 holes
coupled to the 1d5/2 neutron. In the zbme model space, the

FIG. 16. Theoretical longitudinal C3 form factors for the 5/2−
2 ,

5.732 MeV state using the SLy4 parametrization compared with the
experimental data taken from Ref. [10].

FIG. 17. Theoretical longitudinal form factors for the 7/2−,
5.697 MeV state using SLy4, SkXcsb parametrizations, HO, and WS
compared with the experimental data taken from Ref. [10]. Multipole
contributions are shown for the SLy4 parametrization.

energy levels are well predicted, but most the energy levels are
below the experimental data.

The deduced transition probabilities B(E2 ↑) and B(E3 ↑)
for the considered transitions in 17O have been tabulated in
Tables II and III, respectively. Inspection of these values reveals
that the most of the E2 transitions agree reasonably well
with the experimental ones. In general, present calculated E2
transition rates are slightly smaller than the experimental data
except for Jπ = 1/2+, where the agreement is quite good.
The slight deviation with the experimental data may be due to
neglecting the quadrupole vibration. Regarding E3 transition

FIG. 18. Theoretical longitudinal form factors for the 9/2−,
5.215 MeV state using SLy4, SkXcsb parametrizations, HO, and WS
compared with the experimental data taken from Ref. [10].
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FIG. 19. Theoretical longitudinal form factors for the 11/2−

7.757 MeV state using SLy4, SkXcsb parametrizations, HO, and WS
compared with the experimental data taken from Ref. [10].

probabilities, it has been found that the agreement is good for
the states Jπ = 3/2−, 5/2−, 9/2−, and 11/2−, and B(E3 ↑)
was reproduced correctly, whereas there is a slight deviation
noticed in the other states. Furthermore, it is obvious that there
is a rapid growth in the low-lying E3 strength; this means that
the 16O core excitations are responsible for the considerable
E3 strength.

TABLE II. B(E2 ↑) values (in e2fm4) for positive parity states in
17O.

E (MeV) J π Present work Experiment [10] Experiment [33]

0.8707 1/2+ 2.1420 2.18 ± 0.16 2.10 ± 0.0
6.356 1/2+

2 0.3700 1.43 ± 0.21 2.1 ± 1.3
7.956 1/2+

3 0.4578 2.00 ± 0.38
5.084 3/2+ 0.4724 2.05 ± 0.20 2.5 ± 0.7
5.869 3/2+

2 1.3040 2.13 ± 0.22
6.862 5/2+ 2.9610 0.83 ± 0.25 1.9 ± 1.0
7.379 5/2+

2 0.1631 0.8
7.576 7/2+ 1.9870 4.20 ± 0.51
8.47 9/2+ 3.9010 10.05 ± 1.19 8.3 ± 2.6

IV. CONCLUSIONS

In the present work, we have continued our research into
implementing the SHF with SM calculations to study the
nuclear structure of the 17O nucleus involving both positive
and negative parity states. In particular, the inelastic elec-
troexcitation form factors in the momentum-transfer range
0.0 < q < 3.0 fm−1, energy levels up to an exciting energy
of 8.47 MeV, and transition probabilities have been calculated.
Four single-particle potentials have been considered in this
work: the Skyrme potentials (SLy4 and SkXcsb), HO, and WS.
Parametrization in each potential provides a fine description of
nuclear bulk properties and also of excited states of nuclei.
From the outcomes of our calculations, it is possible to
conclude that the reproduced charge rms, form factors, energy
level scheme, and transition probabilities using the psdpn and

FIG. 20. Energy levels for the positive and negative parity states in 17O in the psdpn and zbme SM spaces. The experimental energy levels
are plotted on the left-hand side. The blue and red lines are for positive and negative parity states, respectively.
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TABLE III. B(E3 ↑) values (in e2fm6) for negative parity states
in 17O.

E (MeV) J π Present work Experiment [10] Experiment [33]

3.055 1/2− 4.382 14.1 ± 3.9 31.6 ± 6
5.939 1/2−

2 17.14 25.3 ± 5.1 17.0 ± 10
4.553 3/2− 23.73 20.0 ± 12 98.0 ± 8
3.842 5/2− 86.33 93.0 ± 8.3 153 ± 6
5.697 7/2− 127.4 97.0 ± 6.5 270 ± 32
5.215 9/2− 369.3 319.0 ± 13 360 ± 11
7.757 11/2− 339.3 287 ± 14 369 ± 15

zbme SM spaces with SLy4 and SkXcsb parametrizations
are broadly consistent with the major trends of the available
experimental data, without any additional fit of parameters. It
has been confirmed that combining these two methods can
accommodate very well in the elastic and inelastic nuclear
properties, and work better for low lying states than for higher
excitations. Furthermore, the combination can be used to
reproduce the positive and negative parity states after choosing
the suitable model space, effective two-body interaction, and
parametrization to reach highly descriptive and predictive
results when investigating different nuclear configurations as
well as unstablenuclei.
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