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Shadow poles in coupled-channel problems calculated with the Berggren basis
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Background: In coupled-channels models the poles of the scattering S matrix are located on different Riemann
sheets. Physical observables are affected mainly by poles closest to the physical region but sometimes shadow
poles have considerable effect too.
Purpose: The purpose of this paper is to show that in coupled-channels problems all poles of the S matrix can
be located by an expansion in terms of a properly constructed complex-energy basis.
Method: The Berggren basis is used for expanding the coupled-channels solutions.
Results: The locations of the poles of the S matrix for the Cox potential, constructed for coupled-channels
problems, were numerically calculated and compared with the exact ones. In a nuclear physics application the
J π = 3/2+ resonant poles of 5He were calculated in a phenomenological two-channel model. The properties of
both the normal and shadow resonances agree with previous findings.
Conclusions: We have shown that, with an appropriately chosen Berggren basis, all poles of the S matrix including
the shadow poles can be determined. We have found that the shadow pole of 5He migrates between Riemann
sheets if the coupling strength is varied.

DOI: 10.1103/PhysRevC.97.024307

I. INTRODUCTION

The physics of coupled-channels (CC) models spans
many research areas, ranging from traditional nuclear physics
[1–3] to atomic physics [4,5]. It may be extended to chiral
perturbation theory combined with a multichannel approach
[6–8], and to hypernuclear physics [9].

As in scattering theory in general, in scattering CC models
the exploitation of the analytic properties of the S matrix is a
basic tool in describing the scattering processes [10]. The S ma-
trix as a function of energy is analytic over a Riemann surface of
many sheets [11–13]. The analytic continuation of the physical
S matrix may have poles on the unphysical sheets. These poles
correspond to the eigenvalues of the Hamiltonian with various
special boundary conditions. The eigenfunctions belonging
to these generalized eigenvalues are referred as resonance or
virtual states of the system. On the physical sheet the eigen-
functions are asymptotically decreasing, i.e., they are bound
states. The asymptotic forms of the resonance/virtual states
are not bounded. In the following the term resonant state will
be used for all discrete (bound, resonance, and virtual) states.

The main question in a CC scattering model is how the
S-matrix poles affect the scattering observables. Obviously,
they are affected by poles closest to the physical region.
However, it was recognized long ago that poles far from the
physical regions (so called shadow poles) may have large
effects on observables [14,15]. This phenomenon occurs in
atomic [16–19], nuclear [20–23], and particle physics [24–26]
as well. The effect of the shadow poles was also studied for
two-dimensional confined electron gas [27].

To find all types of poles of the S matrix—i.e., to solve the
CC equation with a generalized asymptotic condition—there
are two approaches: Either the expansion is modified to allow
for the special boundary conditions, and the problem is solved
with orthodox methods, or the problem is transformed so that
the usual expansion may provide the modified solutions.. The
most straightforward example for the second approach is the
complex scaling method, which has a long history [28,29]. In
a recent nuclear three-body application [30] the back-rotation
problem of this method has also been solved. The use of the
complex scaling method for CC problems sometimes requires
slight extensions, e.g., when shadow poles are sought [31].

An approach of the first kind often used nowadays is the
series expansion of the wave function on an extended basis.
The basis includes the bound states, selected resonance/virtual
states as well as complex energy scattering states of the
potential [32]. The existence of such a basis was proven by
Berggren [33]. Berggren bases were used in the solution of
many-body shell model calculations [34,35], especially when
weakly bound or unbound states of certain nuclei observed in
radioactive beam facilities were to be described by the Gamow
shell model or the complex-energy shell model [36]. In certain
applications [37,38] it was shown that antibound states can also
be included as basis states.

The Berggren bases were also used in CC problems: the
radial coupled Hartree-Fock-Bogoliubov equations [39] and
the CC Lane equation describing isobaric analog states [40]
were solved with it.

The aim of this paper is to show that in CC problems all
poles of the S matrix can be located with properly constructed
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Berggren bases. To this end, we reproduce the results of an
exactly solvable CC problem: the one with the Cox potential.
This CC problem can be solved exactly [41–44] so there is no
ambiguity in the location of the S-matrix poles. The analytic
solution of the Cox potential offers a unique opportunity for
testing the results of the numerical solution of the CC problem.

Another CC problem we consider is the description of the
3
2

+
resonance state of the nucleus 5He. This resonance is fa-

mous due to its role in the production of thermonuclear energy
and in primordial stellar nucleosynthesis. A phenomenological
analysis [20] revealed the presence of a shadow pole. The
strong t + d → α + n transition indicates the presence of
this pole. The structure of the 3

2
+

state is investigated for
example in the works [21,45–47]. Here we apply a simple
phenomenological CC model in order to show a physical
situation where a shadow pole plays an important role and
can be explored using the Berggren basis technique.

The paper is organized as follows. Section II describes the
CC Cox problem and its analytic solution. In Sec. III we
discuss how to use the Berggren basis for the solution of a
CC problem. Here we discuss the main point of the paper:
how to choose the Berggren basis in order to get all poles of
the S matrix. Sections IV and V are dedicated to applications.
The first one presents the results for the CC Cox problem,
both in the analytic framework and in numerical frameworks,
while the second one contains our study of the pole structure of
the Jπ = 3/2+ state of 5He in a two-channel approximation.
Finally, the conclusions are contained in Sec. VI.

II. THE COX COUPLED-CHANNELS PROBLEM

A. The Cox potential

The two-channel radial Schrödinger-equation with energy
E in reduced units reads

Hψ(r,E) = K2ψ(r,E), (1)

where K = diag(k1,k2), ki = √
E − �i denotes the channel

wave numbers, and �i are the threshold energies. We will use
as in [42] �1 = 0 and �2 = � > 0. The notation diag(a1,a2)
means a two-by-two diagonal matrix with elements ai in the
main diagonal. The Hamiltonian is

H =
(

− d2

dr2 + v11(r) v12(r)
v21(r) − d2

dr2 + v22(r)

)
(2)

and the solution forms a vector

ψ =
(

ψ1

ψ2

)
. (3)

The Schrödinger equation (1) has two matrix-value Jost solu-
tions from which the Jost matrix can be constructed, defining
both the scattering and bound state solutions. We classify the
solutions of Eq. (1) as in Ref. [42]. We call a solution a bound
state when a zero of the determinant of the Jost-matrix is such
that k1 and k2 are both pure positive imaginary numbers. We
call a solution a virtual or antibound state when a zero of the
determinant of the Jost-matrix corresponds to a real energy
below the thresholds, furthermore ki lies on the imaginary ki

axis, but not all of the ki values are located on the positive

imaginay axis. Finally, we call a solution a resonance if a zero
is such that ki is not lying on the imaginary ki axis, hence the
corresponding energy is complex, or if it is real then it is above
at least one of the thresholds.

The derivation of the Cox potential and how to solve it
exactly are given in [42–44]. To make the paper self-contained
we collect some formulas. The Cox [41] interaction matrix

V (r) =
(

v11(r) v12(r)
v21(r) v22(r)

)
(4)

is given by

V (r) = −K + 2K1/2[I + X(r)]−1K1/2, (5)

where I is the 2 × 2 unit matrix and

X(r) = diag[exp(−κ1r), exp(−κ2r)]X0

× diag[exp(−κ1r), exp(−κ2r)]. (6)

The symmetric 2 × 2 matrix X0 contains the parameters
of the potential. The factorization wave numbers κ1 and κ2

are positive parameters and they satisfy the condition κ2
2 −

κ2
1 = �. (we will use κ1 = κ as an independent parameter).

The matrix K is related to the factorization energies by K =
diag(κ1,κ2). Of course, the interaction matrix (4) is symmetric.

The determinant of the Jost matrix is given by [42]

f (k,p) = (k + i α1)(p + i α2) + β2

(k + i κ1)(p + i κ2)
. (7)

Here we denote for convenience the channel wave numbers as
k1 = k and k2 = p. The threshold condition reads k2 − p2 =
�. The zeros of the function f (k,p) determine the position of
the bound, virtual, and resonance states. Interestingly the Cox
potential depends on the factorization wave numbers but the
eigenenergies are independent of κi .

The connection between the parametrization α1, α2, β, and
X0 is given by the equation

U0 =
(

α1 β
β α2

)
= K1/2(I − X0)(I + X0)−1K1/2 (8)

and the inverse relation is

X0 = K−1/2(K − U0)(K + U0)−1K1/2. (9)

B. Reduced inverse problem

In a direct problem we calculate the eigenenergies and the
corresponding channel wave numbers (ki,pi) of the Cox CC
equations for a given set of potential parameters α1, α2, β, and
�. In the inverse problem we fix a few eigenenergies or other
characteristics of the problem and search for the parameters of
the potential which give back the fixed characteristics.

A very convenient approach was introduced in Ref. [48]. In
this approach one first fixes two solutions, and the other two
solutions are obtained in closed form. Let us fix (k1,p1) and
(k2,p2) as the first two zeros of the Jost-matrix determinant
f (k,p); then from (7) we get

(k1 + i α1)(p1 + i α2) + β2 = 0, (10)

(k2 + i α1)(p2 + i α2) + β2 = 0 (11)
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and we obtain the parameters α1 and α2 in terms of (k1,p1) and
(k2,p2) and β:

α1 = 1

2

[
i(k1 + k2) ±

√
−�2

k − 4β2
�k

�p

]
, (12)

α2 = 1

2

[
i(p1 + p2) ∓

√
−�2

p − 4β2
�p

�k

]
, (13)

where �k = k2 − k1 and �p = p2 − p1. The signs define two
sets of solutions which correspond to the same (k1,p1) and
(k2,p2) but two different (k3,p3) and (k4,p4) roots. In selecting
the solution either the upper or the lower signs are to be taken.

The other two roots (k3,p3) and (k4,p4) are determined in
Ref. [48] as follows:

k3 = 1

2

[
∓i

√
−�2

k − 4β2
�k

�p

+
√

Dk

]
, (14)

p3 = 1

2

[
∓i

√
−�2

p − 4β2
�p

�k

+ √
Dp

]
, (15)

k4 = 1

2

[
∓i

√
−�2

k − 4β2
�k

�p

−
√

Dk

]
, (16)

p4 = 1

2

[
∓i

√
−�2

p − 4β2
�p

�k

− √
Dp

]
, (17)

where Dk = �2
k + 4β2 �p

�k
+ 4k1k2 and Dp = �2

p + 4β2 �k

�p
+

4p1p2. Note the difference in sign of the second terms in p3

and p4 with respect to Eq. (50) in Ref. [48].

III. SOLUTION USING BERGGREN BASIS

We calculate the eigenvalues of the CC Cox problem by
diagonalizing the Hamiltonian (2) in the Berggren bases of
the potentials v11(r) and v22(r). We consider two auxiliary
problems[

− d2

dr2
+ vii(r) − E(i)

n

]
u(i)

n (r) = 0, i = 1,2. (18)

The states of the Berggren basis are the solutions of Eq. (18),
and for each channel they are composed of the resonant
basis states which are eigensolutions of Eq. (18) with purely
outgoing wave boundary condition, i.e., they correspond to
the poles of the S matrix in that channel. The resonant states
(bound, virtual, and resonance solutions) with energy E(i)

n

are denoted by u(i)
n (r). Besides the resonant states, the basis

contains scattering states along a complex contour L. The
scattering solutions are denoted by u(i)(r,E) or u(i)(r,k) if we
use the energy E or wave number k, respectively.

The shape of the contour L is restricted by certain rules [33].
In the k plane the contour has to go through the origin and has
to be symmetric to the origin, i.e., if k is on the contour L then
−k should be on the contour L too. Contour L is divided by
the origin to two halves, denoted by L+ and L−. The half L+ is
between k = 0 and k → +∞ with Im(k) < 0 in Figs. 1 and 2.
The L+ part for large |k| values has to go back to the real axis
and remain there. The contribution of the L− half is equal to

FIG. 1. Illustration of the contours L (thick lines) on the k and
p planes for the second Riemann sheet. Resonance states can be
determined with contours similar to those in parts (a) and (b). Both
virtual and resonance states can be calculated with contours similar
to those in parts (c) and (d). The double roles of the shaded areas are
explained in the text.

the one of L+, and the factor 2 is included in the normalization
of the scattering wave functions. When the contour is the full
real k line, similar decomposition of the k values is used in
[49], proving the completeness of the scattering states.

In the setup of the basis only those resonant states have to be
included into the Berggren basis whose wave numbers are in
the shaded area, i.e., between the contour L+ and the positive
k axis. Similar relations should be hold for the p contour of
the second channel. (See Figs. 1 and 2; the wave numbers to
be included into the basis should be also in the shaded areas of
the figures.)

The completeness relation of the Berggren basis reads

δ(r − r ′) =
∑

n=b,d,v

u(i)
n (r)u(i)

n (r ′)

+
∫

L+
dku(i)(r,k)u(i)(r ′,k). (19)

In this relation (and later) the notationn = b,d,v means that the
sum over n runs through all bound states, decaying resonances,

FIG. 2. Similar to Fig. 1 but for the third Riemann sheet.
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and virtual states in the shaded area of Fig. 1. The integral in
Eq. (19) is over the scattering states along the L+ half contour.
The completeness relation in Eq. (19) for chargeless particles
was introduced in Ref. [33], and its validity has been shown
for charged particles too [50–52]

Since we can not handle the continuum part exactly, the
complex contour is discretized and truncated in order to have
a finite number of contour states. The renormalization of the
discretized contour states was introduced first in Ref. [53] and
it is performed as in Ref. [36]. We use as discretization points
E

(i)
k (k = 1, . . . ,Ni) the abscissas of a Gaussian quadrature

procedure. The corresponding weights of the quadrature points
are denoted by h

(i)
k . After discretizing the integral in Eq. (19),

an approximate completeness relation for the finite number of
basis states reads

δ(r − r ′) ≈
Mi∑

n=b,d,v,c

w(i)
n

(
r,E(i)

n

)
w(i)

n

(
r ′,E(i)

n

)
, (20)

where c labels the discretized scattering states from the contour
L and Mi is the sum of the resonant (bound, virtual, and reso-
nant) states contained inside the shaded area plus Ni number
of discretized continuum states. If E(i)

n is a scattering energy
from the contour L, then the scattering state of the discretized

continuum is denoted by w(i)
n (r,E(i)

n ) =
√

h
(i)
n u(i)

n (r,E(i)
n ). If,

however, E(i)
n corresponds to a normalized resonant state of the

potential vii(r), then w(i)
n (r,E(i)

n ) = u(i)
n (r). The set of Berggren

vectors form a bi-orthonormal basis in the truncated space〈
w̃(i)

n

∣∣w(i)
m

〉 = δn,m. (21)

with 〈w̃(i)
n |r〉 = 〈r|w(i)

n 〉 = w(i)
n (r,E(i)

n ).
Having fixed the Berggren basis the solution (3) is approx-

imated in the form

ψi(r) =
Mi∑
k=1

C
(i)
k w

(i)
k

(
r,E

(i)
k

)
, i = 1,2. (22)

Using Eq. (1) we get the following set of linear equations
for C

(i)
k :

(
E

(1)
k − E

)
C

(1)
k +

M1∑
m=1

〈
w̃

(1)
k

∣∣v12

∣∣w(2)
m

〉
C(2)

m = 0, k= 1, . . . ,M1

(23)

and

[
E

(2)
k − (E − �)

]
C

(2)
k +

M2∑
m=1

〈
w̃

(2)
k

∣∣v21

∣∣w(1)
m

〉
C(1)

m = 0,

k = 1, . . . ,M2. (24)

These two equations can be combined into one matrix eigen-
value equation. By diagonalizing the matrix of the Hamiltonian
we get complex eigenvalues Eν , ν = 1, . . . ,M1 + M2. Some
complex/real eigenvalues Eν can be identified as resonant
states of the CC problem. The identification in this case is
easy because we should find the Eν eigenvalue being closest
to the exact value. In general this task is more complicated;
some methods can be found in Ref. [36].

In the two-channel case we have a Riemann surface with
four sheets. Let us define the four Riemann sheets in terms
of the sign of the imaginary parts of the k and the p wave
numbers. The Riemann sheets can be labeled by a two-term
sign string, (sgn(Im k), sgn(Im p)). We follow the standard
notations introduced in Refs. [11,15]. The first sheet is the
physical one and it is signed by (+,+). The second sheet
is (−,+) and these two levels are connected if 0 < E < �.
The third and fourth sheets are identified by (−,−) and
(+,−), respectively. These two sheets are also connected if
0 < E < �. If the energy E is above the threshold �, the
topological structure changes: sheets 1 and 3 as well as 2
and 4 are connected [15]. The location of a resonant state
determines the asymptotic behavior of its wave function. The
bound state from the first Riemann sheet has square integrable
wave functions in both channels. However, a resonant state
from the second Riemann sheet has wave functions such that
the first component asymptotically diverges and the second
channel has bound state type behavior. For resonant states from
the third Riemann level, both components of the wave function
diverge asymptotically.

When we diagonalize the CC Cox potential in Berggren
bases, sometimes we have to take different contours in the
complex k and p planes in order to determine the solutions
we are interested in. As we discussed earlier, the shape of
the complex contour L determines which resonant states of
the potential vii(r) should be included into the Berggren basis
of the given channel. However, the shape of the contours also
determines the Riemann sheets and we are able to find only the
resonant CC states on those Riemann sheets. The CC resonant
states of a given calculation are in the shaded areas in both the
k and p planes.

If both the k and the p contours remain on the real axis,
we can find only bound states on the physical (+,+) sheet.
In order to locate resonant states on the second Riemann sheet
(−,+), we have to use contours of the form displayed on Fig. 1.
Contours similar to the upper part [(a) and (b)] can be used only
for calculation of resonance states of the second Riemann sheet
and for bound states of the first Riemann sheet. If a virtual state
is located on the second Riemann level, then the contours have
to look like those displayed on the lower part [(c) and (d)] of
Fig. 1. Of course, also resonance states on the second Riemann
sheet can be calculated using contours similar to the lower part
[(c) and (d)] of Fig. 1. This type of contour, however, discards
some CC bound states from the first Riemann level.

If resonant states located on the third Riemann sheet are to
be determined, the shapes of the contours depicted in Fig. 2
have to be used. Only resonance states can be determined by
contours similar to the upper part [(a) and (b)] of Fig. 2. The
lower part is appropriate for calculations aimed at obtaining
virtual states and resonance states located on the third Riemann
level. We mention that, using contours corresponding to the
upper part [(a) and (b)] of Fig. 2, bound and resonance states
of all Riemann sheets can be determined simultaneously.
However, numerically it is favorable to use simpler contours.
For resonant states on the second Riemann sheet the accuracy
of the numerical calculation is better for contours of Fig. 1 than
for contours of Fig. 2. Simpler contours for states located on
the fourth Riemann sheet can be similarly constructed.
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TABLE I. Wave numbers of the antibound/bound states calculated
exactly and numerically for the single-channel problem with potential
v11(r) using β = 0 and κ = 1.

α1 Im(k) exact Im(k) numerical

0.7 −0.7 − 0.699528
0.6 −0.6 − 0.598954
0.5 −0.5 − 0.499935
0.4 −0.4 − 0.399984
0.3 −0.3 − 0.299996
0.2 −0.2 − 0.199998
0.1 −0.1 − 0.099998
−0.1 +0.1 0.100001
−0.2 +0.2 0.200000
−0.3 +0.3 0.299999
−0.4 +0.4 0.399999

IV. APPLICATION: COX POTENTIAL

At certain parameters of the Cox potential, the two channels
decouple. Since the eigenvalue problem is exactly solvable, the
accuracy of our program for solving the single-channel prob-
lem can be conveniently checked. This program integrates the
differential equations in Eq. (18) numerically. It is important
that we solve the single-channel problem accurately, since the
discrete basis states are calculated using this program. The
inaccuracy of the basis states would spoil the numerical results
of the CC system. Therefore we deal with the solution of the
single-channel case first. Then we will consider a CC system
having a resonance state above the first threshold and below
the second one. The threshold � and β are fixed to the values
1 and 0.1, respectively, for the applications considered here.

A. Single-channel solutions

If we take the parameter β = 0 then the CC equation with
Cox potential reduces to two uncoupled equations. In this case
the zeros of the Jost determinant (7) are k = −i α1 and p =
−i α2. We compare the analytical results with those of our
numerical calculations in Table I. Note that the exact value
of Im(k) has sign opposite to that of the value of the para-
meter α1.

To calculate the eigenvalues we used the highly reliable
Fortran program ANTI [54], which is based on Ixaru’s method
[55] for the numerical solution of the differential equation (18).
This program reproduces the exact results reasonably well in
most of the cases given in Table I. The agreements are best for
the bound state cases, and the antibound wave numbers are also
reproduced well, although the deviation from the exact value
increases gradually as the α1 value increases. In solving the
problem numerically, the diagonal potentials v11(r) and v22(r)
are cut to zero at a reasonably large Rmax. Beyond Rmax the
potential is considered to be zero. The results should be at most
slightly dependent on the chosen value of Rmax. With a cutoff
radius Rmax = 13, our numerical result is Im(k) = −0.699528
for α1 = 0.7, which deviates from the exact value in the fourth
decimal digit. With the same α1, value if we changed the cutoff
radius value to smaller or larger values we got slightly different

Im(k) values. [For Rmax = 12 we got Im(k) = −0.700028.
For Rmax = 14 we got Im(k) = −0.698944.] So we found
that the wave number of the antibound state depends only
weakly on the cutoff radius of the diagonal potential. This
is in agreement with the finding in Ref. [56] for a cutoff
Woods-Saxon potential. The pole energy of the S matrix is
determined from the condition that the logarithmic derivatives
of the internal and the external solutions of Eq. (18) are equal
at a matching distance Rmatch. See, e.g., Refs. [54,56,57]. The
internal solution is regular in r = 0, while the external solution
is a purely outgoing wave at Rmax. In principle the pole energy
should not depend on Rmatch. In our calculation the value of
Rmatch influenced only the fifth decimal digit of Im(k) if we
used a value in the range Rmatch ∈ [1,5].

These comparisons of the exact and approximate energies
give some hint on the limits of accuracy we can expect between
the exact and approximate results of the CC calculations. We
certainly cannot expect better agreement for the CC case than
we got for the single-channel case.

B. Coupled channels: Exact solutions

In order to obtain the exact solution to the CC problem,
we will apply the inverse procedure introduced in Sec. II B.
Let us consider a resonance solution of the Cox potential with
complex energy Er − iEi so that 0 < Er < � and Ei > 0.
We will determine (k1,p1) and (k2,p2) from the complex
energy solutions E1 = Er − iEi and E2 = E∗

1 = Er + iEi ,
which correspond to the wave numbers k1 = kr + iki and
k2 = −k∗

1 = −kr + iki with kr > 0 and ki < 0. The relations
between the real and imaginary parts of the energy and wave
numbers are

kr = 1√
2

[
Er +

√
E2

r + E2
i

]1/2
, (25)

ki = − Ei√
2

[
Er +

√
E2

r + E2
i

]−1/2
(26)

(note that Eq. (52) of Ref. [48] is wrong). Using the threshold
condition k2 − p2 = �, we can determine pr and pi with
p1 = pr + ipi and p2 = −p∗

1 = −pr + ipi . The sign of pr

is determined by noticing that from Eq. (31) of Ref. [48] we
can get krpr < 0, while the sign of pi is determined by the
condition prpi < 0 for Ei > 0 (which also implies kipi < 0).
Considering these restrictions, we have

pr = −1√
2

[ − (� − Er ) +
√

(� − Er )2 + E2
i

]1/2
, (27)

pi = Ei√
2

[ − (� − Er ) +
√

(� − Er )2 + E2
i

]−1/2
. (28)

Taking for example Er = 0.4 and Ei = 0.01 as in [48],
we get kr = 0.632550, ki = −0.007905 and pr = −0.006455,
pi = 0.774624. The exact solutions for the upper sign in
Eqs. (14)–(17) are displayed in Table II. Now the CC problem
has two resonances and two antibound states. According to
Table II the resonances E1 and E2 are located in the second
Riemann sheet. The antibound E3 state is on the second sheet
too while the second antibound solution E4 is a shadow pole
on the third Riemann sheet.
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TABLE II. Exact energies (Ej for j = 1, . . . ,4) and correspond-
ing wave numbers in the CC Cox potential with parameters given in
the text.

Ej kj pj

0.4 − i0.1 0.632550 − i 0.007905 −0.006455 + i 0.774624
0.4 + i0.1 −0.632550 − i 0.007905 0.006455 + i 0.774624

−0.5604738 −i 0.748648 i 1.24919
−0.5995714 −i 0.774302 −i 1.26473

C. Coupled channels: Approximate solutions

The approximate solutions are obtained by direct diagonal-
ization of the Cox potential on the Berggren basis as described
in Sec. III. For this we need to find the parameters α1 and α2 of
the potential which give the energies of the exact solution of
the previous section. Using Eqs. (12) and (13) and the upper
signs, we get α1 = 0.769379934, α2 = −0.766852669.

The solutions of CC equations using Berggren bases are
carried out as follows. Two Berggren bases are calculated using
the diagonal potentials v11(r) and v22(r), respectively, with the
κ = 1 parameter value. The parameter κ affects the shape of
the radial potentials but does not affect the CC eigenenergies.
For κ = 1 we found that the unperturbed potential v11(r) has
an antibound state and the unperturbed potential v22(r) has
a bound state. The actual values of the energies and wave
numbers of the resonant basis states are given in Table III.

The decaying CC resonance state at the energy E1 = 0.4 −
i 0.01 is on the second Riemann sheet. The shape of the contour
therefore should look like those in the upper part [(a) and (b)]
of Fig. 1, since the contour should go below k1, and k1 should
be in the shaded area.

The basis in the first channel has no bound state, therefore
it is formed from the complex continuum states only. In the
second channel the basis contains the unperturbed bound state
and a continuum which can be taken along the real p axis.
Diagonalizing the Cox potential using these bases, we got a de-
caying resonance at the energy E = 0.400047 − i 0.0100011.
The corresponding wave function is displayed in Fig. 3. The
form of the wave function follows from the rules discussed in
Sec. III. The real and the imaginary parts of the first channel
wave function show resonant behavior, i.e., they both diverge
asymptotically. The real and the imaginary parts of the second
channel wave function, however, both fall asymptotically, as a
bound state wave function does.

Besides the resonance states at E1 and E2 = E∗
1 , there is

an antibound state at the energy E3 = −0.5604738. It is also
in the second Riemann sheet. In order to calculate this state,
the contour should be taken similar to one in the lower part

TABLE III. Energies and wave numbers of discrete basis states
in the first and second channels.

Channel Re E(i)
n Im k(i)

n

1 −0.573887 −0.757553
2 −0.592006 0.769419

-0.2

-0.1

0

0.1

0.2

Real part
Imaginary part

0 2 4 6 8 10 12
r

0

0.2

0.4

0.6

0.8

Real part
Imaginary part

First channel

Second channel

(a)

(b)

FIG. 3. The wave function of the first resonance state located in
the second Riemann sheet and calculated with the Berggren expansion
method. The upper (a) and lower (b) parts show the first and second
channel components, respectively. The imaginary part of the second
component is practically zero.

[(c) and (d)] of Fig. 1, since k3 should be in the shaded area,
therefore we had to modify the contour used before. We still
have two possibilities for selecting the basis in this channel. If
the contour crosses the imaginary k axis far from the origin,
say at k = (0,−1.2), then the antibound basis state will be
in the shaded area and should be included in the Berggren
basis. Therefore the Berggren basis in the first channel contains
the unperturbed antibound state at kn = (0,−0.757553) and
a set of discretized complex k scattering states, and in the
second channel the unperturbed bound state and the real p
scattering states are in the basis. If we use this basis, the
diagonalization of the Cox potential gives a CC virtual state
at energy −0.561467 − i 0.494 × 10−7 which is very close
to the exact E3 value. The other option for choosing the
contour is that we cross the imaginary k axis just between
the exact k3 = (0,−0.749648) and the unperturbed antibound
state at kn = (0,−0.757553). If we cross the imaginary axis at
(0,−0.75), then the unperturbed antibound state will be outside
the shaded area, therefore it will not be included in the basis.
By using this basis in the first channel (the basis in the second
channel remains unchanged), the diagonalization gives a CC
virtual state at energy −0.561008 − i 0.413 × 10−3, which is
also very close to the exact E3 value. This later basis shows
an example for a case in which a correlated antibound state
is produced by diagonalization with Berggren bases in which
only the bound state and complex scattering states are included.
The small imaginary parts of the energies in the results of the
diagonalization in both cases are due to the numerical errors of
the numerical procedures used. They are beyond the accuracies
of the errors of the single-channel calculation of the antibound
basis state for α1 = 0.7.

In the Cox potential there is an another antibound solution
at the energy E4 = −0.599571. This state lies on the third
Riemann sheet so it is a shadow pole. To be able to expand
this state, we have to use contours which are similar to
one in the lower part [(c) and (d)] of Fig. 2. The Berggren
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basis in the first channel contains the unperturbed antibound
state. Because of the symmetry requirement of the complex L
contour to the origin, in the second channel the unperturbed
bound state should be excluded from the basis. Now we have no
alternative in choosing the contour since k4 = (0,−0.774302)
lies lower than the negative of the imaginary part of the
bound state at −k(2)

n = −0.769419. The bound pole now is
in the not shadowed part. But a finite number of discretized
scattering states with complex p wave number are naturally
included in the basis. The diagonalization of the Cox potential
in these bases gives an antibound CC state at the energy
−0.600357 − i 0.149 × 10−4, which is very close to the exact
E4 value. The deviation from the exact value is again within the
accuracy of reproducing the exact single-particle basis states.

The Berggren basis allows the calculation of more than one
resonant states simultaneously with a properly chosen basis.
As an interesting example we consider the first resonance state
from the second Riemann sheet and the shadow antibound state
from the third Riemann sheet. Numerically we will show that
although the states are on different sheets they can be calculated
simultaneously by using the same bases. Because we want to
calculate an antibound state in the third Riemann sheet, we have
to use contours similar to one in the lower part [(c) and (d)]
of Fig. 2. As we discussed before, these contours, however,
might exclude some resonance states located in the second
Riemann sheet. Therefore we have to choose the crossing
points of the contours and the positive imaginary axes carefully,
since the wave numbers of the resonance CC state should be
in the shaded area of Fig. 2. The Berggren basis in the first
channel is formed by the unperturbed antibound state and a set
of scattering states along the k contour, while in the second
channel the basis is composed of the unperturbed bound state
and a set of complex p scattering states. The diagonalization
of the Cox potential using these bases gives the eigenenergies
0.400214 − i 0.0098868 and −0.599100 − i 0.501 × 10−3 si-
multaneously. Although these numerical results produced by
these bases are still quite close to the exact values of E1 and E4,
the quality of the approximation is a little bit poorer than the
ones we presented earlier with bases adjusted to the energies
individually. Nevertheless the accuracies are still within those
of the single-channel basis states.

V. APPLICATION TO NUCLEAR PHYSICS:
A SHADOW POLE IN 5He

In this section we are going to study the structure of the
Jπ = 3/2+ state of the 5He nucleus in the two-channel model
[58]. Here the CC Schrödinger equations are given by

[h1 − (E − �1)] u1(r) + V12 u2(r) = 0, (29)

[h2 − (E − �2)] u2(r) + V12 u1(r) = 0, (30)

where channel 1 describes the 4He − n partition, and channel 2
describes the 3H − d partition. For thresholds we take �1 = 0
and �2 = 17.59 MeV [59].

The two positive-parity channel states coupled through the
interaction V12 are 2D3/2 and 4S3/2, with the following single-

particle Hamiltonians h1 and h2, respectively:

h1(r) = − h̄2

2μ1

d2

dr2
+ h̄2

2μ1

l1(l1 + 1)

r2
+ V1(r) + l̄1 · s̄ Vso(r),

h2(r) = − h̄2

2μ2

d2

dr2
+ Vcoul + V2(r) + Vsws(r),

with l1 = 2, and μ1 = 0.805686 amu and μ2 = 1.205288 amu
are the reduced masses of the4He − n and 3H − d fragmenta-
tions, respectively.

The central potential V1(r) and the spin-orbit term Vso(r)
for the first channel, unlike in Ref. [58], contain no repulsive
cores:

V1(r) = −V1

1 + (
r
a1

− 1
)
e

r−R1
a1

, (31)

Vso(r) = a2
1

r

Vso

V1

dV1(r)

dr
, (32)

with V1 = 70.13 MeV, Vso = 15.0 MeV, a1 = 0.85 fm, and
R1 = 1.70 fm. Since we droped the hard core, we had to adjust
the strength V1 in order to reproduce the resonance parameters
Er = 0.798 MeV and 
 = 0.648 MeV of ground state 3/2− of
5He. Using these parameters, the resonant ground state is found
at ε(p3/2) = 0.799 − i 0.361 MeV. The energy of the state d3/2

is found at ε(d3/2) = 15.4 − i 28.0 MeV, which is a physically
irrelevant resonance since the imaginary part of the energy
is bigger than its real part. Since the Hamiltonian h1(r) does
not hold any bound state or any narrow resonance, the single-
particle representation of the first channel will be formed from
real or complex energy scattering states exclusively.

The second channel mean-field differs from V2(r) used in
Ref. [58] by the presence of the Coulomb interaction Vcoul(r)
between the deuteron and triton and the central term having a
surface Woods-Saxon (WS) form Vsws(r),

V2(r) = −V2

1 + (
R2
a2

− 1
)
e

r−R2
a2

, (33)

Vsws(r) = −4Vsws e
r−R2

a2(
1 + e

r−R2
a2

)2
, (34)

Vcoul(r) = e2

r
, (35)

with V2 = 52 MeV, a2 = 0.85 fm, R2 = 1.25 fm, and e2 =
1.43996508 MeVfm. The strength of the surface WS was
adjusted in order to have a resonance in the partial wave s1/2.
In our calculation we have taken Vsws = 25 MeV, for which
the resonant energy is located at ε(s1/2) = 0.125 − i 0.101
MeV (k = 0.0909 − i 0.0319 fm−1). Then, the second channel
model space is formed either from real energy scattering states
or from a resonance and the appropriate complex contour.

The coupling interaction V12(r) between the two channels
is taken as in Ref. [58],

V12(r) = −V12

1 +
(

r
a12

− 1
)
e

r−R12
a12

, (36)
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TABLE IV. Vertices (ki and pi) and number of mesh points Ni

for each segment in the wave number complex plane. For further
explanation see the text.

i ki (fm−1) Ni pi (fm−1) Ni

1 (0,0) 100 (0,0) 100
2 (0.09816,−0.09816) 50 (0.1201,−0.1201) 50
3 (0.8781,−0.01097) 40 (1.0739,−0.01342) 40
4 (1.2416,0) 40 (1.5186,0) 40
5 (1.9631,0) 40 (2.4011,0) 40
6 (8,0) (8,0)

with a12 = 0.85 fm and R12 = 1.0 fm, and the coupling
strength V12 is a free parameter.

To study the poles of the CC model of 5He, we use complex
contours in the k (first channel) and p (second channel) planes.
Table IV gives the vertices and the number of mesh points for
each segment of the complex contour. When a real contour is
used, the imaginary component of ki or pi is zero. The L+
contour is the collection of the line segments between the
vertex points ki and ki+1. There are Ni mesh points in the
segment determined by ki and ki+1. The vertices were chosen
in order to uncover the energy region delimited by a polygon
with vertices (in MeV) (0,0), (0,−0.5), (20,−0.5), (20,0) of the
first channel and an identical shape shifted by �2 in the second
channel.

First, we solved the coupled equations in a model space
formed by the real energy scattering states in the first channel
and used a complex contour in the second channel plus the s1/2

resonance state. In this way poles in the Riemann sheets (+,+)
or (+,−) can be obtained. As the V12 strength is increased
from zero, we found that a pole starting from E = ε(s1/2) + �2

moves upwards. We were not able to follow this pole beyond
V12 � 13 MeV. When we use a complex contour for the first
channel model space and the real energy contour for the second
channel [poles of the Riemann sheets (+,+) or (−,+) can be
obtained], then for small V12 values we do not find any poles
until we reach V12 � 14 MeV. Then a pole appears very close
to the real axis, and it moves downwards as the interaction
increases.

In Fig. 4 the pole trajectories are shown as functions of
the parameter V12. Open squares connected by a full line are
the results we got with the first model space, and the poles
connected by dashed lines are those for the second model space.
In the the first model space the energy region of the fourth
Riemann sheet is uncovered, while in the second model space
the energy region of the second Riemann sheet is uncovered.

According to Ref. [14], if there is a resonant pole in any
of the channels with no coupling, in the CC problem this pole
will generate two poles in different Riemann sheets. In our
model this implies that, when the channel interaction V12 is
gradually turned on, one pole will appear in the fourth sheet
[Im(k) > 0, Im(p) < 0] and the second pole in the third sheet
[Im(k) < 0, Im(p) < 0]. We have already found and discussed
the movement of this latter one. When the complex contours
were used in both channels (note that also the resonance
must be included), we got a different resonance pole. This
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FIG. 4. Trajectories of the physical and shadow poles as functions
of the interaction strength V12. Circles (squares) denote the physical
(shadow) poles. The numbers next to the symbols indicate the values
of V12 in MeV. Arrows point to the positions of the physical and
shadow poles at the experimental strength V12 = 14.7 MeV (see
details in the text).

pole starts from the same position ε(s1/2) + �2 as the shadow
pole for V12 = 0 and moves continuously toward the threshold
�2 = 17.59 MeV. Since this model space is characterized by
Im(k) < 0, Im(p) < 0 it uncovers the fourth Riemann sheet;
this pole corresponds to the physical resonance which appears
in the sheet Und of Ref. [20]. The movement of this pole is also
depicted in Fig. 4.

The behavior of the pole trajectories displayed in Fig. 4
clearly shows that, as the coupling strength increases, the
shadow pole moves from the fourth Riemann sheet to the
second one. The same type of pole migration was observed
in [31], where a microscopic cluster model was used for the
description of the Jπ = 3/2+ state. From the pole trajectories
we can notice that the real part of the energy of the shadow
pole is always larger than that of the normal resonance pole
if 0 < V12 < 19 MeV. This finding is in agreement with the
result of the work [31].

The experimental energy of the normal pole is found to
be at 0.048 MeV [59] with respect to the 3H − d threshold
and its width is 0.0745 MeV. In our simple model calculation
we found that this pole position occurs in the third sheet for
V12 = 14.7 MeV. At this strength the normal pole in our model
is found at 0.048 − i 0.041 MeV, i.e., 
 = 0.082 MeV, in good
agreement with the experimental value. At the same strength,
the shadow pole is sitting in the second Riemann sheet with
the following resonant parameters: ε = 0.088 MeV and 
 =
0.042 MeV. The position of the shadow pole is close to that in
other model calculations (ε ≈ 0.082 MeV, 
 ≈ 0.007 MeV)
[20,22]; the width, however, is overestimated.

VI. CONCLUSIONS

We have considered the exactly solvable CC problem of the
Cox potential and showed that by using the Berggren expansion
method we are able to reproduce all poles of the S matrix,
even the shadow poles, in agreement with the exact calculation.
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The proper choice of the complex contours is very important,
since it determines which CC states can be calculated using
Berggren’s basis. With suitably chosen contours, we were able
to calculate poles on different Riemann sheets simultaneously.
We also gave a numerical example in which an anti-bound
state was calculated using Berggren’s basis formed only from
bound and complex energy scattering states. The deviations of
the numerical CC results from the exact results are within the
accuracies of the calculations of the single-channel basis states.

We have shown a nuclear physics example where a shadow
pole plays an important role. In the t + d → α + n fu-
sion reaction the 3

2
+

resonance state of the nucleus 5He is
very important. We studied this state in a phenomenological
two-channel model. In this example the emergence of two

poles—which originate from a resonance in the d + t
channel—was observed. It was found that a shadow pole
migrates between Riemann sheets if the coupling strength is
varied and that, at the physical strength, the normal and shadow
pole parameters agree with previous findings.

ACKNOWLEDGMENTS

The authors are grateful to Prof. B. Gyarmati, Prof. R.
G. Lovas, and Prof. A. Csótó for valuable discussions. This
work was supported by the National Council of Research PIP-
625 (CONICET, Argentina) and by the Hungarian Scientific
Research Fund-OTKA K112962.

[1] A. T. Kruppa and W. Nazarewicz, Phys. Rev. C 69, 054311
(2004).

[2] A. T. Kruppa, B. Barmore, W. Nazarewicz, and T. Vertse, Phys.
Rev. Lett. 84, 4549 (2000).

[3] I. J. Thompson and F. Nunes, Nuclear Reactions for Astrophysics
Principles, Calculation and Applications of Low-Energy Reac-
tions (Cambridge University Press, Cambridge, 2009).

[4] B. Marcelis, E. G. M. van Kempen, B. J. Verhaaar, and
S. J. J. M. F. Kokkelmans, Phys. Rev. A 70, 012701 (2004).

[5] N. Nygaard, B. I. Schneider, and P. S. Julienne, Phys. Rev. A 73,
042705 (2006).

[6] A. Cieplý and J. Smejkal, Nucl. Phys. A 919, 46 (2013).
[7] A. Doté, T. Inoue, and T. Myo, Nucl. Phys. A 912, 66 (2013).
[8] A. Doté, T. Inoue, and T. Myo, Phys. Rev. C 95, 062201(R)

(2017).
[9] K. Miyagawa and H. Yamamura, Phys. Rev. C 60, 024003

(1999).
[10] R. Eden, P. Landshoff, D. Olive, and J. Polkinghorne, The

Analytic S-Matrix (Cambridge University Press, Cambridge,
1966).

[11] A. M. Badalyan, L. P. Kok, M. I. Polikarpov, and Y. Simonov,
Phys. Rep. 82, 31 (1982).

[12] C. Grama, N. Grama, and I. Zamfirescu, Phys. Rev. A 61, 032716
(2000).

[13] C. Grama, N. Grama, and I. Zamfirescu, Phys. Rev. A 68, 032723
(2003).

[14] R. J. Eden and J. R. Taylor, Phys. Rev. 133, B1575 (1964).
[15] W. R. Frazer and A. W. Hendry, Phys. Rev. 134, B1307

(1964).
[16] W. van Dijk, K. Spyksma, and M. West, Phys. Rev. A 78, 022108

(2008).
[17] S. A. Rakityansky and N. Elander, Int. J. Quantum Chem. 106,

1105 (2006).
[18] R. M. Potvliege and R. Shakeshaft, Phys. Rev. A 38, 6190

(1988).
[19] M. Dorr and R. M. Potvliege, Phys. Rev. A 41, 1472 (1990).
[20] G. M. Hale, R. E. Brown, and N. Jarmie, Phys. Rev. Lett. 59,

763 (1987).
[21] L. N. Bogdanova, G. M. Hale, and V. E. Markushin, Phys. Rev.

C 44, 1289 (1991).
[22] A. Csótó, R. G. Lovas, and A. T. Kruppa, Phys. Rev. Lett. 70,

1389 (1993).

[23] B. C. Pearce and B. F. Gibson, Phys. Rev. C 40, 902 (1989).
[24] D. Morgan and M. R. Pennington, Phys. Rev. Lett. 59, 2818

(1987).
[25] D. Morgan and M. R. Pennington, Phys. Lett. B 258, 444

(1991).
[26] J. P. Cannata, F. Dedonder, and L. Leśniak, Z. Phys. A 343, 451
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