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Tilted-axis wobbling in odd-mass nuclei
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A triaxial rotor Hamiltonian with a rigidly aligned high-j quasiparticle is treated by a time-dependent variational
principle, using angular momentum coherent states. The resulting classical energy function has three unique
critical points in a space of generalized conjugate coordinates, which can minimize the energy for specific
ordering of the inertial parameters and a fixed angular momentum state. Because of the symmetry of the problem,
there are only two unique solutions, corresponding to wobbling motion around a principal axis and, respectively,
a tilted axis. The wobbling frequencies are obtained after a quantization procedure and then used to calculate E2
and M1 transition probabilities. The analytical results are employed in the study of the wobbling excitations of
135Pr nucleus, which is found to undergo a transition from low angular momentum transverse wobbling around
a principal axis toward a tilted-axis wobbling at higher angular momentum.
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I. INTRODUCTION

Atomic nuclei are predominantly spherical or axially sym-
metric in their ground state. Although more rarely, deviations
from axial symmetry are known to occur in certain regions
of the nuclide chart [1–3]. The rigid triaxiality in nuclei, i.e.,
when the asymmetry parameter γ is frozen to a certain value, is
an even more elusive phenomenon. The quantum mechanical
properties of the triaxial rigid rotor was first used in nuclear
physics by Davydov and Filipov [4] who showed that the low
lying collective states in some nuclei can be described by
the eigenvalues of a rotor Hamiltonian with different values
of the moments of inertia (MOI) corresponding to the axes of
the intrinsic reference frame.

Even though triaxiality has important effects on nucleon
separation energies [2], fission barrier height [5,6], frag-
mentation of the large amplitude collective excitations [7,8],
probability of proton emission [9], it is still difficult to
measure directly. Therefore, a lot of effort was directed to
the identification of a clear signature for triaxiality such as
signature inversion [10] or γ band staggering [11,12]. The
later also serves as a distinguishing test for rigid and dynamical
triaxiality [13] and was used to propose candidate nuclei for
rigid asymmetry [14–16].

Stable triaxial shapes are uniquely related to interesting
phenomena such as anomalous signature splitting [17], chiral
symmetry breaking [18], and the wobbling excitations [19],
whose observation is tantamount to the identification of triax-
iality. The possibility of wobbling motion at high spin states
was discussed for the first time for even-even nuclei [19]. As
the occurrence of rigid triaxiality in even-even nuclei became
more improbable, studies were directed to odd-mass nuclei,
where the alignment of the odd particle angular momentum
was supposed to facilitate the emergence of a rigid triaxial
core. This was first suggested for the triaxial strongly deformed

(TSD) bands of 163,165Lu based on an aligned i13/2 proton [20].
Later, Ødegård et al. [21] showed that two such bands in 163Lu
have similar inertial parameters and degree of single-particle
angular momentum alignment up to very high spin—a fact
specific to bands connected by wobbling excitations. This
first confirmation of the wobbling excitations in 163Lu, was
followed by the identification of wobbling bands based on
the alignment of the same proton orbital in other neighboring
nuclei 161Lu [22], 165Lu [23], 167Lu [24], and 167Ta [25].
Recently, the wobbling mode with an aligned h11/2 proton was
observed in the odd-even 135Pr nucleus [26,27].

The Bohr-Mottelson (simple) wobbling frequency pre-
dicted for even-even systems [19] is still a good starting point
and a useful reference for the study of wobbling excitations
in odd-A nuclei [28–30]. Its adaptation to the presence of an
aligned odd particle was realized only recently in a semiclassi-
cal description of a triaxial rigid rotor Hamiltonian with align-
ment [30]. The semiclassical approach to general rotor Hamil-
tonians has the advantage of keeping close contact with the
classical features of the system’s dynamics [31–36]. The result
of Ref. [30] explained the origin of the observed decrease in the
wobbling excitation as a function of total angular momentum in
terms of a so-called transverse wobbling which was proposed
originally in Ref. [37]. It is generated by the alignment of
the quasiparticle angular momentum perpendicular to the axis
with the largest MOI. All wobbling bands observed until now
in odd-A nuclei exhibit a transversal type of wobbling. The
last entry into the experimentally observed wobbling modes,
135Pr, is the only case which exhibits a termination of the
transversal wobbling. This feature is related to the angular
momentum dependence of the existence condition for the
transversal wobbling. The critical spin where it terminates
marks the transition from wobbling motion around a principal
axis to one around a tilted axis [30,38–40].
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In this study, one will show that through a rigorous semi-
classical treatment of a triaxial rigid rotor Hamiltonian with
particle alignment, one obtains in addition to the longitudinal
and transversal wobbling regimes also some complementary
modes corresponding to a tilted-axis wobbling motion. The
transition between principal and tilted-axis wobbling is used to
describe the anomaly in the wobbling excitation energy around
I = 29/2 in the 135Pr nucleus.

II. THEORETICAL FRAMEWORK

A. Semiclassical description

For the description of the interaction between single-
particle and collective angular momenta the following particle-
rotor Hamiltonian is employed:

H = HR + Hsp, (2.1)

where HR = ∑
k=1,2,3 Ak(Îk − ĵk)2 is the triaxial rotor Hamil-

tonian associated with the core angular momentum �R = �I − �j
and defined by the inertial parameters Ak . The latter are related
to the MOI by Ak = 1/(2Jk). The single-particle contribution
to the total Hamiltonian is

Hsp = V

j (j + 1)

{[
3ĵ 2

3 − j (j + 1)
]

cos γ

−
√

3
(
ĵ 2

1 − ĵ 2
2

)
sin γ

}
, (2.2)

where γ is the asymmetry parameter, which also defines the
ratios between MOI. In case of one fully aligned particle with
an alignment ĵ1 ≈ j ≡ const., the relevant part of the particle-
rotor coupling Hamiltonian may be reduced to

Halign = A1(Î1 − j )2 + A2Î
2
2 + A3Î

2
3 + const.

= H ′
R − 2A1j Î1 + const., (2.3)

where H ′
R = A1Î

2
1 + A2Î

2
2 + A3Î

2
3 is a pure rotor Hamiltonian

for the total angular momentum I . Thus, the Hamiltonian to
be treated is

Halign = A1Î
2
1 + A2Î

2
2 + A3Î

2
3 − 2A1j Î1. (2.4)

Because of difficulties in treating the full degrees of freedom
associated with the above Hamiltonian, it is desirable to
describe it by means of only few classical variables which are
extracted in such a way as to be associated with some particular
dynamics of the quantum system. An example in this sense is
the time-dependent Hartree-Fock theory, which is widely used
in the study of nuclear structure and dynamics. Such semiclas-
sical approaches rely on a time-dependent variational principle
applied to a variational state which is constructed according to
the problem under consideration [41]. The variational principle
provides the time dependence of some restricted set of complex
variables which parametrize the variational state. Solving then
the equations of motion for the complex variables provided by
the variational principle one obtains the classical description
of the relevant dynamics of the original quantum system.
Moreover, if the variational state spans the whole Hilbert space
of the quantum system, the classical equations of motion for
its complex variables are equivalent to the original quantum
eigenvalue problem. In this context, coherent states are perfect

trial functions because of their completeness property, while
its continuous character brings a natural transition between
quantum and classical pictures [42].

For the purpose of investigating wobbling excitations
emerging from the quantum Hamiltonian (2.4), the latter is
treated within the variation principle,

δ

∫ t

0
〈ψ(z)|Halign − ∂

∂t ′
|ψ(z)〉dt ′ = 0. (2.5)

The variational state |ψ(z)〉 is chosen of the form,

|ψ(z)〉 = N ezÎ−|I,I 〉, (2.6)

where z is a complex time-dependent variable, |I,M〉 are
the eigenstates of the angular momentum operators Î 2 and
Î3, while N = (1 + |z|2)−I is a factor that assures that the
function |ψ(z)〉 is normalized to unity. The spin-coherent states
of this type are actually generalizations of the famous Glauber
coherent states [43] to arbitrary Lie group structures [44–46].

The averages on the variational state of the terms involved
in the variation (2.5) are calculated using the results of
Refs. [33,44,47] and have the following expressions:

〈Halign〉 = I

2
(A1 + A2) + A3I

2 + I (2I − 1)

2(1 + zz∗)2

× [A1(z + z∗)2 − A2(z − z∗)2 − 4A3zz
∗]

− 2A1jI (z + z∗)

1 + zz∗ , (2.7)〈
∂

∂t

〉
= I (żz∗ − zż∗)

1 + zz∗ . (2.8)

z and its complex conjugate counterpart are considered as in-
dependent variables. The time-dependent variational equation
(2.5) offers the following equations of motion for the complex
variables z and z∗:

∂H
∂z

= − 2iI ż∗

(1 + zz∗)2
,

∂H
∂z∗ = 2iI ż

(1 + zz∗)2
, (2.9)

where H = 〈Halign〉 plays now the role of a classical energy
function which is also a constant of motion. For simplicity, the
complex variable is written in a stereographic representation
[44,48],

z = tan
θ

2
eiϕ, 0 � θ < π, 0 � ϕ < 2π. (2.10)

Within this parametrization, the angular momentum carried by
the coherent state is oriented in the direction specified by the
two angles of rotation θ and ϕ [47]. The equations of motion
for the new variables are given as

∂H
∂θ

= −I sin θϕ̇,
∂H
∂ϕ

= I sin θ θ̇ . (2.11)

The full structure of the classical Hamiltonian system is
reproduced if the variables are canonical. This is achieved by
the change of variable,

r = 2I cos2 θ

2
, 0 � r � 2I. (2.12)
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TABLE I. Critical points of the classical energy function (2.14) with corresponding restrictions which make them minima. The listed values
of the classical angular momentum components in the minimum points uniquely identify the distinct wobbling modes. Last column of the table
shows the set of three Euler angles which transforms the original reference frame to the one aligned to the average direction of the angular
momentum vector.

i (ri ,ϕi) Conditions I cl
1 I cl

2 I cl
3 (ψ,θ,φ)

1 (I,0) SIjA1 < A2 < A3 I 0 0 (π/2, π/2, π )
SIjA1 < A3 < A2

2 (
√

r2(2I − r2) = I,α2) A2 < A3 < A1SIj I cos α2 I sin α2 0 (π/2 + α2, π/2, π )
A2 < SIjA1 < A3

3 (
√

r3(2I − r3) = I cos α3,0) A3 < A2 < A1SIj I cos α3 0 I sin α3 (π/2, π/2 + α3, π )
A3 < A1SIj < A2

With this, the equations of motion acquire the canonical
Hamilton form,

∂H
∂r

= ϕ̇,
∂H
∂ϕ

= −ṙ , (2.13)

and one can distinguish now the role of each conjugate
generalized coordinates. Thus, ϕ is the generalized coordinate,
while r is the generalized momentum. This distinction will
become handy for the quantization procedure. The classical
energy function has the following expression in terms of the
canonical variables:

H(r,ϕ) = I

2
(A1 + A2) + A3I

2 + (2I − 1)r(2I − r)

2I

× (A1 cos2 ϕ + A2 sin2 ϕ − A3)

− 2A1j
√

r(2I − r) cos ϕ. (2.14)

The classical trajectory of the angular momentum vector �I
is a curve in the space of its classical projections (I1,I2,I3)
on the principal axes determined by the intersection of the
constant energy surfaces provided by the constants of motions.
These are the classical energy function and the total angular
momentum:

H = A1I
2
1 + A2I

2
2 + A3I

2
3 − 2A1jI1, (2.15)

I 2 = I 2
1 + I 2

2 + I 2
3 . (2.16)

In the space of classical components, the first condition is
represented by a shifted ellipsoidal surface, while the second
is a sphere. The conservation of the total angular momentum
can be easily verified by employing the expressions of classical
angular momentum components as functions of the canonical
variables [33,49]:

I1 =
√

r(2I − r) cos ϕ, I2 =
√

r(2I − r) sin ϕ, I3 = r − I.

(2.17)

The three coordinates are then reduced to only two, which
are taken to be the canonical variables ϕ and r . The final
purpose is to obtain the energy spectrum. This is usually
done by quantizing the period of the classical closed orbits
obtained as solutions of the equations of motion [30–32].
The procedure is similar to the Bohr-Sommerfeld quantization
condition. The classical orbits are closed curves in the phase
space of the canonical coordinates which are concentrically
positioned around the stationary points of the constant energy

surface. The stationary points where the time derivatives of
the canonical variables vanish, are determined from the critical
point condition for the classical energy function:

(
∂H
∂r

)
r0,ϕ0

= 0,

(
∂H
∂ϕ

)
r0,ϕ0

= 0. (2.18)

If one considers
√

r(2I − r) > 0, there are three stationary
points of the classical energy function H(r,ϕ) which are listed
in Table I using the following simplifying notation:

cos α2,3 = 2A1j

(2I − 1)(A1 − A2,3)
. (2.19)

The indexing of the α angle is related to the axes perpendicular
to the first axis with the single-particle angular momentum
alignment. Its physical meaning will become clear when the
classical motion of the system is discussed.

Only the stationary points which minimize the classical
energy are of interest. The conditions in which all three
critical points become minima are determined by studying
the corresponding Hessian matrix. It comes down to having
a positive determinant of the Hessian matrix, and one of its
diagonal minors. The domain of existence for the resulted
minima are indicated in Table I using the following angular
momentum weighting factor for MOI:

SIj = 2I − 1 − 2j

2I − 1
. (2.20)

No prior ordering relation for the inertial parameters Ak(k =
1,2,3) was considered. The conditions for existence of solu-
tions 2 and 3 as minima, imply that cos α2,3 > 0 and implicitly
α < π/2.

B. Wobbling excitation energies

Instead of quantizing the classical orbits, one can exploit the
canonicity of the two variables and quantize directly the classi-
cal energy function by means of the correspondence principle.
Unfortunately, the classical energy function contains mixed
terms in generalized coordinate and momentum. Although one
can symmetrize such products, the quantization procedure will
lose some of its reliability. To avoid that, one first expands the
energy function around its minima (ri,ϕi) with i = 1,2,3 and
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truncates the series at the second order:

Hi(r,ϕ) = H(ri,ϕi) + 1

2

(
∂2H
∂r2

)
ri ,ϕi

r̃2
i + 1

2

(
∂2H
∂ϕ2

)
ri ,ϕi

ϕ̃2
i ,

(2.21)

where r̃i = r − ri and ϕ̃i = ϕ − ϕi . In this way, the energy
function will acquire the form of a classical oscillator function.
The fact that positiveness of the oscillator parameters, i.e.,
mass and string constant, is implicitly satisfied, comes from
the condition that the critical points to be minima. The classical
trajectories become unstable as they depart from a critical
point, where their quantization becomes problematic [30,32].
Therefore, the harmonic approximation of the classical energy
function is consistent with the extent of the phase space
corresponding to fully quantizable trajectories. Quantizing
the resulted oscillator functions by replacing the generalized

coordinate and momentum with their operator counterparts,
one arrives at the following discrete energy spectra:

E1(I,n) = A1I
2 + I

2
(A2 + A3) − 2A1jI

+ω1(I )

(
n + 1

2

)
, (2.22)

E2(I,n) = A2I
2 + I

2
(A1 + A3) − A1jI cos α2

+ω2(I )

(
n + 1

2

)
, (2.23)

E3(I,n) = A3I
2 + I

2
(A1 + A2) − A1jI cos α3

+ω3(I )

(
n + 1

2

)
, (2.24)

where the associated wobbling frequencies are given by

ω1(I ) =
√

[(2I − 1)(A3 − A1) + 2A1j ][(2I − 1)(A2 − A1) + 2A1j ], (2.25)

ω2(I ) = (2I − 1)
√

(A3 − A2)(A1 − A2) sin α2, (2.26)

ω3(I ) = (2I − 1)
√

(A2 − A3)(A1 − A3) sin α3. (2.27)

The oscillator quanta n are associated here with the wob-
bling excitations. A few comments regarding the quantal
energies are in order. The nonwobbling terms of the quantum
energy describe the rotational motion of the system. The dom-
inant term proportional to I 2 obviously describes the rotation,
while the linear term constitutes the precession correction.
Within this picture, one can see that the rotation-precession
motion corresponding to solution 1, proceeds around the first
axis, which was chosen from the beginning as the alignment
axis. The large I limit of the first frequency is just the result
obtained by Frauendorf and Dönau [30], but with axes 1 and
3 interchanged. Solutions 2 and 3 recover each other when
axes 2 and 3 are interchanged, and correspond to rotations
around the second and, respectively, the third principal axis.
The wobbling frequency for these last solutions is given by
the simple wobbling estimation of Bohr and Mottelson [19]
tilted with the angle α2,3. The dynamical properties of each
solution can also be inferred from the values of the classical
angular momentum components (2.17) in their corresponding
minimum points which are listed in Table I. From this analysis,
the tilted nature of the new wobbling modes is more obvious.
Moreover, one can see that the angles α2,3 actually describe
the departure of the average angular momentum vector from
the first principal axis.

C. Electromagnetic transitions

Using the formalism of [19], the reduced matrix element of
the E2 transition operator can be written in the following form:

〈I ′n′||M(E2)||I,n〉 = 1√
2I + 1

√
5

16π
e〈n′|m(I,I ′)|n〉,

(2.28)

where

m(I,I ′) ≈ Q
(i)
0 δI,I ′ + Q

(i)
2 δI±2,I ′

+ 1

I

[
Q

(i)
0

√
3

2
I b
− − Q

(i)
2 I b

+

]
δI+1,I ′

+ 1

I

[
−Q

(i)
0

√
3

2
I b
+ + Q

(i)
2 I b

−

]
δI−1,I ′ . (2.29)

I b
+ and I b

− are boson realizations of the angular momentum
raising and lowering operators corresponding to a certain wob-
bling phonon number n with an associated wobbling frequency.
Note that these are defined in the representation where the
projectionK = I of their complementary spherical component
operator is diagonal. This means that one will further work in a
rotated frame of reference with Q

(i)
0 and Q

(i)
2 being the intrinsic

quadrupole moments in respect to the rotated frame “i” which
are related to the commonly used moments associated with the
system of reference with axis 3 as the quantization axis by [50]

Q
(i)
0 = D2

00(ψi,θi,φi)Q0

+ [
D2

02(ψi,θi,φi) + D2
0−2(ψi,θi,φi)

]
Q2, (2.30)

Q
(i)
2 = D2

20(ψi,θi,φi)Q0

+ [
D2

22(ψi,θi,φi) + D2
2−2(ψi,θi,φi)

]
Q2. (2.31)

Here, symbols D
j
mm′ denote the Wigner functions with their

arguments (ψ,θ,φ)i being the Euler angles that define the trans-
formation from the original reference frame (with axis 3 as the
quantization axis) to the rotated frame “i” in the x convention
[51]. The ratio of Q2 and Q0 is a measure of the deviation from
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TABLE II. The expressions of the transformed quadrupole moments Q
(i)
0 and Q

(i)
2 in terms of the

original components Q0 and Q2 which correspond to a reference frame where the third axis is the
quantization axis.

i Q
(i)
0 Q

(i)
2

(1) −Q0
2 +

√
3
2 Q2 − 1

2 (
√

3
2 Q0 + Q2)

(2) −Q0
2 +

√
3
2 Q2 − 1

2 (
√

3
2 Q0 + Q2)e2iα2

(3) 1
4 [(1 − 3 cos 2α3)Q0 + 2

√
6 cos2 α3Q2] 1

4 [−√
6 cos2 α3Q0 + (cos 2α3 − 3)Q2]

symmetry about the 3 axis, and can be related to parameter γ by

Q2

Q0
= tan γ√

2
. (2.32)

The angle sequence (ψ,θ,φ)i for each case is listed in
Table I while the corresponding relations between Q and Q(i)

components are given in Table II.
Performing a power expansion up to the second order of

the equations (2.17) around the minimum points (ri,ϕi), one
can then quantize them in the similar way as in the case of
the classical energy function. The quantum counterparts of the
variables r̃i and ϕ̃i can be written in terms of wobbling boson
operators as

ϕ̃i =
√

1

2I

1

ki

(a† + a), r̃i = i

√
I

2
ki(a

† − a), (2.33)

where ki = √
miωi with ωi being the wobbling frequencies

corresponding to each minimum point, while

mi =
[
I

(
∂2H
∂r2

)
ri ,ϕi

]−1

(2.34)

plays the role of oscillator mass. For the sake of completeness,
one lists below the explicit expression of mass for each
solution:

m1 = [(2I − 1)(A3 − A1) + 2A1j ]−1, (2.35)

m2 = [(2I − 1)(A3 − A2)]−1, (2.36)

m3 = [(2I − 1)(A1 − A3) tan2 α3]−1. (2.37)

Using the operator realizations (2.33) in the second-order
expansions of the classical angular momentum components
(2.17), one finally obtains the boson representations of the
lowering and raising angular momentum operators in the
rotated frame,

I b
+ =

√
I

2

[(
1

ki

− ki

)
a† +

(
1

ki

+ ki

)
a

]
,

I b
− =

√
I

2

[(
1

ki

+ ki

)
a† +

(
1

ki

− ki

)
a

]
. (2.38)

This is one particular boson realization of the angular momen-
tum operators which stems directly from the canonicity of the
coordinates ϕ and r and consequently from the correspondence
(2.33). It is actually a first-order approximation of the Holstein-
Primakoff boson expansion [52] expressed in rotated creation

operators. Holstein-Primakoff boson expansion was exten-
sively exploited to describe triaxial nuclei [53–59]. The full
boson expansion can be recovered from the classical functions
(2.17) by associating a boson algebra to a different pair of
canonical coordinates which are complex functions of ϕ and r
[33]. Choosing different sets of complex canonical coordinates
one arrives at other boson expansions which are commonly
used in spin-related problems [60,61] or new unexplored boson
realizations [33]. As all these boson mappings originate from
the same classical functions (2.17), the latter can be considered
as the universal classical angular momentum realization.

Plugging the lowering and raising angular momentum
operators (2.38) into (2.29), one easily obtains the following
transition probabilities:

B(E2; n,I → n,I ± 2)i = 5e2

16π

∣∣Q(i)
2

∣∣2
, (2.39)

B(E2; n,I → n − 1,I − 1)i

= 5e2

16π

n

2I

∣∣∣∣∣Q(i)
0

√
3

2

(
1

ki

+ ki

)
− Q

(i)
2

(
1

ki

− ki

)∣∣∣∣∣
2

,

(2.40)

B(E2; n,I → n + 1,I − 1)i

= 5e2

16π

(n + 1)

2I

∣∣∣∣∣Q(i)
0

√
3

2

(
1

ki

− ki

)
− Q

(i)
2

(
1

ki

+ ki

)∣∣∣∣∣
2

.

(2.41)

Another important observable concerning the electromag-
netic properties of the wobbling excitations is the B(M1) tran-
sition probability. Following the same procedure as in the case
of the quadrupole transitions and considering the alignment
of the quasiparticle angular momentum j along the first axis
[30], one obtains the following expressions for the B(M1) rates
connecting different wobbling bands:

B(M1; n,I → n − 1,I − 1)i

= 3

4π

n

4I

∣∣∣∣j (gj − gR)

(
1

ki

+ ki

)∣∣∣∣
2

, (2.42)

B(M1; n,I → n + 1,I + 1)i

= 3

4π

(n + 1)

4I

∣∣∣∣j (gj − gR)

(
1

ki

− ki

)∣∣∣∣
2

. (2.43)

gR and gj are the gyromagnetic factors of the collective core
and, respectively, of the odd particle.
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FIG. 1. Wobbling phase diagram for independent rigid MOI
represented for I = 35/2 and j = 11/2. In the region near the origin
bounded by S13/2,11/2 the wobbling modes do not exist. The transversal
regime of the first wobbling mode is denoted with (t1). The two closed
curves show the relationship among the rigid MOI parametrized as in
(3.1) for β = 0.2 and β = 0.3, when the asymmetry γrig is varied.

III. NUMERICAL RESULTS

A. Wobbling phase diagram

The complex motion of the resulted wobbling modes
and their domains of existence defined in Table I can be
schematically represented as a phase diagram. The three inertia
Ak(k = 1,2,3) can be reduced to only two independent ones,
by extracting for example A1 as a scaling parameter. In this way
one can visualize the wobbling phases as a function of only A2

and A3 given in units of A1. This is done in Fig. 1 for I = 35/2
and j = 11/2. The entire phase space is covered by all three
wobbling regimes separated by so-called separatrices, which
are phase space curves where the wobbling vanishes. There
is an exclusion region near origin, which defines a minimal
angular momentum value where the wobbling excitations can
occur. Analytically, this is explained by the fact that for values
lower than this limiting spin, the SIj quantity becomes negative
and leads to an imaginary wobbling frequency. The phases
corresponding to wobbling modes 2 and 3 are delimited by
the A2 = A3 separatrix. The separatrices between the first
wobbling mode and those corresponding to modes 2 and 3
are defined by SIj which also imply that | cos α2,3| = 1. This
separatrix depends on angular momentum as in Fig. 2. As
angular momentum increases, it moves toward its boundary
limit where A2,3 = A1. The first wobbling mode can lead
to both increasing and decreasing wobbling frequencies as
a function of angular momentum [30]. Analyzing the fre-
quencies (2.25)–(2.27) for each wobbling mode, one arrives
at the conclusion that the first wobbling mode is the only
one which can produce decreasing wobbling frequencies. This
wobbling regime is called transversal, while the remaining
mode of the first wobbling phase is called longitudinal. The

SI 132

SI 112

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

I

S I
j

FIG. 2. Evolution of the separatrix SIj as a function of angular
momentum for j = 11/2 and 13/2.

region between SIj and the limit of A2,3 = A1 defines a part
of the transversal mode of the first wobbling regime where
both A2 and A3 are smaller than A1. Such a configuration
is supposed to occur when the aligned quasiparticle is of the
hole type [30]. The second part of the transversal wobbling
mode is extended to regions where A2 ≶ A1 and A3 ≷ A1. The
whole domain of existence for the transversal wobbling mode
is shrinking as angular momentum increases. From the phase
diagram of Fig. 1 one can observe also that the longitudinal
regime of the first wobbling phase is completely separated
from the tilted-axis wobbling phases which are bounded only
by transversal solutions.

A common parametrization of the rigid MOI is

J rig
k = J rig

0

[
1 − β

√
5

4π
cos

(
γrig − 2

3
kπ

)]
, (3.1)

where β is the static quadrupole deformation. The evolution of
the ratios between these MOI as γrig is varied can be ascertained
from the same phase diagram of Fig. 1. Within the parametriza-
tion (3.1), the tilted-axis wobbling is allowed starting only
from a certain angular momentum. This critical value of the
angular momentum is lower for more deformed nuclear shapes,
i.e., with a larger β deformation. Another notable observation
regarding the curves shown in Fig. 1 for ratios of MOI given
by Eq. (3.1) is that they reside predominantly in the existence
domain of the transversal wobbling regime.

To study the dynamics of the system in each of the wobbling
phases, i.e., the evolution of the phase diagram as a function of
angular momentum, one considers for simplicity the hydrody-
namic estimation of MOI given by Bohr and Mottelson [19]:

Jk = 4
3J0 sin2

(
γ − 2

3kπ
)
, (3.2)

which is parametrized just by the asymmetry measure γ and
a scale J0. Using parametrization (3.2) on the minimum
conditions listed in Table I, one can represent graphically the
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FIG. 3. Wobbling phase diagram for hydrodynamic MOI repre-
sented in the Cartesian coordinates x = 2I cos γ and y = 2I sin γ .
In the middle exclusion region the wobbling modes not exist. The
transversal regime of the first wobbling mode is denoted with (t1).

wobbling phase space with an imbedded angular momentum
dependence as in Fig. 3. The first observation is that the
phase diagram has a reflection symmetry in the γ shape
variable. In the alternative Lund convention [62], both rigid
and hydrodynamic MOI are parametrized in the same way as
in Eqs. (3.1) and (3.2) but with an opposite sign for γ and,
respectively, γrig. This is the reason why the (t1) solution in the
fourth quadrant from Fig. 3 was called in previous studies as
wobbling in the positive-gamma rotation.

The conclusions made in the analysis with rigid MOI are
standing. In this case, however, the separatrix between modes 2
and 3 can be expressed by γ = 2π/2(Mod π ), while the inter-
val of existence for the longitudinal mode of the first wobbling
phase is given as γ ∈ (0,π/3)(Mod π ). Parametrization (3.2)
reduces the number of parameters at the cost of constricting
the domain of values for the moments of inertia. This, for
example, affects very much the existence interval of transversal
wobbling with A1 > A3,A2. This condition is fulfilled with
hydrodynamic MOI only for I = 13/2 and I = 15/2, provided
the restrictions,

90◦ < γ < 103.71◦ (Mod π ),

136.29◦ < γ < 150◦ (Mod π ), (3.3)

and, respectively,

90◦ < γ < 92.45◦ (Mod π ),

147.55◦ < γ < 150◦ (Mod π ), (3.4)

are satisfied. Contrary to the case with rigid MOI, these
intervals are very narrow. Therefore the configuration of a
hole aligned to a triaxial core with hydrodynamic MOI will
most probably lead to a tilted-axis wobbling described by the

10o15o20o

1

2

10 15 20 25 30 35 40
0

20

40

60

80

2I

Ω
1

2
I

J 0
1

FIG. 4. Evolution of wobbling frequency given in units of J −1
0

as a function of 2I from the transversal regime of the wobbling
mode 1 to the tilted-axis wobbling mode 2. The curves correspond
to γ = −10◦,−15◦, and −20◦ with associated critical spins around
I = 21/2,25/2, and 33/2.

second or third mode. And the wobbling excitations will be an
increasing function of angular momentum.

Because of the angular momentum dependence of sepa-
ratrices between the principal axis and tilted-axis wobbling
modes, a transition between them is possible when a fixed
value of γ is considered. As a consequence, the termination
of the transversal wobbling band suggested in Refs. [30,40] is
actually a transition to a tilted-axis wobbling mode [38,39].
The evolution of the wobbling frequencies along such a
transition is given in Fig. 4 for few values of the γ deformation
which connect wobbling modes 1 and 2 in the hydrodynamic
parametrization of MOI. The picture for the transition between
wobbling phases 1 and 3 is the same, but is obtained for
γ values shifted with 2π/3(Mod π ), which amounts to the
interchange between hydrodynamic MOI corresponding to
second and third principal axes. The decreasing behavior of the
transversal wobbling frequency seems to follow an ellipsoidal
curvature when hydrodynamic MOI are employed.

In Fig. 5 one plotted the dependence of angle α2 on angular
momentum for different values of triaxiality γ . The result is
easily transposable to the solution 3 described by the tilting
angle α3. Thus, in contradistinction to the wobbling mode 1,
where the average orientation of the angular momentum vector
is constantly along the first principal axis, the mean rotation
axis for the rest of the wobbling modes moves from the first
principal axis as the spin increases. For asymptotically high
angular momentum values, the average rotational axis tends to
align itself perpendicularly to the alignment axis 1 (sin α2,3 →
1). But, as can be seen from Fig. 5, this full alignment cannot be
achieved by experimentally measured high spin states which
reach up to I = 97/2 in TSD bands of few Lu isotopes. The
energy in this case will recover the simple formula of Bohr
and Mottelson for wobbling excitations around axis 2 or 3.
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FIG. 5. Tilting angle α2 defined by (2.19) is given as a function
of 2I for few γ values from the phase space of the wobbling mode 2
with hydrodynamic MOI.

From Fig. 5 one can also see that α2 increases very rapidly
for the first few angular momentum states and then reaches a
relative saturation plateau. This means that for sufficiently high
starting spin value, an extended part of the wobbling band in
this regime can be described by a near constant tilting angle. If
γ is closer to the −π/3 separatrix, the increase of α2 becomes
more abrupt and the plateau more level.

B. Comparison with experiment

The introduction of the wobbling mode 1 in [30,37],
and especially its transverse regime was a great step into
the understanding of the experimentally observed wobbling
excitations in Lu and Ta isotopes [25]. In these nuclei the
wobbling bands are populated up to very high spin states and
the data do not exhibit any trace of band termination. This
means that it happens at a very high spin, which is not yet
reached by experiment. The 135Pr nucleus is a little different
from all other measured wobbling excitations. First of all it
is based on an aligned proton from the h11/2 orbital instead
of i13/2 as it happens in Lu and Ta. Secondly, it exhibits a
backbending-like anomaly in its yrast and wobbling bands.
This anomaly results in an inversion of the angular momentum
dependence of the wobbling energy which is defined as

E
(i)
W = Ei(I,1) − 1

2 [Ei(I − 1,0) + Ei(I + 1,0)]

= 1
2

{
3ωi(I ) − 1

2 [ωi(I − 1) + ωi(I + 1)]
} − δEi,

(3.5)

where i = 1,3 and

δE1 = A1, (3.6)

δE2 = A2 − 2A1j cos α2

(2I − 3)(2I + 1)
, (3.7)

δE3 = A3 − 2A1j cos α3

(2I − 3)(2I + 1)
. (3.8)

FIG. 6. Experimental excitation energies [26] of the wobbling
band in 135Pr compared with the theoretical wobbling energy.

Judging by the experimental energy spectrum and mea-
sured electromagnetic transitions [26], the transversal mode
of wobbling and its associated rotational regime is preserved
up to I = 27/2 in the yrast band (n = 0) and up to 29/2
in the wobbling band (n = 1). The following I = 31/2 and
I = 35/2 yrast states and the wobbling state I = 33/2 are then
considered to be part of a different rotation-wobbling regime.
The low spin at which this transition takes place, excludes
the nonindependent rigid MOI description (3.1) of the nuclear
shape. Indeed, the small quadrupole deformation of 135Pr
(β ≈ 0.18) [26] implies a very high critical angular momentum
where the tilted-axis wobbling with nonindependent rigid MOI
can be achieved. The transition between different wobbling
regimes at such a low spin is, however, possible within the hy-
drodynamic parametrization of the MOI. Using I = 29/2 and
I = 31/2 as spins for transversal wobbling termination, one
can obtain an interval of γ deformations which might describe
the transition in the experimental wobbling excitation energy
visualized in Fig. 6. Thus, one obtains two limiting curves of
the types shown in Fig. 4 corresponding to γ = −12.13◦ and
γ = −11.16◦.

In the present model, one considers that J0 and γ are
free parameters which are fixed by fits to experimental data.
Fitting just the wobbling energy with Eq. (3.5), one can obtain
very good agreement with experiment. Such a result will,
however, be far from experimental data in what concerns the
angular momentum evolution of the energy spectrum in each
considered band. Therefore, the fitting must be performed on
the experimental energy levels. To improve the agreement
with experiment, the parameter J0 is often amended with a
spin dependence [26,40,57–59]. Here, one will use a different
approach inspired from the observations regarding the rotation-
vibration collective states. There is a long-standing debate
wether the lowest excited Kπ = 0+ band can be interpreted
as a rotational band constructed on a β vibration excitation
[63]. The doubt about this interpretation is mostly connected
to the persistent failure of the geometrical and algebraical
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FIG. 7. Comparison of n = 0 and n = 1 energy levels between
theoretical results and experimental data [26] for 135Pr.

models to reproduce the correct level spacing in these bands
while describing the ground and γ bands with a high precision.
This inconsistency originates from the use of the same inertia
for vibrations and rotations. This restriction can be bypassed,
for example, by considering an energy-dependent collective
potential [64,65].

The dynamical distinction between the vibrational and
rotational degrees of freedom will be used here for fitting the
experimental energy levels of the yrast band and wobbling
band of 135Pr with two different scaling parameters,J R

0 for the
rotation-precession terms, andJ W

0 for the wobbling frequency.
The parameters resulted from the fits are J R

0 = 30.96 MeV−1,
J W

0 = 65.93 MeV−1, and γ = −11.18◦, which corresponds to
an rms=0.149 MeV. The comparison between the theoretical
and considered experimental energy levels is made in Fig. 7. As
can be seen, the agreement with experiment is quite good, even
in the transition region between I = 27/2 and I = 33/2. This
is also reflected in an impressive reproduction of the wobbling
energy evolution as a function of spin shown in Fig. 6. The
triaxial deformation γ = −11.18◦ gives the following ratio
between the MOI J1 : J2 : J3 = 15 : 24 : 1. The transversal
character of the wobbling excitations up to I = 29/2 is evident
from the fact that the MOI of the principal axis around which
the rotation takes place has the intermediate value [30]. The
tilted-axis wobbling corresponds to a rotation axis which
departs from the first principal axis toward the second principal
axis. The angle α2 between the rotation axis of the transverse
wobbling and that of the tilted-axis mode 2 is 4.22◦, 20.78◦, and
28.36◦ for the states I = 31/2,33/2, and, respectively, 35/2.

The fitted parameters are used to calculate transition prob-
abilities, which are compared with few experimental values in
Table III. The ratio between electric quadrupole transition is
scale free, while the ratio between the inter-band M1 transition
and the in-band E2 transition have a scale dependence on the
quantity [(gj − gR)/Q0]2. Because of the lack of information
regarding Q0 and the uncertainty in the degree of quenching for

TABLE III. Experimental [26] and theoretical E2 and M1 tran-
sition probabilities for transitions from the n = 1 wobbling band to
n = 0 band. The rates are normalized to the E2 transition within the
wobbling band from the same state.

I B(E2,I→I−1)out
B(E2,I→I−2)in

B(M1,I→I−1)out
B(E2,I→I−2)in

( μN

eb
)2

Expt. Th. Expt. Th.

17
2 0.313 0.164
21
2 0.843(32) 0.270 0.164(14) 0.164
25
2 0.500(25) 0.258 0.035(9) 0.183
29
2 �0.261(14) 0.318 �0.016(4) 0.279

the gyromagnetic factor, the theoretical calculations employ
for this ratio the value of 0.0502 which equates the experi-
mental data for I = 25/2 state. The theoretical results for E2
transitions are in the range of experimental data. The experi-
mental values are, however, decreasing more rapidly with spin
than the theoretical ones. At the termination spin I = 29/2
the theoretical calculations show an increase. This behavior is
not excluded by experimental data, but for confirmation one
needs more precise measurements. The theoretical magnetic
transition ratios also exhibit a decreasing with spin, which is
in contradiction with the state dependence of the experimental
data. Once again the transition probability is enhanced for the
terminating spin I = 29/2.

One expects an improvement of the agreement with experi-
mental energy levels and especially transition probabilities, for
fits against independent rigid MOI. This, however, increases
the number of free parameters. Alternatively, a better repro-
duction of data can be achieved by coupling the wobbling
excitations to scissorlike oscillations of the proton and neutron
distributions [66].

IV. CONCLUSIONS

Three unique wobbling phases are determined as quantized
oscillations around minima in the classical energy associated
to a quantum triaxial rotor Hamiltonian with an aligned
single-particle angular momentum along the first principal
axis, by means of a time-dependent variational principle. From
the dynamical point of view, the three phases correspond to
two distinct pictures: The first phase describes the single-
particle angular momentum alignment along the first principal
axis which is the approximate rotation axis. It gathers both
longitudinal and transverse regimes discussed in Ref. [30].
The other two wobbling phases describe tilted-axis wobbling
excitations, with the approximate rotation axis contained in
the principal planes defined by the first principal axis with
the second and, respectively, the third axes. The existence
conditions for each wobbling mode are discussed in terms
of independent MOI. All three wobbling phases are bordered
by separatrices. One distinguished two kinds of separatrices,
dependent and independent on spin. The first type could be
crossed during the increase of angular momentum. Such a
situation corresponds to a wobbling phase transition between
the first phase and any other tilted-axis wobbling modes.
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Using the hydrodynamic parametrization of the MOI, a phase
diagram was drawn in terms of the triaxiality parameter γ
and the total angular momentum I . In such a phase diagram,
the transition paths with stable γ deformation can start only
from the transversal subspace of the first wobbling phase.
The transition from the transversal wobbling to a tilted-axis
regime is used to describe the wobbling excitations in 135Pr
nucleus. The agreement with experiment is very good in what
concerns the energy levels. The theoretical results are able to
reproduce the discontinuity in the wobbling energy ascribed to
the aforementioned transition. The results of the fits were used
to calculate E2 and M1 transition probabilities connecting
the wobbling band states with the yrast energy levels. The
domain of values is close to the experimental data on electric
transitions. However, the reproduction of the spin evolution is
deficient, especially for magnetic transitions. An enhancement
of the transitions connecting the last transverse wobbling state
I = 29/2 is observed in the theoretical calculations. This is

because of the proximity of the wobbling separatrix, which
makes the wobbling solutions unstable.

In conclusion, in addition to reproducing the known result
for transverse and longitudinal wobbling, one completed the
wobbling phase space with a tilted-axis wobbling mode. In
this way, the whole dynamical description of the particular
system composed of a triaxial core and an aligned quasiparticle
is treated in a unified manner. Each wobbling mode follows
strict conditions associated with the MOI. This analysis put
some additional constraints to the transverse wobbling regime
introduced in Ref. [30]. Nevertheless, it is still experimentally
realizable such that its existence and stability cannot be
disputed [59,67].
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