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Inclusive π+d → p(ηp) process and the ηN scattering length
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The cross section of the inclusive process π+d → p(ηp) is calculated as a function of the ηp invariant mass
when the detected proton is moving in the forward direction. The incident pion has a momentum of plab =
898.47 MeV/c for which the ηp pair are left at rest in the laboratory system which allows one to study the effect
of the ηp → ηp final-state interaction in the region of the N (1535)S11 resonance. The sensitivity of the inclusive
cross section to different parametrizations of the ηN final-state interaction is discussed.
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I. INTRODUCTION

In a previous work [1] I studied the exclusive η-production
process π+d → ηpp, where the two protons would be detected
in coincidence one of them in the forward direction with a
momentum almost equal to the incident pion momentum and
the other one with very low momentum. This follows from the
proposal put forward by Fujioka and Itahashi [2,3] where they
point out that for a pion incident momentum ≈900 MeV/c the
η and one of the protons will be left at rest in the laboratory
system so that this process appears to be very well suited
to study the ηN final-state interaction in the region of the
N (1535)S11 resonance, i.e., to study the ηN amplitude very
near threshold, in particular, the value of the ηN scattering
length.

Although the results of Ref. [1] show large sensitivity of
the kinematically complete differential cross section to the η-
nucleon low-energy parameters, they require the measurement
of the slow proton at very low momenta (100–200 MeV/c)
which apparently is difficult to do in the actual experiment [4].
On the other hand, the forward proton has a relatively large
momentum (∼900 MeV/c) that can be easily measured in the
experiment. This has led to the conclusion that it is better to
measure only the forward proton at momenta near 900 MeV/c
[4]. Such an approach has been discussed recently for the case
of the similar process γ d → p(ηn) [5,6]. The model used here
includes first- and second-order diagrams involving πN →
πN , πN → ηN , ηN → ηN , and NN → NN interactions as
shown in Fig. 1.

As I noted in Ref. [1], the ηN scattering length aηN is
not well known since it must be obtained indirectly from the
combined analysis of πN → πN and γN → πN together
with the available differential and total cross sections data
of πN → ηN . Although for the various amplitude analyses
[7–11] the imaginary part of the ηN scattering length comes
out quite stable at ∼0.26 fm, basically as a consequence of the
optical theorem, the values for Re aηN run from 0.4 to 1.07 fm.
This work explores the use of the inclusive π+d → p(ηp)
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process to try to determine the value of the real part of the ηN
scattering length.

The formalism of the inclusive π+d → p(ηp) process is
described in Sec. II and the results are presented in Sec. III

II. FORMALISM

Since the formalism to describe the π+d → ηpp amplitude
has been presented in full detail in Ref. [1] it will not be
repeated here. I will instead just write down the corresponding
expression for the inclusive differential cross section and some
of the basic elements that enter in the construction of the
π+d → ηpp amplitude.

A. The inclusive π+d → p(ηp) cross section

Assuming that the incident pion has a momentum qlab =
898.47 MeV/c in the laboratory system and that one of the
protons moves along the direction of the incident pion (the z
axis) with momentum klab � qlab, the maximum momentum
that the forward proton can reach is klab = qlab, when the
second proton and the η meson are left at rest in the laboratory
frame.

Following Ref. [6] one should notice that the experimental
data are actually given in the form of a ratio, Rexp of the
measured cross section for π+d → p(ηp) divided by those of
π+n → ηp convoluted with the proton momentum distribution
in the deuteron. This is for removing systematic uncertainties
of the acceptance from the detector coverage. Thus, from the
theoretical side, the corresponding quantity to calculate is

R = dσfull/dMηp

dσimp/dMηp

, (1)

where Mηp is the ηp invariant mass, σfull is calculated with the
full model of Fig. 1, and σimp is calculated using only the single
scattering diagram, Fig. 1(a).

I will calculate the differential cross section in the center
of mass frame. If one calls the two nucleons as particles 1 and
2 and the η meson as particle 3, the kinematically complete
differential cross section in the c.m. frame when particle 1
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FIG. 1. Model of the πd → ηNN process: (a) single-scattering
diagram, (b) N -exchange diagram, (c) π -exchange diagram, and
(d) η-exchange diagram.

moves in the forward direction is given by
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The factor 2
3 in Eq. (2) comes from the isospin and the sum is

over the spin projections of the two nucleons and deuteron. M
is the proton mass, W is the invariant energy of the system, k1

(E1) and k3 (ω3) are the momenta (energies) of particles 1 and
3 while qc.m. is the pion momentum, all of them measured in
the three-body c.m. frame.

The inclusive differential cross section is obtained as

dσ

dk1
=
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3

k−
3

dk3
dσ

dk1dk3dcosθ1

∣∣∣∣
cosθ1=1

, (3)

where k−
3 and k+

3 are the solutions of

W =
√

M2 + k2
1 +

√
M2 + (k1 ± k3)2 +

√
m2

η + k2
3 . (4)

Finally, since the ηp invariant mass squared is given by

M2
ηp = W 2 + M2 − 2W

√
M2 + k2

1, (5)

one gets that

dσ

dMηp

= dσ

dk1

Mηp

√
M2 + k2

1

k1W
. (6)

B. The π+d → ηpp amplitude

The model of the π+d → ηpp amplitude shown diagram-
matically in Fig. 1 includes single- and double-scattering terms
to which one must add the corresponding diagrams where the
final nucleons 1 and 2 are interchanged. Thus, the amplitude
is given by

A = A0 + AN + Aπ + Aη + (1 ↔ 2). (7)

The single-scattering term A0 is represented by Fig. 1(a) where
nucleon 2 in the deuteron undergoes the elementary process
πN → ηN while nucleon 1 remains as spectator. The term
AN is represented by Fig. 1(b) where after the elementary η
production process a nucleon is exchanged. Similarly, the terms
Aπ and Aη represent the processes depicted by Figs. 1(c) and

1(d) where a pion or an η are exchanged. As I pointed out in
Ref. [1], Fig. 1(a) is given by

A0 = ū2(�k2)tπN→ηN

/K − /qπ − /k1 + M

(K − qπ − k1)2 − M2 + iε
VdNNv1(�k1),

(8)

where K is the total four-momentum and k1 and k2 are the two
final proton momenta. VdNN is the deuteron-nucleon-nucleon
vertex with one nucleon off the mass shell, v1 = iγ2u

∗
1 is a

charge conjugate spinor for nucleon 1, and tπN→ηN is the
elementary pion-induced η-production amplitude.

The double-scattering terms depicted by Figs. 1(b), 1(c) and
1(d), are evaluated by putting the spectator nucleon on the mass
shell in the loop of the corresponding diagrams. Thus, the term
where a nucleon is exchanged [Fig. 1(b)] is given by

AN = 1

(2π )3

∫
M

Ek

d�k ū2(�k2)v̄1(�k)tNN→NNv1(�k1)

× /K − /qη − /k + M

(K − qη − k)2 − M2 + iε

× tπN→ηN

/K − /qπ − /k + M

(K − qπ − k)2 − M2 + iε
VdNNv1(�k),

(9)

while the terms where a meson b (b = π,η) is exchanged
[Figs. 1(c) and 1(d)] are given by

Ab = 1

(2π )3

∫
M

Ek

d�k ū1(�k1)tbN→ηNu1(�k)

× 1

(K − k2 − k)2 − m2
b + iε

× ū2(�k2)tπN→bN

/K − /qπ − /k + M

(K − qπ − k)2 − M2 + iε

×VdNNv1(�k); b = π,η. (10)

As I pointed out in Ref. [1], the deuteron-nucleon-nucleon
vertex with one nucleon off the mass shell is of the form [12,13]

VdNN = F (k′2)/εd + 1

M
G(k′2)εd · k

+ /k′ − M

M

[
H (k′2)/εd + 1

M
I (k′2)εd · k

]
, (11)

where εd is the polarization vector of the deuteron and k and
k′ are the four-momenta of the on-shell and off-shell nucleons,
respectively. The connection between the form factors F , G,
H , and I and the components of the deuteron wave function
(the familiar s- and d-wave states u and w plus the two
relativistic vt and vsp-wave states) is given in Refs. [1,12,13].
As I explained in Ref. [1], the four components of the deuteron
wave function u, w, vt , and vs , have been constructed by
Buck and Gross [12] by considering different models of the
NN interaction. These models were fitted to reproduce the
static properties of the deuteron. For the πNN vertex these
models consider a linear combination of pseudovector and
pseudoscalar coupling as

	πNN = λγ5 + (1 − λ)
1

2M
γ5/qπ , (12)
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TABLE I. Low-energy parameters of the three models of the ηN

amplitude Eq. (13). Model A is that of Ref. [11], model B is that of
Ref. [7], and model C is that of Ref. [9].

Model a (fm) r0 (fm) s (fm3)

A 0.407 + i0.255 −3.442 + i0.320 0.202 − i0.124
B 0.717 + i0.264 −1.594 − i0.028 −0.014 − i0.015
C 1.07 + i0.26 −1.25 − i0.25 −0.20 − i0.05

where λ = 0 corresponds to pure pseudovector coupling and
λ = 1 corresponds to pure pseudoscalar coupling.

I use for the πN → ηN , πN → πN , and ηN → ηN
amplitudes, the variable-mass isobar model [14,15] in which
the spin- 1

2 and spin- 3
2 isobars have a mass equal to the

invariant mass of the system
√

s and the meson-nucleon-isobar
couplings are chosen such as to generate scattering in the
orbital angular momenta �± = j ± 1

2 . Since in the region that
is being considered the ηN → ηN amplitude is dominated
by the N (1535)S11 resonance, it suffices to consider only that
channel with the corresponding expression of the amplitude
given by

t−1
ηN = 1/a + 1

2 r0q
2
0 + sq4

0 − iq0, (13)

where the low-energy parameters a, r0, and s obtained from
three different analyses are given in Table I. I take into account
the fact that the particles can go off the mass shell by including
form factors in the meson-nucleon-isobar vertices [16] through
the substitution

taN→bN → e(q2
b −m2

b)/�2
e(k′

N
2−M2)/�2

taN→bN

× e(q2
a −m2

a )/�2
e(k2

N−M2)/�2
, (14)

FIG. 2. Differential cross section dσ/dMηp for model B of the
ηN amplitude considering different contributions to the process.

FIG. 3. Differential cross section for models A, B, and C as well
as considering only the impulse approximation.

where, according to Ref. [17], the cutoff parameter � should
lie between 1000 MeV/c and 1200 MeV/c.

As I explained in Ref. [1], the NN → NN amplitude with
one of the initial nucleons off the mass shell that enters into
Eq. (9) were constructed in a similar way as the meson-
nucleon amplitudes. The spin-0 and spin-1 isobars have a
mass equal to the invariant mass of the system

√
s and the

FIG. 4. The ratio R given by Eq. (1) for models A, B, and C as
well as considering only the impulse approximation.
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nucleon-nucleon-isobar couplings are chosen such that they
generate scattering in the orbital angular momentum states
� = 0 and � = 1, i.e., in the 1S0, 3P0, and 3P1 channels. For
the NN → NN amplitude with one of the initial nucleons
off the mass shell [16] the solutions obtained from the Paris
potential [18] are used by applying the minimal-relativity
transformation [19].

III. RESULTS

The predictions of the model will be obtained by taking
� = 1200 MeV/c for the cutoff parameter of Eq. (14) [17] and
the model of the deuteron wave function with λ = 0 in Eq. (12),
which corresponds to a pure pseudovector πNN vertex [12].
As pointed out in [1], using instead � = 1000 MeV/c [17] the
behavior of the results is pretty much the same. Similarly, with
respect to the deuteron wave function, using λ = 1 in Eq. (12)
which corresponds to a pure pseudoscalar πNN vertex [12]
it was found that the results are basically independent of the
model of the deuteron wave function used.

I have calculated the inclusive differential cross section us-
ing for the ηN amplitude the three models A, B, and C shown in
Table I which correspond to values of Re a = 0.407 fm, Re a =
0.717 fm, and Re a = 1.07 fm, respectively. Figure 2 shows the
contribution of different terms of the amplitude to the cross
section for the case of model B. This figure shows a behavior
similar to that of Fig. 4 of Ref. [6] for the γ d → p(ηn) process.

Figure 3 shows the results of the full model for the three
cases of the ηN amplitude A, B, and C, as well as the result
of the impulse term. Finally, Fig. 4 shows the corresponding
results for the ratio R defined by Eq. (1). From Fig. 4 one can
see that there is good sensitivity in the parameter R to allow
one to pin down the value of the real part of the ηN scattering
length.
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