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Background: α + 12C clustering in 16O has been of historical importance in nuclear clustering. In the last 15
years the 4α condensate state has been proposed as a new-type cluster state.
Purpose: The aim is to reveal a dynamical process of the formation of different kinds of cluster states, in terms
of a “container” aspect of clusters, in 16O.
Method: The so-called THSR wave function for the 4α clusters is extended to inclusion of two different
“containers” occupied independently by the 12C (3α) and α clusters.
Results: The five J π = 0+ states with 4α tetrahedral shape, α + 12C cluster structures, and the 4α condensate
character, are found to be represented, to good approximation, by single configurations of the extended THSR
wave function with “containers” of appropriate shape and size.
Conclusions: It is demonstrated in 16O that the dynamical evolution of cluster structures can be caused by size
and shape evolution of a “container” occupied with clusters. The α condensate with gaslike 4α configuration
appears as a limit of the cluster formation.
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Alpha-like four-nucleon correlation plays an important role
in nuclei, in which spin and isospin are saturated. In particular,
A = 4n (N = Z) light nuclei tend to have α cluster structures
in their excited states. The 3α cluster structure in 12C, α + 12C
cluster structure in 16O, and α + 16O cluster structure in 20Ne
are typical examples and their realities are firmly established
in many historical works [1].

In the past 15 years, α-particle condensate structure has
been extensively studied theoretically and experimentally.
Although providing direct observatory evidence is still in
an open question [2–4], many theoretical calculations pre-
dict the existence of the 3α and 4α condensate states in
12C and 16O, respectively, in which all α clusters weakly
interact with each other with a dilute gaslike configuration,
and occupy an identical orbit of a mean-field-like potential
[5–10].

On the other hand, the ordinary non-gaslike cluster states
like the α + 16O, α + 12C inversion doublets, linear-chain
α-cluster states, etc., are completely different from the gaslike
cluster states. They had been understood by a concept of
localized clustering, in which all clusters are in a geometric
arrangement. However, more recent works have required us
to modify the basic idea of understanding the ordinary cluster
states. The authors in Ref. [11] introduced a microscopic
α + 16O cluster model wave function, which demonstrates a
nonlocalized motion of the α and 16O clusters. They proved
that the model wave function coincides with the full solution of
α + 16O RGM equation of motion for all the α + 16O inversion
doublet band states. Similar results are also obtained for the 3α
and 4α linear-chain states [12], which are originally proposed
by Morinaga [13]. All these results lead to the idea that

dynamically mutual clusters are confined in a “container,”
whose shape and size are flexibly conformed, in a nonlocalized
way. This new concept of the so-called “container” picture
modifies the preceding understanding of nuclear clustering,
because the localized clustering has been an important basis
to understand the ordinary (non-gaslike) nuclear cluster
structures.

In this Rapid Communication, I discuss the nuclear clus-
tering in 16O, because this is a typical nucleus of gaslike and
non-gaslike cluster states coexisting. The special interest is in
how both gaslike and non-gaslike cluster states, which seem to
be quite different from each other, are successively formed as
the increase of excitation energy. The α + 12C cluster structure
in 16O is formed by the activation of cluster degree of freedom
in the ground state having a dual property [14–16], i.e., by the
excitation of relative motion between the α and 12C clusters.
The gaslike 4α cluster state is then produced as a result of
further excitation of the 12C core, to the 3α cluster state, i.e., to
the Hoyle state [3]. The path of this cluster evolution is shown
in the famous Ikeda diagram, together with many other paths in
many other nuclei [17]. I show that this path of cluster evolution
along the excitation energy in 16O is nothing but the path of
a size and shape evolution of a “container,” which provides
a new framework of describing both gaslike and non-gaslike
cluster states simultaneously.

I adopt a model wave function to realize the above
mentioned picture, which is the extended version of the
so-called THSR wave function (eTHSR). It is given by a
natural extension of what are used in many previous works
of 8Be [18], 12C [5,6,19–22], 16O [23], 20Ne [11], 9Be [24]
and 10Be [25], 9

�Be [26], 13
� C [27], etc., and has the following
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form:
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with A being the antisymmetrization operator acting on the 16
nucleons, φi(b) the internal wave function of the ith α particle
assuming a (0s)4 harmonic oscillator configuration with the
width parameter b. ξ i is the Jacobi coordinates between the α
particles, and μi = 4i/(i + 1), for i = 1,2,3. While the pa-
rameter b characterizes the size of the constituent α particle,
the parameters B1 and B2 characterize the size and shape
of a “container,” in which the α clusters are confined. I can
instead define parameters βjk that satisfy the relation, B2

jk =
b2 + 2β2

jk , with j = 1,2 and k = x,y,z. However, throughout
this study, I assume the axial symmetry βi⊥ ≡ βix = βiy , so
as to deal with the four parameters, β1⊥,β1z,β2⊥,β2z, in the
practical calculations.

The exponential functions in Eq. (1) represent the center-
of-mass (c.m.) motions of the α clusters, in terms of the
corresponding Jacobi coordinates. If the B1 and B2 take a
common value, i.e., B1 = B2 = B, then Eq. (1) results in the
following original THSR wave function, in which all α clusters
occupy an identical orbit,

�(β) = A
[

4∏
i=1

exp

{
−2

x,y,z∑
k

(Rik − XGk)2/B2
k

}
φ(αi)

]
, (2)

with Ri the position vector of the ith α cluster and XG the total
c.m. coordinate. This is the α condensate state in a “gas” phase
if the magnitude of the parameter |B| is large enough for the
antisymmetrizerA to be negligible [28]. On the contrary, when
|B| → b, i.e., β → 0, the normalized THSR wave function
coincides with the shell-model wave function [10].

We should note that the way of describing cluster states in
this model wave function is completely different from those
in other traditional cluster models, like the Brink-Bloch wave
function [29] and even the antisymmetrized molecular dynam-
ics (AMD) wave function [30], in which clusters are spatially
positioned in a localized way, to form a multicentered Slater
determinant. In the present model, constituent clusters are
arranged without mutually forming any geometric rigid-shaped
configuration. This wave function is then far away from the
single multicentered Slater determinant and is represented as
an infinite number of superpositions of the Slater determinants
[10]. A very schematic picture representing the eTHSR wave
function in the present 16O system is shown in Fig. 1, in
which the 3α clusters and another α cluster are confined in
different “containers” characterized by the parameters B1 and
B2, respectively. This is contrasted with the Brink-Bloch wave
function, in which the cluster configurations are described by
their relative distance parameters.

To obtain the energy spectrum, first I impose the so-called
r2-constraint method [21–23,31], to effectively and roughly
eliminate spurious continuum components from the present
model space. A spurious continuum state is calculated to have
a large rms radius in the bound state approximation, and hence

this method is to remove the components with extremely large
rms radii in the following way,∑

β
′
1,β

′
2

〈�J=0(β1,β2)|Ôrms − {R(γ )}2|�J=0(β ′
1,β

′
2)〉

×g(γ )(β ′
1,β

′
2) = 0, (3)

with Ôrms = ∑16
i=1(r i − XG)2/16, and �J=0(β1,β2) =

P̂ J=0�(β1,β2), where P̂ J=0 is the projection operator of
angular-momentum J = 0 and use is made of the notation
β i = (βi⊥,βiz) with i = 1,2. The eigenfunctions of the above
equation are expressed below,

�(γ ) =
∑

β1,β2

g(γ )(β1,β2)�J=0(β1,β2). (4)

I now eliminate the eigenstates with the eigenvalues, R(γ ) �
7.0 fm, from the following linear combination:


λ =
∑

γ

f
(γ )
λ �(γ ). (5)

The coefficients of the above expansion is determined by
solving the Hill-Wheeler equation,∑

γ ′
〈�(γ )|H − Eλ|�(γ ′)〉f (γ ′)

λ = 0. (6)

For Hamiltonian, I adopt the effective nucleon-nucleon
interaction with finite range three-body force called F1 force
[32]. Note that, for example, if we adopt other forces like
Volkov No. 1 and No. 2 [33], no reasonable force parameter
is found to reproduce both α + 12C threshold energy and the
ground-state energy of 16O [34], while it is shown that the F1
force gives a much better simultaneous description of 12C and
16O [35].

In Fig. 2, the calculated energy spectrum for Jπ = 0+ states
is shown. The corresponding experimental data and result by
the previous 4α OCM calculation [9] are also shown. The

1B

2B

FIG. 1. Schematic representation of the eTHSR wave function, in
which the two “containers” of the 3α and α clusters are characterized
by the parameters B1 and B2, respectively.
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FIG. 2. Energy spectra of the low-lying J π = 0+ states calculated
with the extended THSR ansatzes. The corresponding observed
spectrum (Expt.) [38,39] and result by the 4α OCM [9] are also shown.
The numbers are rms radii in a unit of fm.

solution of the Hill-Wheeler equation with the r2-constraint
method is shown. The 0+

V state is actually the seventh 0+
state obtained by solving the Hill-Wheeler equation, i.e., the
fifth and sixth eigenstates are kicked out from the present
consideration, because they have larger rms radii and are
regarded as spurious continuum states accidentally mixed with
the physical states.

In the 4α OCM calculation, it is reported that the 0+
6 state

has the 4α condensate character and the 0+
2 − 0+

5 states all
have α + 12C cluster structures. i.e., α(S) + 12C(0+

1 ), α(D) +
12C(2+

1 ), α(S) + 12C(0+
1 ), and α(P ) + 12C(1−) cluster struc-

tures, respectively. The difference between the 0+
2 and 0+

4 states
are that in the latter the α and 12C relative motion is further
excited and has a higher nodal S wave, to have a larger rms
radius than the former.

Because in the present eTHSR wave function of Eq. (1) the
α clusters occupy positive parity orbits, such a state as having
the α(P ) + 12C(1−) cluster structure, like the 0+

5 state in the
OCM calculation, is missing. The inclusion of negative parity
orbit in the THSR ansatz is also possible and will be shown in
the forthcoming paper. I mention that in fact an extension to
such a direction is already done [11,24,25]. However, for the
other states, a one-to-one correspondence to the experimental
data as well as to the 4α OCM calculation is consistently
obtained. It should be noted that in the OCM calculations
[9,36,37], the binding energies of the ground states of 16O and
the 12C are phenomenologically fitted to the corresponding
experimental values. In the present calculation, however, there
is no adjustable parameter in the microscopic Hamiltonian.

In Table I, rms radii and monopole matrix elements with the
ground state are shown. The experimental data available are
reasonably reproduced. We can also see that from the 0+

I to

TABLE I. rms charge radii and monopole matrix elements of the
0+

I − 0+
V states calculated with the eTHSR ansatz, in comparison with

the corresponding experimental data.

eTHSR Expt.

Rrms (fm) M(E0) (efm2) Rrms (fm) M(E0) (efm2)

0+
I 2.7 2.71(0.02)

0+
II 3.2 5.9 3.55(0.21)

0+
III 3.3 5.7 4.03(0.09)

0+
IV 4.9 0.8

0+
V 4.9 0.7

the 0+
V states, i.e., as the states are excited, the rms radius

becomes larger and the monopole matrix element becomes
smaller. This indicates that the higher the excitation energy
is, the more evolved the clustering is. The evolution of
the clustering can be described by solving the Hill-Wheeler
equation concerning the model parameters β1 and β2.

This respect is made much clearer by calculating the
following squared overlap:

Oλ(β1,β2) = ∣∣〈�̃J=0
λ (β1,β2)|
λ〉

∣∣2
, (7)

with �̃J=0
λ (β1,β2) the normalized single eTHSR wave function

in a space orthogonal to the lower eigenstates, i.e.,

�̃J=0
λ (β1,β2) = NλP̂λ�

J=0(β1,β2), (8)

where P̂λ = 1 − ∑λ−1
i=1 |
i〉〈
i | with λ = I, . . . ,IV , and

P̂V = 1 − ∑6
i=1 |
i〉〈
i |, and Nλ are the corresponding nor-

malization constants.
This quantity indicates how these five states 
λ (λ =

I, . . . ,V ) are expressed by single configurations of the eTHSR
wave functions, and therefore, gives direct information of
whether the “container” structure is realized or not in these
states, and if so, what kind of “containers” represent the states.
In Fig. 3, the contour maps of the squared overlap of the
states 
I − 
V with single configurations in the β2⊥ and β2z

parameter space in Eq. (7) are shown. Here the β1 parameter,
i.e., (β1⊥,β1z) is fixed at the position denoted by ⊗ in these
figures, so that the maximum value of the squared overlap
in the four parameter space (β1⊥,β1z,β2⊥,β2z) appears at the
position denoted by ×. The maximal values and β1 and β2
parameter values to give the maxima are listed in Table II. The
corresponding B1 and B2 values are also shown.

Before discussing the features of the 0+
I − 0+

V states, I show
in Table III the maximum values of the squared overlap of
the 0+

1 , 2+
1 , and 0+

2 states in 12C with the single 3α THSR
configuration. These are the same calculations as those for
16O. The states in 12C are calculated with the 3α THSR ansatz
with the same F1 force parameters. It is now well known
that these states are very precisely described by single THSR
configurations, compared with the 3α RGM and 3α GCM [40],
not only for the Hoyle state (12C(0+

2 )) but also for the other 0+
1

and 2+
1 states [19]. All these very large squared overlap values

shown in this table again mean that the present “container”
picture nicely holds not only for the dilute gaslike Hoyle state
but also for the much more compact 0+

1 and 2+
1 states.
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FIG. 3. Contour maps of the squared overlaps between the 0+
I (a), 0+

II (b), 0+
III (c), 0+

IV (d), and 0+
V (e) states, and the single extended

deformed THSR wave functions, in two-parameter space β2x = β2y and β2z, in which β1 parameter values are fixed at optimal ones, denoted
by ⊗, so that the maxima in four-parameter space β1x = β1y, β1z, β2x = β2y, β2z appear in these figures. The maximum positions are denoted
by ×. Red dotted contour lines are in a step of 0.01 and black solid ones are in a step of 0.1.

Then, let us investigate the features for all these 0+
I − 0+

V

states one by one.
In the ground state, shown in Fig. 3(a), 3α clusters are put

into an oblately deformed and very compact “container” with
β1⊥ 	 β1z, while the remaining α cluster is put into a prolately
deformed and very compact “container” with β2⊥ 
 β2z. This
means that the first 3α clusters move in a xy plane and the
last α cluster moves in the z direction. This supports the idea
that the ground state has a tetrahedral shape of the 4α clusters
proposed by several authors [41,42]. Our calculation indicates
that this configuration is contained in the 0+

I state by 98%.
In the 0+

II state, shown in Fig. 3(b), the 3α clusters are in
a spherical “container” with β1⊥ ∼ β1z. The fourth α cluster
is put into a larger size “container” with spherical shape,

TABLE II. Maxima of the squared overlaps in Fig. 3, for the
0+

I − 0+
V states, in the four-parameter space (β1⊥,β1z,β2⊥,β2z). The

corresponding parameter values (B1⊥,B1z,B2⊥,B2z) are also shown.

Omax (β1⊥, β1z, β2⊥ β2z) (B1⊥, B1z, B2⊥, B2z)

0+
I 0.98 (1.3, 0.1, 0.1, 2.6 fm) (2.3, 1.4, 1.4, 3.9 fm)

0+
II 0.94 (1.8, 1.8, 3.5, 3.6 fm) (2.9, 2.9, 5.2, 5.3 fm)

0+
III 0.76 (2.1, 0.7, 5.1, 0.1 fm) (3.3, 1.7, 7.4, 1.4 fm)

0+
IV 0.84 (2.5, 1.3, 8.3, 7.8 fm) (3.8, 2.3, 11.8, 11.1 fm)

0+
IV 0.78 (5.3, 1.9, 5.3, 1.8 fm) (7.6, 3.0, 7.6, 2.9 fm)

i.e., β2⊥ ∼ β2z > β1⊥ ∼ β1z. In particular, the parameter set
(β1⊥,β1z) = (1.8,1.8 fm) is almost the same as that for 12C
in Table III, i.e., (β⊥,βz) = (1,9,1.8 fm). This means that
the first 3α clusters are confined in a compact “container” to
form the ground state of 12C, because the 12C(0+

1 ) state can
be very precisely described by the single configuration with
these parameter values. The fourth α cluster moves in a larger
spherical “container” because of (β2⊥,β2z) = (3.5,3.6 fm),
which gives the largest squared overlap 94%. This is the
new interpretation of the α + 12C cluster structure, whose
traditional understanding is that the α cluster orbits in an S
wave around the 12C(0+

1 ) state.
The 0+

III state, shown in Fig. 3(c), is similar to the 0+
II

state but both “containers” are not spherical but deformed.
The β1 parameter takes almost the same value as that of the
isolated 12C(2+) state, as shown in Table III, which means

TABLE III. Maxima of the squared overlaps for the 0+
1 , 2+

1 , and
0+

2 states in 12C in two-parameter space β⊥ and βz. The corresponding
B⊥ and Bz values are also shown.

Omax (β⊥, βz) (B⊥, Bz)

12C(0+
1 ) 0.93 (1.9, 1.8 fm) (3.0, 2.9 fm)

12C(2+
1 ) 0.90 (1.9, 0.5 fm) (3.0, 1.6 fm)

12C(0+
2 ) 0.99 (5.6, 1.4 fm) (8.0, 2.4 fm)
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that the first 3α clusters form the 12C(2+) state, because
the state is described by the single parameter value of β.
The configuration of the remaining α cluster (β2⊥,β2z) =
(5.1,0.1 fm), giving the largest value 76%, means that the α
cluster moves in a deformed and larger “container.” This is the
present understanding of the 0+

3 state, which is conventionally
considered to have the α(D) + 12C(2+) structure.

In the 0+
IV state, shown in Fig. 3(d), one can see that

the 3α clusters are put in a slightly larger “container” than
that for the 12C(0+

1 ) state, which is slightly deformed in an
oblate shape. The fourth α cluster, however, moves in a much
larger and almost spherical “container,” like a satellite. This
configuration expresses the 0+

IV state dominantly by 84%.
This means that the second “container” characterized by β2 is
further evolved from that in the 0+

II state. I can say that this state
corresponds to the 0+

4 state in the former 4α OCM calculation,
which predicts the α + 12C(0+

1 ) higher nodal structure for the
state.

The 0+
V state, shown in Fig. 3(e), is the most striking. All the

α clusters occupy an identical orbit, with (β1⊥,β1z,β2⊥,β2z) =
(5.3, 1.9, 5.3, 1.8 fm). This is qualified to call the α condensa-
tion. This configuration is contained in this state by 78%, which
is still very large. Furthermore, this “container” is very close
to the one of the Hoyle state, with (β1⊥,β1z) = (5.6, 1.4 fm) in
Table III. This means that the 0+

V state is regarded as the Hoyle
analog state, in which the fourth α cluster is also put into the
“container” occupied with the 3α clusters in the Hoyle state.
The large size of this “container” indicates that the 4α clusters
are loosely coupled with each other and configured like a gas.
Note that the 4α condensate state is also predicted by the 4α
OCM calculation slightly above the 4α threshold, as the 0+

6
state.

These results tell us that the evolution of cluster structures is
described by the “container” evolution with respect to its size
and shape. The reason why the “container” evolution arises
is the orthogonality to the lower states, which is explicitly
taken into account in the definition of the single configuration
�̃J=0

k in Eq. (7). The orthogonality condition prevents a
higher state configuration from overlapping with the lower
states’ more compact configurations. It thus plays a role as
a repulsive core and is considered to give the “container”
evolution.

In conclusion, I introduced the eTHSR wave function,
which comprehensively describes gaslike and non-gaslike
cluster states in 16O, standing on the “container” picture. The
evolution of the clustering, as the excitation energy increases,
can be obtained by solving the Hill-Wheeler equation, concern-
ing the “container” parameters. I showed that the evolution of
the clustering is caused by the evolution of the “container.” Not
only various α + 12C cluster states but also the 4α gaslike state
are naturally described according to this picture, in which the α
clusters are confined into different size and shape “containers.”
In particular, the 4α gaslike state is obtained as having the
same “container” for the 4α clusters, clearly giving the 4α
condensate structure. This picture of “container” evolution
is thus a key concept in heavier nuclei, to understand the
dynamical process of formation of cluster structures, from the
ground state to higher excited states.
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