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The Wigner isobaric multiplet mass equation (IMME) is the most fundamental prediction in nuclear physics
with the concept of isospin. However, it was deduced based on the Wigner-Eckart theorem with the assumption
that all charge-violating interactions can be written as tensors of rank two. In the present work, the charge-
symmetry breaking (CSB) and charge-independent breaking (CIB) components of the nucleon-nucleon force,
which contribute to the effective interaction in nuclear medium, are established in the framework of Brueckner
theory with AV18 and AV14 bare interactions. Because such charge-violating components can no longer be
expressed as an irreducible tensor due to density dependence, its matrix element cannot be analytically reduced
by the Wigner-Eckart theorem. With an alternative approach, we derive a generalized IMME (GIMME) that
modifies the coefficients of the original IMME. As the first application of GIMME, we study the long-standing
question of the origin of the Nolen-Schiffer anomaly (NSA) found in the Coulomb displacement energy of mirror
nuclei. We find that the naturally emerged CSB term in GIMME is largely responsible for explaining the NSA.
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Introduction. The similarity of proton and neutron masses
and approximate symmetry of nucleon-nucleon interactions
under the exchange of the two kinds of nucleons lead to the con-
cept of isospin [1,2]. At the isospin-symmetry limit, the charge-
symmetry requires that the free proton-proton interaction vpp

excluding the Coulomb force is equal to the neutron-neutron
interaction vnn, while the charge independence requires that the
neutron-proton interaction vnp = (vnn + vpp)/2 [3]. However,
the nucleon-nucleon scattering data suggest that vnn is slightly
more attractive than vpp, and vnp is stronger than (vnn + vpp)/2
[4,5]. In real nuclear systems where many-body effects are
important [6], isospin symmetry breaking has long been an
active research theme connected to different subfields, for
example, in understanding the precise values of the Cabbibo-
Kobayashi-Maskawa (CKM) mixing matrix elements between
the u and d quarks [7,8], the changes in nuclear structure near
the N = Z line due to charge-violating nuclear force [9–12],
and the influence in nova nucleosynthesis [13].

Isobaric nuclei with the same mass number A, total isospin
T , and spin-parity Jπ , but different Tz = (N − Z)/2, form
an isobaric multiplet. The Wigner isobaric multiplet mass
equation (IMME) [14]

ME(A,T ,Tz) = a + bTz + cT 2
z (1)

provides a relationship for mass excesses of an isobaric multi-
plet, where a, b, and c are the coefficients depending on T and
reduced matrix elements. This quadratic form of IMME turns
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out to work remarkably well for almost all isobaric multiplets
where data exist [15–17]. Hence it becomes a powerful tool
to predict unknown masses, particularly those of very neutron-
deficient nuclei important to the astrophysical rp-process [18].
Modern radioactive beam facilities can provide the testing
grounds of the validity of the IMME [19,20], from which one
may learn about the effective forces for nuclear many-body
systems [21–25].

The IMME is regarded to be valid for any charge-violating
interactions, with the Coulomb interaction being the dominant
contributor. The values of b and c in Eq. (1), which are
determined experimentally, can potentially yield individual
information on violations of the charge symmetry and charge
independence [3]. However, the proven validity of the IMME
does not in itself provide any direct information on the nature
of the charge-violating nuclear interaction. In shell-model
calculations, such interaction [26,27] are added to an isospin-
conserving Hamiltonian, with the charge-symmetry breaking
(CSB) or charge-independent breaking (CIB) components
in the strong nuclear force fitted to data. In this Rapid
Communication, we consider the contributions of CSB and
CIB derived from nuclear medium in the effective nucleon-
nucleon interaction. Due to density dependence of the charge-
violating components, additional terms emerge as compared
to the Wigner original IMME, leading to a generalized IMME
(GIMME). As the first application of GIMME, the binding-
energy difference between two members of a multiplet, defined
as the Coulomb displacement energy (CDE), is examined. The
long-standing problem of the Nolen-Schiffer anomaly (NSA)
[28] in CDE is addressed by using our new formulas, without
the need of any empirical terms.
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Effective CSB and CIB interactions in nuclear matter. In
the study of nuclear matter with the assumption of isospin
conservation in nuclear forces, the energy per nucleon is
generally given as a function of density ρ = ρn + ρp and
isospin asymmetry β = (ρn − ρp)/ρ, via E(ρ,β) = E(ρ,0) +
S2(ρ)β2 + O(β4) [29–32], where the density-dependent S2(ρ)
is the widely studied 2nd-order symmetry energy coefficient. If
one does not neglect the CSB and CIB components, additional
terms appear

E(ρ,β) = E(ρ,0) + S
(CIB)
0 (ρ) + S

(CSB)
1 (ρ)β

+ [
S2(ρ) + S

(CIB)
2 (ρ)

]
β2 + O(β3). (2)

Specifically, the effective CSB interaction, namely, the CSB
component of the effective nucleon-nucleon interaction, gives
rise to the 1st-order symmetry energy coefficient, defined as
S1(ρ) = ∂E(ρ,β)/∂β|β=0, while the CIB interaction solely
contributes to even-order ones. In other words, S

(CSB)
1 (S(CIB)

2 )
measures the CSB (CIB) effect in nuclear medium.

Contributions of the CSB and CIB components in a bare
potential to the effective two-body interaction in nuclear matter
can be obtained by solving the Bethe-Goldstone equation in the
Brueckner theory with the AV18 interaction. AV18 contains
explicit charge dependence and charge asymmetry on top of
the AV14 potential [33]. To achieve a reliable accuracy, we
determine the S

(CSB)
1 term with the formula

E(ρ,β) − E(ρ,−β)

2β
|AV18 = S

(CSB)
1 (ρ) (3)

in order to cancel out the systematical uncertainty effectively.
In addition, the n-p mass difference in nucleonic kinetic energy
leads to a small part of 1st-order symmetry energy [34], and
is incorporated into the CSB effect in the present discussion.
Similarly, the even-order symmetry energy coefficients origi-
nating from the CIB interaction are extracted by adopting both
the AV18 and AV14 potentials via

E(ρ,β) + E(ρ,−β)

2
|AV18 − E(ρ,β)|AV14

= S
(CIB)
0 (ρ) + S

(CIB)
2 (ρ)β2. (4)

S
(CIB)
0 is an additional energy induced by the CIB interactions

in symmetric nuclear matter, referred to as the zeroth-order
symmetry energy coefficient. As a constant for an isobaric
multiplet, S

(CIB)
0 can be absorbed into E(ρ,0), playing no

role in the present discussion. Figure 1 illustrates the density-
dependent S

(CSB)
1 (ρ) and S

(CIB)
2 (ρ), which are found to be

much smaller than the widely investigated 2nd-order one
S2(ρ), and therefore, have been completely neglected in the
study of nuclear matter. For the discussion below, we perform
polynomial fittings for S

(CSB)
1 (ρ) and S

(CIB)
2 (ρ) obtained from

the Brueckner theory

S
(CSB)
1 (ρ) = a0ρ, (5)

S
(CIB)
2 (ρ) = a1ρ + a2ρ

2 + a3ρ
3, (6)

with the resulting coefficients listed in Table I.
CSB and CIB effects in finite nuclei. With the above results

derived for nuclear matter, we now build a Skyrme energy

FIG. 1. Density-dependent S
(CSB)
1 (ρ) (dots) and S

(CIB)
2 (ρ)

(squares) of nuclear matter obtained with the Brueckner-Hartree-Fock
approach adopting the AV18 along with AV14 bare interactions. The
curves represent the fittings with Eqs. (5) and (6).

density functional for the effective CSB and CIB interactions.
Considering Eqs. (5) and (6), we construct the effective two-
body CSB and CIB interactions by

vCSB = −2a0P
σ
ij (τ3,i + τ3,j )δ(−→ri − −→rj ), (7)

vCIB = −4(a1 + a2ρ + a3ρ
2)P σ

ij δ(−→ri − −→rj ), (8)

where the P σ
ij is the spin exchange operator and τ3 is the third

component of the Pauli operator. The local density ρ is eval-
uated at (−→ri + −→rj )/2, with −→ri and −→rj being, respectively, the
spacial coordinates of the ith and j th nucleons. Accordingly,
the corresponding energy density are given as

HCSB = a0
(
ρ2

n − ρ2
p

)
, (9)

HCIB = (a1 + a2ρ + a3ρ
2)

(
2ρ2

n + 2ρ2
p − ρ2

)
, (10)

and hence the energy per nucleon HCSB/ρ(HCIB/ρ) is exactly
the symmetry energy term S

(CSB)
1 (ρ)β(S(CIB)

2 (ρ)β2) in Eq. (2).
Note that the isospin exchange operator P

q
12 = δq1,q2 is as-

sumed since the charge mixing is quite weak. Therefore, the
1st- and 2nd-order symmetry energy coefficients a

(CSB)
sym,1 (A,Tz)

and a
(CIB)
sym,2(A,Tz) for finite nuclei can be calculated as corre-

sponding density functionals

a
(CSB)
sym,1 (A,Tz) = 1

IA

∫ ∞

0
4πr2ρ(r)S(CSB)

1 (ρ)β(r)dr, (11)

a
(CIB)
sym,2(A,Tz) = 1

I 2A

∫ ∞

0
4πr2ρ(r)S(CIB)

2 (ρ)β2(r)dr. (12)

In these equations, I = (N − Z)/A = 2Tz/A denotes isospin
asymmetry of a nucleus, and β(r) = [ρn(r) − ρp(r)]/ρ(r) is
the local isospin asymmetry, with ρp(r) and ρn(r) being the
proton and neutron density distribution, respectively.

We comment on how excited states in a given multiplet are
calculated, although these states do not appear in the discussion

TABLE I. Fitted coefficients of Eqs. (5) and (6).

a0 (MeV fm−3) a1 (MeV fm−3) a2 (MeV fm−6) a3 (MeV fm−9)

−1.05132 1.49199 −10.96773 39.58976
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TABLE II. 1st-order symmetry energy coefficient a
(CSB)
sym,1 (A,Tz)

(keV) (columns 2–4) and 2nd-order one a
(CIB)
sym,2(A,Tz) (keV) (columns

5–7) for finite nuclei obtained by Eqs. (11) and (12).

Nuclei SLy4 SLy5 KDE SLy4 SLy5 KDE

20O −40.7 −40.0 −43.1 20.3 19.9 21.1
53Ni −107.5 −106.2 −109.7 86.8 85.7 86.4
208Pb −111.9 −112.0 −116.1 79.9 80.1 82.5

of the present work. For an isobaric analog state (IAS) with
N − 1 neutrons and Z + 1 protons (N > Z) whose T is
greater than |Tz|, its wave function can be obtained by [35,36]
|IAS〉 = |T ,Tz = T − 1〉 = 1√

2T
T−|0〉, where T− is the isospin

lowering operator and |0〉 is the ground state of the parent
nucleus belonging to a multiplet with T = Tz (N neutrons and
Z protons). Due to the above isospin-symmetry conserving
operation, it naturally leads to (ρn + ρp)IAS = (ρn + ρp)parent.
However, T−|0〉/√2T describes the IAS with the zeroth-order
approximation only which conserves isospin. Because of the
core polarization induced by the charge-violating interac-
tions, corresponding corrections should be introduced [36].
Consequently, (ρn − ρp)IAS − (ρn − ρp)parent = − 1

T
ρexc

n,parent is
obtained, where ρexc

n,parent is the density of the excess neutrons in
the parent nucleus. Thus with the obtained nucleonic density
distributions, the symmetry energies of the IAS can be also
computed by the above density functionals.

Since a
(CSB)
sym,1 (A,Tz) and a

(CIB)
sym,2(A,Tz) are related solely to

the nuclear force, one should perform many-body calculations
excluding the Coulomb force, which leads to a

(CSB)
sym,1 (A,Tz) =

a
(CSB)
sym,1 (A,−Tz) and a

(CIB)
sym,2(A,Tz) = a

(CIB)
sym,2(A,−Tz) for mirror

nuclei within an isobaric multiplet. Furthermore, considering
the fact that the CSB and CIB effects are small, we treat
them as perturbations. Consequently, both a

(CSB)
sym,1 (A,Tz) and

a
(CIB)
sym,2(A,Tz) are completely isolated from the rest of the energy,

and thus can be reliably extracted.
We now briefly discuss the calculated a

(CSB)
sym,1 (A,Tz) and

a
(CIB)
sym,2(A,Tz) for finite nuclei. The Skyrme-Hartree-Fock-BCS

approach with three interactions studied in our previous work
[37], i.e., the SLy4, SLy5, and KDE interactions [38], are
employed to calculate the quantities of Eqs. (11) and (12),
in which the empirical gaps from Ref. [39] are applied.
Table II lists the calculated results, taking 20O (a member
of A = 20 quintet), 53Ni (a member of A = 53 quartet), and
a heavy nucleus 208Pb as examples. Both a

(CSB)
sym,1 (A,Tz) and

a
(CIB)
sym,2(A,Tz) are found to be weakly model dependent because

different interactions generate nearly identical nucleonic den-
sity profiles. For the members of isobaric multiplets, such
as 53Ni, the values of the 1st-order symmetry energy term
E

(CSB)
sym,1 (A,Tz) = a

(CSB)
sym,1 (A,Tz)IA are very small due to their

low isospin asymmetries I and the undersized S
(CSB)
1 (ρ). On

the other hand, E
(CSB)
sym,1 (A,Tz) for 208Pb can be as large as

−5 MeV. Apparently, the 2nd-order ones, E
(CIB)
sym,2(A,Tz) =

a
(CIB)
sym,2(A,Tz)I 2A, are smaller.

We thus conclude that the 1st-order symmetry energy
term should not always be neglected in the calculations for

neutron-rich nuclei. We note, for example, that nuclear
masses can be presently predicted by employing macroscopic-
microscopic mass models [40,41] with an accuracy of several
hundred keV. Furthermore, the CSB interaction has been
shown to play an important role in nuclear structure [10,11].
Our obtained effective interactions including the symmetry-
breaking components could be employed to explore the rele-
vant problems such as the charge-exchange reactions, Gamow-
Teller transitions, and β decays. Up to now, shell-model
calculations for these quantities can only be performed by
introducing phenomenological symmetry-breaking terms with
the strengths fitted to data [42].

A generalized IMME including effective CSB and CIB inter-
actions. In his derivation of Eq. (1), Wigner assumed |αT Tz〉
to be the eigenstate of the charge-independent Hamiltonian
H0, with α for all additional quantum numbers to specify this
state. All charge-violating two-body interactions, including the
Coulomb interaction HC among protons and HCSB+CIB of CSB
and CIB interactions, are treated by the 1st-order perturbation.
The total negative binding energy is given by

−BE(αT Tz) = 〈αT Tz|H0 + HC + HCSB+CIB |αT Tz〉, (13)

where HC and HCSB+CIB are assumed to be written as tensors
of rank two. With help of the Wigner-Eckart theorem for
irreducible tensor, the perturbing terms can be neatly expressed
as reduced matrix elements and the coefficients involving only
T and Tz.

However, in nuclear medium, HCSB+CIB becomes a density-
dependent effective interaction. As a result, it can no longer
be expressed as an irreducible tensor, and the corresponding
perturbation energy 〈αT Tz|HCSB+CIB|αT Tz〉 does not have
analytic forms as in the case of the Coulomb interaction.
When the effective CSB and CIB interactions are present, the
perturbation energy in the present work is expressed as the
symmetry energy terms

〈αT Tz|HCSB+CIB|αT Tz〉 = a
(CSB)
sym,1 (A,Tz)IA

+ a
(CIB)
sym,2(A,Tz)I

2A, (14)

with the zeroth-order symmetry energy coefficient absorbed
into a. One thus ends up with a generalized IMME (GIMME)
in the form of

ME(A,T ,Tz) = a + (
bc + 
nH + 2a

(CSB)
sym,1 (A,Tz)

)
Tz

+
(

cc + 4

A
a

(CIB)
sym,2(A,Tz)

)
T 2

z , (15)

with 
nH = 0.782 MeV being the neutron-hydrogen mass
difference. As a mass equation beyond the original IMME,
the contribution from the effective charge-violating nuclear
interactions is now completely separated from that of the
Coulomb force, while the Tz-independent bc and cc in Eq. (15)
are induced solely by the Coulomb interaction. The coefficients
of Tz and T 2

z are no longer constants for a given multiplet. The
Tz dependence of the new a

(CSB)
sym,1 (A,Tz) and a

(CIB)
sym,2(A,Tz) terms,

originating from the CSB and CIB components of nuclear
medium, are an explicit indication of the breakdown of the
original IMME. We remark that this Tz dependence is quite
weak, supporting the general validity of the original IMME
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FIG. 2. Coefficients of (a) Tz and (b) T 2
z in Eq. (1) extracted from

the experimental data [45] for the T = 3/2 quartets. The calculated
coefficients of the Coulomb contribution (plus 
np) from a simple
nonuniformly charged sphere with Eq. (17) (dashed curves) are shown
for comparison. The contributions of the CSB and CIB effects in
Eq. (15), taking Tz = T nuclei as examples, are calculated by using
Eqs. (11) and (12) with the SLy4 interaction.

[14] that has been tested against many experimental data.
Yet, under certain circumstances, the quadratic form of the
IMME may break down, and the underlying mechanism will
be discussed in further detail in a forthcoming paper.

We now discuss how much the corrections are actually
introduced by the CSB and CIB effects, and examine their
systematic behavior. With the assumption that the nucleus is
treated as a nonuniformly charged sphere [43], the Coulomb
energy Ec can be written as

Ec = 3e2

5r0A1/3(1 + 
)
{Z(Z − 1) − 0.25[1 − (−1)Z]}, (16)

with r0 = 1.2 fm, where the correction due to the last un-
paired proton [44] is supplemented. The parameter 
 =
5π2d2/(6r2

0 A2/3) with d ≈ 0.55 fm [43] is introduced to
describe the effect of the surface diffuseness on the Coulomb
energy, which is a correction to the uniformly charge sphere
model [35], and the Coulomb interaction on the surface
asymmetry is ignorable for the N ≈ Z nuclei. Hence the
contributions of the Coulomb energy to the coefficients of Tz

and T 2
z are simply derived as

bc = 3e2

5r0A1/3(1 + 
)

[
(1 − A) + (−1)A/2−T − (−1)A/2+T

8T

]
,

cc = 3e2

5r0A1/3(1 + 
)

[
1 + (−1)A/2−T + (−1)A/2+T

4(2T − 1)

]
. (17)

Figure 2 illustrates the coefficients of the Tz and of T 2
z terms

extracted from the masses of the T = 3/2 isobaric quartets
[45], and compares them with those given by a nonuniformly
charged sphere [43]. The contributions of the CSB and CIB
effects in Eq. (15), taking Tz = T nuclei as examples, are also
presented in Fig. 2 for comparison. The contribution of the
CSB effect to the coefficient of Tz term increases roughly from
−80 to −220 keV when A goes up from 17 to 53, which

is found to be consistent with the estimations for the T = 1
multiplets given in Table 5.4 of Ref. [46]. In general, the CSB
effect results in a reduction of the coefficient of Tz term by
2.0%–3.1%, and the CIB effect enhances the coefficient of
T 2

z term by 1.6%–4.4%. Note that while the energy splitting
among the isobaric multiplet is predominately attributed to the
Coulomb interaction, clearly the corrections to the IMME have
the CSB and CIB origin.

Nolen-Schiffer anomaly (NSA). The NSA [28] is a long-
standing historical problem. The Coulomb displacement en-
ergy (CDE)—the difference in binding energy between two
members of a multiplet—is directly related to the IMME
coefficients in Eq. (1): for adjacent members of a multiplet
one has CDE(A,T ,Tz) = −b − c(2Tz + 1) + 
nH [3], where
Tz is taken for the isobar with the larger proton number. It
is an anomaly because when all the corrections were taken
into account, there remained a consistent underestimate of the
CDE by about a few to ten percent [28,35,47]. Now with our
GIMME, the CDE expression is modified as

CDE(A,T ,Tz) = −bc − cc(2Tz + 1) + 
NSA, (18)

where the new last term arising from the CSB and CIB
components of the nuclear medium is given by


NSA = −2a
(CSB)
sym,1 (A,Tz>) − 4(2Tz + 1)

A
a

(CIB)
sym,2(A,Tz>)

+ 2Tz

[
a

(CSB)
sym,1 (A,Tz) − a

(CSB)
sym,1 (A,Tz>)

]

+ 4T 2
z

A

[
a

(CIB)
sym,2(A,Tz) − a

(CIB)
sym,2(A,Tz>)

]
,

� −2a
(CSB)
sym,1 (A,Tz>) − 4(2Tz + 1)

A
a

(CIB)
sym,2(A,Tz>),

(19)

with Tz> = Tz + 1. With 
NSA, it becomes clear that the
CDE has contributions from CSB and CIB, in addition to the
Coulomb force. The CSB effect contributes predominately in
Eq. (19), whereas the CIB effect is much smaller, particularly
for heavier masses due to the 1/A dependence. According to
Fig. 2, 
NSA accounts for 2%–3% of the CDE for isobaric
quartets, which, according to our calculation, can add to CDE
with 100–200 keV for Tz = ±1/2 and 300–600 keV for Tz =
±3/2 mirror pairs. These amounts are qualitatively consistent
with what is needed to account for the NSA, as discussed in
Ref. [3].

The CDE for a T = 1/2 pair of mirror nuclei, de-
fined as CDE(A,T = 1/2) = BE(A,Tz = 1/2) − BE(A,Tz =
−1/2), has been widely used to study the NSA. In our
method, the CDE is given by CDE(A) = −bc − 2a

(CSB)
sym,1 , and

the CSB effect is simply obtained with 
NSA = −2a
(CSB)
sym,1 .

Our calculated 
NSA for nuclei near the closed shells with
the magic numbers 8 and 20, compared with those based on
the SIII Skyrme interaction [48] and a calibrated independent-
particle model [49] with inclusion of many corrections for
some extensively studied mirror pairs, are listed in Table III.
Note that the results from the dominant Coulomb term and the
small corrections, such as the finite size of nucleons and short-
range correlation, exhibit considerable differences between
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TABLE III. Calculated 
NSA = −2a
(CSB)
sym,1 (in MeV) due to the

CSB effect for the T = 1/2 mirror pairs in the A = 16 and 40 regions,
compared with other calculations for the study of the NSA.

Nuclide SLy4 SLy5 KDE Ref. [48] Ref. [49]

15O-15N 0.16 0.16 0.16 0.29 0.16 ± 0.04
17F-17O 0.11 0.11 0.11 0.11 0.31 ± 0.04
39Ca-39K 0.15 0.16 0.16 0.44 0.22 ± 0.08
41Sc-41Ca 0.14 0.14 0.15 0.12 0.59 ± 0.08

Refs. [48] and [49], suggesting a model-dependence character
in the results. Moreover, the core-polarization correction, even
in its sign, presents a strong model dependence [48,50]. Inter-
estingly, our results are found consistent with those in Ref. [48]
([49]) for particle (hole) nuclei. We emphasize, however, that
our 
NSA is completely separated from the Coulomb energy,
and in addition, our results are obtained without tuning any
particular parameters.

From our derivation, the CDE of a pair of mirror nuclei with
T = 1 becomes

CDE(A,T = 1) = −2bc − 4a
(CSB)
sym,1 (A,Tz = 1). (20)

In the above expression, the contribution to the CSB effect
is directly obtained as 
NSA = −4a

(CSB)
sym,1 (A,Tz = 1). In order

to compare our results with the CDE data, we compute the
CDE with the nonuniformly charged sphere model, with and
without the second term in Eq. (20). The results together
with experimental data are presented in Fig. 3. The difference
between the two calculations is obvious. It can be seen that
overall, the calculated CDE with inclusion of the CSB effect
tends to describe the experimental data, where the CSB effect
contributes an amount of 2%–3%.

The origin of the NSA has been studied by many authors
(see, for example, Ref. [35]) and is generally expected to
result mainly from the CSB effect. The (isospin) symmetry-
breaking terms are usually not included in normal shell-model
Hamiltonians, and therefore the answer to the anomaly lies

FIG. 3. Comparison of calculated CDE of the T = 1 mirror
pairs with experimental data [56]. The calculated results with and
without the second term in Eq. (20) are plotted as triangles and dots,
respectively. The first term in Eq. (20) is calculated using Eq. (17);
the second, using Eq. (11) with the SLy4 interaction.

likely in a deeper level [51]. In contrast to the applied models
based on the effects of the nucleon mass splitting or meson
mixing [52–55], in our framework, the CSB and CIB effects
starting from nuclear medium are established by employing the
microscopic Brueckner theory without any adjustable param-
eter. Incidently, the triplet displacement energy (TDE) [57]
is related to our new coefficients through TDE(A) = 2cc +
8a

(CIB)
sym,2(A,Tz = 1)/A. However, the cc coefficient cannot be

well achieved with the charged sphere model, as that in Fig. 2.
Different from the CDE of a mirror pair discussed above, the
TDE originates from the Coulomb force together with the CIB
effect, where the latter contributes about 3%. As the NSA for
CDE, the Coulomb interaction alone cannot account for TDE,
a conclusion consistent with shell-model studies [10,11].

Summary. We have generalized the Wigner IMME by con-
sidering the contributions of CSB and CIB derived in nuclear
medium to the effective nucleon-nucleon interaction, and used
it to study the NSA. The main conclusions are as follows. (i)
The density-dependent CSB and CIB interactions in nuclear
matter, characterized respectively by the symmetry energy
coefficients S

(CSB)
1 and S

(CIB)
2 , were built within the Brueckner

theory with the bare interactions as inputs. Therefore, our work
bridges the charge-violating nuclear force in free nucleons and
that in nuclear medium. (ii) With these results as calibrations,
we established the effective CSB and CIB interactions in the
Skyrme functions, and carried out the calculations of their
effects in finite nuclei. For neutron-rich nuclei, we found that
the 1st-order symmetry energy term Esym,1(A) induced by
the CSB effect, which is generally dropped in nuclear mass
calculations, should not be neglected. (iii) The perturbative
Hamiltonian with the density-dependent effective CSB and
CIB interactions is no longer an irreducible tensor, hence
its matrix element cannot be analytically reduced via the
Wigner-Eckart theorem, as Wigner did [14]. We derived the
GIMME which presents new corrections to the original Wigner
IMME, where the contribution of the effective CSB and CIB
interactions is clearly separated from that of Coulomb force.
(iv) As the first application of GIMME, the NSA was naturally
elucidated to a large extent to originate from the CSB effect,
with the needed correction of several hundred keV being
reproduced.

Finally, we note that our obtained CIB interaction in an
effective Skyrme energy density functional describes only the
ground-state properties for finite nuclei. The J dependence
of CIB (see, for example Refs. [42,58]), which cannot be
discussed here, is, however, an important aspect of CIB, and
should be investigated within the present theory.
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