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Massive neutron star with strangeness in a relativistic mean-field model with a high-density cutoff
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The properties of neutron stars with the strangeness degree of freedom are studied in the relativistic mean-field
(RMF) model via including a logarithmic interaction as a function of the scalar meson field. This interaction,
named the σ -cut potential, can largely reduce the attractive contributions of the scalar meson field at high density
without any influence on the properties of nuclear structure around the normal saturation density. In this work, the
TM1 parameter set is chosen as the RMF interaction, while the strengths of σ -cut potential are constrained by the
properties of finite nuclei so that we can obtain a reasonable effective nucleon-nucleon interaction. The hyperons
�,�, and � are considered in neutron stars within this framework, whose coupling constants with mesons are
determined by the latest hyperon-nucleon and �-� potentials extracted from the available experimental data
of hypernuclei. The maximum mass of neutron star can be larger than 2M� with these hyperons in the present
framework. Furthermore, the nucleon mass at high density will be saturated due to this additional σ -cut potential,
which is consistent with the conclusions obtained by other calculations such as Brueckner-Hartree-Fock theory
and quark mean-field model.
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I. INTRODUCTION

The research objects in nuclear physics are compact con-
densed matter, where the nucleons interact with each other
through the nuclear force as an effective interaction of QCD
theory at low energy scale [1]. Because of the complication
of nuclear force, there is still not a uniform theory, which can
describe the properties of all the nuclei in the nuclide chart
perfectly. However, with the development of computer tech-
nology and nuclear many-body methods, those finite nuclei
can be simulated reasonably by various ab initio calculation
methods [2–8], shell model theory [9], and density functional
theory (DFT) [10–15] from light to heavy nuclei.

The DFT in nuclear physics is constructed based on an effec-
tive nucleon-nucleon (NN ) interaction, which is determined
by fitting the empirical saturation properties of infinite nuclear
matter or the ground-state properties of stable nuclei. The
NN interaction is expressed as a function of nuclear density
in DFT. The earliest available DFT in nuclear physics, the
Skyrme-Hartree-Fock (SHF) model, was developed in 1970s
within a nonrelativistic zero-range NN interaction proposed
by Skyrme based on the mean-field approximation [16]. Later,
the covariant version of DFT was realized in nuclear physics
by Walecka through introducing the exchanges of scalar and
vector mesons between different nucleons [17]. A lot of
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advanced DFT has been proposed which can successfully
describe the properties of the majority of nuclei discovered
in experiments [10–15].

When these DFT nuclear forces were applied to investigate
the properties of infinite nuclear matter, identical behaviors of
their equations of state (EOSs) were obtained at low density
(around the nuclear saturation density, ρ0 ∼ 0.15 fm−3), while
the EOSs from DFT at high density were quite different
[18,19]. It is easily understood that the strengths of DFT
nucleon forces are strongly related to the experimental data
of the nuclear many-body system close to the saturation
density region, but the constraint of experimental information
at high density is limiting. At present, the compact matter was
only generated up to 2ρ0 ∼ 3ρ0 in heavy-ion collisions [20].
However, a lot of investigations showed that it approaches
5ρ0 ∼ 10ρ0 in the core region of compact star in the universe
[1]. Therefore, the DFT has ambiguity when it is applied to the
study of neutron stars.

Actually, ab initio calculation methods are good candidates
to work out the properties of nuclear matter at high density,
which adopt the realistic NN interactions from the NN
scattering data. Without the three-body nucleon force, the
available nonrelativistic ab initio methods cannot reproduce
the empirical saturation properties completely [21,22]. Once
the three-body force was included [23], the high-density
behaviors were in accordance with those from the relativistic
ab initio methods, such as relativistic Brueckner-Hartree-Fock
(RBHF) theory [24].
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With the strangeness degree of freedom, the shortcoming
of DFT becomes obvious, especially in neutron star. A lot
of DFT interactions with hyperons produce EOSs too soft to
obtain massive neutron stars, which were confirmed recently
from the astronomical observations, i.e., PSR J1614-2230
(1.928 ± 0.017M�) [25,26] and PSR J0348+0432 (2.01 ±
0.04M�) [27]. Therefore, many mechanisms were introduced
to make the EOS become stiffer at high-density regions, e.g.,
the repulsive components of hyperon-hyperon force [28,29],
three-body hyperon-nucleon force [30], and quark phase [25].
However, these considerations will influence the properties
of nuclear matter around the saturation density at the same
time.

A few years ago, Maslov et al. proposed a σ -cut term in
the Lagrangian of the relativistic mean field (RMF) model
[31,32], one version of covariant DFT theory, to prevent the
scalar field from decreasing monotonically with the nucleon
density so that the EOS of nuclear matter at high density
become stiff enough to generate massive neutron stars. This
σ -cut potential only plays its role when the density is larger
than a certain value. Therefore, the scheme does not effect
the properties of nuclear matter at low density. It means that
if the strength of the σ -cut potential is chosen properly, this
new Lagrangian cannot only provide the stiff EOS but also

describe the properties of finite nuclei well with the original
parameters of RMF model. Maslov et al. [31] just discussed
this σ -cut scheme in nuclear matter. Later, Dutra et al. adopted
this framework to make several available RMF interactions
satisfy the constraint of massive neutron stars [33]. In this work,
we would like to extend this method to finite nuclei systems and
neutron stars with the strangeness degree of freedom. Through
the constraints of massive neutron stars and the experiment
data of finite nuclei, the strength of the σ -cut potential will be
determined reasonably.

The paper is arranged as follows. In Sec. II, we briefly
introduce the formulas of RMF model with σ -cut interaction.
In Sec. III, the properties of several doubly magic nuclei,
nuclear matter, and neutron stars with hyperons will be shown
numerically and we discuss the strengths of σ -cut potential.
Finally, a summary is given in Sec. IV.

II. FORMALISM

In the picture of the RMF model, the baryons interact with
each other by exchanging the mesons in different mass regions,
like scalar meson (σ ) and vector mesons (ω and ρ); therefore,
the Lagrangian of RMF model can be expressed by the baryon
fields, ψB and meson fields as [31,34]

L =
∑
B

ψ̄B

[
iγμ∂μ − (MB + gσBσ ) − gωBγ μωμ − gρBγ μ�τB · �ρμ − e

(1 + τB,3)

2
γ μAμ

]
ψB + 1

2
∂μσ∂μσ

−1

2
m2

σ σ 2 − 1

3
g2σ

3 − 1

4
g3σ

4 − Ucut(σ ) − 1

4
WμνWμν + 1

2
m2

ωω2 + 1

4
c3ω

4 − 1

4
�Rμν �Rμν + 1

2
m2

ρρ
2 − 1

4
FμνFμν, (1)

where the arrows denote the isospin vectors of ρ meson and
three tensor operators for the vector and photon fields are
defined as follows:

Wμν = ∂μων − ∂νωμ,

�Rμν = ∂μ �ρν − ∂ν �ρμ,

Fμν = ∂μAν − ∂νAμ. (2)

The σ -cut potential is adopted with a logarithmic form follow-
ing the work of Maslov et al., which only influences the σ field
at high density,

Ucut(σ ) = α ln{1 + exp[β(−gσσ/MN − fs)]}, (3)

where α = m4
π and β = 120 to ensure the EOS is stiffer at

high density [31]. The factor fs is a free parameter in this
work whose magnitude will be decided by the properties of
finite nuclei and massive neutron stars. The larger fs leads
to the σ -cut potential working from higher density. Here, we
concentrate on the study of doubly magic nuclei, which are
treated as spherical cases and the spatial components of vector
mesons will be zero due to the time-reversal symmetry. Hence,
only the time components of ω,ρ, and A fields exist. For the
convenient presentation later on, we would like to use the
symbols, ω,ρ,A, instead of ω0,ρ0,A0.

The equations of motion about baryons and mesons can
be generated from the Euler-Lagrange equations. However, in

these equations of motion, the quantum fields cannot be solved
exactly to many-body system. The mean-field approximation
and no-sea approximation are taken into account to treat the
mesons as classical fields in RMF model. Then, the Dirac
equations for baryons are written as[

iγμ∂μ − (MB + gσB) − gωBωγ 0 − gρBρτB,3γ
0

−e
(1 + τB,3)

2
Aγ 0

]
ψ = 0. (4)

Here, we only consider the finite nuclei without the strangeness
degree of freedom, and the corresponding equations of motion
for mesons are given by

−�σ + m2
σ σ + g2σ

2 + g3σ
3 + U ′

cut(σ ) = −gσN 〈ψ̄NψN 〉,
−�ω + m2

ωω + c3ω
3 = gωN 〈ψ̄Nγ 0ψN 〉,

−�ρ + m2
ρρ = gρN 〈ψ̄NτN,3γ

0ψN 〉,

−�A = e〈ψ̄N

(1 + τN,3)

2
γ 0ψN 〉, (5)

where τN,3 is the third component of nucleon isospin operator
and the derivative of Ucut(σ ) potential is

U ′
cut(σ ) = αβgσ

MN

1

1 + exp[−β(−gσ σ/MN − fs)]
. (6)
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These coupling equations are solved self-consistently with
numerical methods. The ground-state properties of finite nuclei
are calculated by using the meson fields and the wave functions
of nucleon. Furthermore, in this work, we mainly discuss the
properties of doubly magic nuclei; therefore, the pair effect of
nuclei was not considered.

In the infinite nuclear-matter system or the core region of
neutron star, the nuclear many-body system has the transla-
tional invariance. Gradient terms in the RMF Lagrangian will
vanish. The Coulomb force does not play any role due to its
divergence in an infinite system. Now the equations of motion
of baryons and mesons become

[�α · �k + βM∗
B + gωBω + gρBρτB,3γ

0]ψBk = εBkψBk (7)

and

m2
σ σ + g2σ

2 + g3σ
3 + U ′

cut(σ ) = −
∑
B

gσB〈ψ̄BψB〉,

m2
ωω + c3ω

3 =
∑
B

gωB〈ψ̄Bγ 0ψB〉,

m2
ρρ =

∑
B

gρB〈ψ̄BτB,3γ
0ψB〉, (8)

where M∗
B is the effective baryon mass related to the σ field,

M∗
B = MB + gσBσ. (9)

From these equations of motion of baryons and mesons, the
energy density and pressure are generated by the energy-
momentum tensor [34],

E =
∑
B

1

π2

∫ kB
F

0

√
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B k2dk
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4
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cut(σ )
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4
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4 + 1

2
m2

ρρ
2 (10)

and

P = 1

3π2

∑
B

∫ kB
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k4√
k2 + M∗2
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dk

−1

2
m2

σ σ 2 − 1

3
g2σ

3 − 1

4
g3σ

4 − U ′
cut(σ )

+1

2
m2

ωω2 + 1

4
c3ω

4 + 1

2
m2

ρρ
2. (11)

In neutron star matter, there are not only baryons
(n,p,�,�−,�0,�+,�−,�0) but also leptons (e,μ). All of
these particles meet the requirements of charge neutrality and
β equilibrium. Their chemical potentials should satisfy the
following identities:

μn = μ� = μ�0 = μ�0 ,

μp = μ�+ = μn − μe,

μ�− = μ�− = μn + μe,

μμ = μe, (12)

where μi is the chemical potential of particle i. They are
expressed for baryons B and leptons l, respectively, as

μB =
√

kB2
F + M∗2

B + gωBω + gρBτB,3ρ,

μl =
√

kl2
F + m2

l . (13)

Furthermore, the densities of different baryons are limited by
the charge neutrality condition,

ρp + ρ�+ = ρe + ρμ + ρ�− + ρ�− , (14)

where ρi is the baryon number density obtained by

ρi = ki3
F

3π2
. (15)

The properties of a neutron star are obtained from the well-
known equilibrium equations by Tolman et al. [35,36] with the
pressure P of neutron star matter and the enclosed mass M ,

dP (r)

dr
= −GM(r)ε(r)

r2

[
1 + P (r)

ε(r)

][
1 + 4πr3P (r)

M(r)

]
1 − 2GM(r)

r

,

dM(r)

dr
= 4πr2ε(r), (16)

where P (r) is the pressure of neutron star at radius, r , and
M(r) is the total star mass inside a sphere of radius r . When
the EOS P (ε) is decided from the nuclear many-body method
as a function of total energy density ε, the numerical solution
of Eq. (16) provides the mass-radius relation of neutron star.

III. RESULTS AND DISCUSSION

First, the TM1 parameter set is chosen as the nucleon-
nucleon (NN ) interaction in RMF model [37], which has
achieved a lot of successes in the description of nuclear
many-body systems and compact stars. The nonlinear term
of ω meson was first introduced in TM1. With this term, the
behaviors of scalar and vector potentials in the RMF model
are consistent with those from the ab initio method, RBHF
theory at high density. The maximum mass of neutron star is
around 2.2M� without hyperon within TM1 interaction. When
the hyperons are concerned, the maximum mass of neutron star
reduces to 1.6M�, which is much less than the massive neutron
stars observed recently [25–27,34]. The consideration of σ -cut
potential leads to the EOS stiffer to increase the maximum mass
of neutron star. The parameters α = m4

π and β = 120 in σ -cut
potential are chosen as the same values in Ref. [31], where the
factor fs was taken as 0.36,0.44, and 0.52. In the present work,
the factor fs is treated as a free parameter determined by the
properties of finite nuclei and neutron star.

In Table I, the total energies and charge radii of 16O, 90Zr,
and 208Pb are listed in terms of different choices of fs from 0.50
to 0.60 and are compared with the original results obtained
within TM1 parameter set. It is found that when the factor fs

is larger than 0.55, the results including σ -cut potential are
identical with those from the original TM1 interaction. The
smaller fs corresponds that the σ -cut potential plays its effect
from lower density. Actually, the properties of finite nuclei in
RMF model are determined by the mean-field potential with the
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TABLE I. The total energies and charge radii of 16O, 90Zr, and 208Pb obtained with TM1 parameter set and with the addition of σ -cut
potentials in term of different fs factors.

Nuclei TM1 fs = 0.50 fs = 0.55 fs = 0.60

16O E (MeV) −130.3678 −130.2902 −130.3678 −130.3678
rc (fm) 2.6589 2.6593 2.6589 2.6589

90Zr E (MeV) −783.5024 −783.3484 −783.5024 −783.5024
rc (fm) 4.2634 4.2637 4.2634 4.2634

208Pb E (MeV) −1637.8920 −1637.8487 −1637.8920 −1637.8920
rc (fm) 5.5311 5.5311 5.5311 5.5311

densities less than ρ = 0.20 fm−3. The discrepancy between
the results with fs = 0.50 and those obtained by TM1 shows
that the σ -cut potential with fs = 0.50 starts its effect below
that density. Therefore, to keep the properties of finite nuclei
in the present framework without any influence from the σ -cut
potential, fs must be larger than 0.55. In the later discussion,
we only take fs as 0.55 and 0.60.

The σ -cut potential influences the properties of nuclear
many-body system through changing the scalar meson field.
In the RMF model, the effective nucleon masses are defined
as M∗

N = MN + gσσ . In Fig. 1, the effective nucleon masses
in symmetric nuclear matter as functions of nuclear density
obtained with σ -cut potential and the original TM1 parameter
set are plotted. The M∗

N decreases monotonously with the
density increasing in the original TM1 parameter set, which is
similar to the effective masses within other interactions of RMF
model. Once the σ -cut potentials are included, the effective
masses almost become constants above the certain densities
around 0.23–0.27 fm−3, depending on the values of fs . The
smaller fs takes effect earlier and generates larger effective
nucleon masses at high density. It denotes that the nuclear
media effects will be saturated when the nuclear system is
highly compact, since the proton and neutron have finite sizes.
In other nuclear many-body methods, for example, BHF theory
[38], quark meson-coupling model [39], and quark mean-field
model [40], the effective nucleon masses also displayed such
saturated behaviors at the high-density region.

The EOSs of symmetric nuclear matter, Fig. 2(a), and pure
neutron matter, Fig. 2(b), are shown with different fs in the

FIG. 1. The effective nucleon masses in symmetric nuclear matter
as functions of density with the original TM1 and the σ -cut potentials
with fs = 0.55 and 0.60.

σ -cut potential and are compared to those from TM1. The
EOSs obtained by considering the high-density cutoff are
stiffer than the results from TM1 both in symmetric nuclear
matter from ρN = 0.23 fm−3 and pure neutron matter from
ρN = 0.27 fm−3. The magnitude of the σ field is reduced by the
σ -cut potential, while the ω field is not changed, which brings
more repulsive contributions to the EOSs and makes them
harder at high density. In symmetric nuclear matter, the effect
of σ -cut potential is more obvious than that in pure neutron
matter. For example, at ρN = 0.40 fm−3, the binding energy
from σ -cut potentials is about 80 MeV larger than that in TM1,
while this amplitude is about 30 MeV in pure neutron matter.
At high density, the σ meson fields did not reduce anymore and
became saturated in the present framework. Theσ -cut potential
is isospin independent, which generates the same strength of
σ fields in symmetric nuclear matter and pure neutron matter
at high density. On the other hand, the σ fields in pure neutron
matter are smaller than those in symmetric nuclear matter at
a certain density without σ -cut potential. Therefore, the effect
of σ -cut potential on pure neutron matter is weaker than that
on symmetric nuclear matter.

The symmetry energy is one of the most essential features
of nuclear physics, which represents the variation of binding

FIG. 2. The binding energies per nucleon as functions of density
for symmetric nuclear matter (a) and for pure neutron matter (b) with
the original TM1 and the σ -cut potentials with fs = 0.55 and 0.60.
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FIG. 3. The symmetry energies per nucleon as functions of
density with the original TM1 and the σ -cut potentials with fs = 0.55
and 0.60.

energy with isospin [41,42]. In Fig. 3, the symmetry energies
are shown as functions of density in the present framework.
Those provided by the σ -cut potentials are smaller than
that generated by TM1 above ρ = 0.25 fm−3. Furthermore,
the stronger cutoff corresponding to fs = 0.55, provides the
smaller symmetry energy. It is caused by that a larger effective
mass with fs = 0.55 generates a smaller symmetry energy,
since in RMF model, one has the relation about symmetry
energy,

Esym/A = k2
F

6
√

k2
F + M∗2

+ g2
ρ

8m2
ρ

ρ. (17)

To discuss the role of strangeness degree of freedom in
neutron star, the hyperons, like �,�, and �, are included in
this work. The coupling constants between � hyperon and
mesons are usually fixed by the experimental observations of �
hypernuclei. Because of the lack of experimental information
about � and � hypernuclei, the coupling constants between �
and � hyperons and mesons still have a great deal of ambigu-
ities. Recently, Fortin et al. systematically studied the neutron
star maximum masses constrained by the existing hypernuclei
properties in RMF model and discussed the coupling constants
between hyperons and mesons in detail [43]. In this work,
we will follow their choices. The coupling constants between
vector mesons and hyperons are given by SU(6) symmetry and
those between scalar mesons and hyperons are generated by
the empirical hyperon-nucleon potentials, U

(N)
� = −30 MeV,

U
(N)
� = 0 MeV, U

(N)
� = −14 MeV at nuclear saturation den-

sity, ρ0, and the �-� potential, U
(�)
� = −5.9 MeV at ρ0/5 in

pure � matter:

gσ� = 0.621gσN, gσ� = 0.534gσN,gσ� = 0.308gσN,

gωN = 3

2
gω� = 3

2
gω� = 3gω�,

gρN = 1

2
gρ� = gρ�,gρ� = 0,

gσ ∗� = 0.557gσN,gσ ∗� = gσ ∗� = gσ ∗N = 0,

gφ� =
√

2

3
gωN, gφ� = gφ� = gφN = 0, (18)

FIG. 4. The pressures as functions of energy density with different
σ -cut potentials in neutron stars including hyperons and without
hyperons and σ -cut potential. “Y” in parentheses means the results
including hyperons.

where the strangeness mesons, σ ∗ and φ, are only considered to
be exchanged between � hyperons. After solving Eqs. (12) and
(14) about theβ equilibrium and charge neutrality conditions of
the whole system, the relations between pressures and energy
densities are given in Fig. 4. Because of the introduction
of σ -cut potential, the pressures largely increase at larger
energy densities compared with that from the original TM1
interaction, which represents the EOS at high density becomes
stiffer leading to a larger mass of neutron star. Furthermore,
the EOS without hyperons and σ -cut potential is also shown
to be compared. Its behavior is similar with those including
the σ -cut effect below the energy density, ε = 400 MeV fm−3,
and becomes harder at high energy density.

With the pressures as functions of energy density, the
properties of neutron star can be obtained by solving the TOV
equation, Eq. (16). The mass-radius and mass-density relations
are given in Figs. 5(a) and 5(b), respectively. The maximum
mass of neutron star in TM1 parameter set with hyperons
is around 1.68M�. Once the σ -cut potentials are included,
the maximum masses of neutron star significantly grow up
to above 2.0M�. For the stronger σ -cut potential fs = 0.55,
the maximum mass of neutron star approaches 2.14M� and

FIG. 5. (a) The mass-radius relation and (b) mass-density relation
for neutron star with the original TM1 (with and without hyperons)
and the σ -cut potentials at fs = 0.55 and 0.60. “Y” in parentheses
means the results including hyperons.
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TABLE II. The various properties (maximum masses, corre-
sponding radii, and central densities) of the neutron stars with original
TM1 parameter set (without and with hyperons) and the σ -cut
potentials with fs = 0.55 and 0.60. R1.4 represents the radius of
neutron stars at M = 1.4M�

TM1 TM1 (Y) fs = 0.55 (Y) fs = 0.60 (Y)

Mmax (M�) 2.18 1.68 2.14 2.02
Rmax (km) 12.37 13.37 14.09 13.70
ρmax (rmf m−3) 0.85 0.68 0.62 0.63
R1.4 (km) 14.20 14.20 14.50 14.30

the corresponding radii is about 14.1 km. However, if fs is
larger than 0.6, the maximum mass of neutron star will be less
than 2.0M� which cannot describe the observations of two
massive neutron stars, PSR J1614-2230 and PSR J0348+0432.
Together with the constraints by the 2M� neutron stars without
changing the properties of finite nuclei, it can be concluded
that the factor fs in the σ -cut potential should lie between 0.55
and 0.60. Otherwise, the theoretical results could not satisfy
the experimental data about the nuclear many-body system.
Furthermore, the center densities of neutron stars with σ -cut
potentials are around 0.62 fm−3, which are smaller than that
of TM1, due to the stiffer EOSs.

In Table II, the maximum masses, corresponding radii, and
central densities of neutron stars are tabulated. If the σ -cut
potential was not considered, the maximum mass of neutron
star with hyperons is largely reduced from 2.18M� without
hyperons to 1.68M�, while they increase to above 2M�,
when the σ -cut potentials are included. The corresponding
radii become larger and the central densities become smaller.
Furthermore, the radii of neutron stars at 1.4M�,R1.4, are also
given in this table, which are located around 14.0–14.5 km.
These values approach the recent constraint by Lattimer and
Prakash [44], 9 km < R1.4 < 14 km. The R1.4 in the σ -cut
potential with fs = 0.6 is very similar with that in TM1 without
hyperons and larger than the one in TM1 with hyperons. This is
because that the pressure in the σ -cut potential with fs = 0.6
is very similar with that in TM1 without hyperons in the
low-energy density region, but larger than the one in TM1
with hyperons as shown in Fig. 4, and the R1.4 has a strong
correlation with the pressure of neutron star matter at saturation
density as pointed in Ref. [44]. The inclusion of σ -cut potential
should generate a larger R1.4, due to the stiffer EOS as shown
in Fig. 4.

Finally, the particle fractions in neutron star with different
high-density cutoffs are displayed in Fig. 6. In TM1, �
hyperon appears first in the core region of neutron star at ρB =
0.32 fm−3, which has the deepest hyperon-nucleon potentials
among �,�, and � hyperons at nuclear saturation density.
The appearances of hyperon are determined by their chemical
potentials at β equilibrium. In RMF theory, the chemical
potentials of baryons are written as Eq. (13). Furthermore, the
free mass of � hyperon is also smallest in these three hyperons.
The � hyperon is a little bit heavier than � hyperons, which
appears after � hyperon. The other hyperons �− and �0 appear
one by one at the higher densities.

FIG. 6. The particle fractions in neutron star with the original
TM1 and the σ -cut potentials with fs = 0.55 and 0.60.

When the σ -cut potential is taken into account, the �−
and �0 hyperons appear earlier than the �− hyperon, whose
appearance density is larger than 1.0 fm−3. The onset density
of hyperon is above the density where the σ terms are turned
on. The σ -dependent potential affects the order of appearance
of the hyperons through the effective masses of baryons in
the chemical potential [Eq. (13)]. The σ -cut potential leads to
larger effective masses of baryons and thus a larger chemical
potential correspondingly. The appearance of hyperons should
be retarded. However, the repulsive contribution from the
coupling between ω meson and � hyperon is smaller than
that from � hyperon, which leads to a much less repulsive
potential at high densities. Therefore, the � hyperons will arise
in advance. It is also in accordance with the attractive potential
between� hyperons and nucleons at nuclear saturation density.

IV. CONCLUSIONS

A σ -cut interaction was included in the Lagrangian of RMF
model with a logarithmic form as a function of σ meson field,
which can largely reduce the attractive contributions of a σ
meson at high density but does not play any role at low density.
There were three parameters in this σ -cut potential, α,β, and
fs . In this work, we focused on discussing the strengths of
the factor fs without changing the ground-state properties of
finite nuclei with original RMF interaction and the constraints
of observed massive neutron stars.

The binding energies and charge radii of 16O, 90Zr, and 208Pb
were calculated within the TM1 parameter set and the σ -cut
potentials with different fs . It was found that the fs should
be larger than 0.55 so that the additional σ -cut potentials in
RMF model cannot influence the accurate description of the
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finite nuclei system. Furthermore, the properties of symmetric
nuclear matter and pure neutron matter were also investigated,
such as effective nucleon mass, binding energy per particle
and symmetry energy. The smaller fs made the σ -cut potential
take its effects earlier and led to a stronger repulsion. The
effective nucleon masses were saturated at high density, which
was regarded as the saturation character of nucleon media
effect at highly compact system and was consistent with the
conclusions from the Brueckner-Hartree-Fock method and
quark meson-coupling model. The EOSs of symmetric nuclear
matter and pure neutron matter became stiffer at high density
due to the σ field reduction. The symmetry energies within
σ -cut potentials were smaller than that from TM1, since
they are determined by the effective nucleon masses in RMF
model. The larger effective mass provides smaller symmetry
energy.

In the last part, the properties of a neutron star were studied
within the present framework including the strangeness degree
of freedom. The maximum masses of neutron star increased
from 1.68M� to above 2.0M�, when the σ -cut potential were
used with the factor fs smaller than 0.60. In this way, the

hyperons may exist in the core region of massive neutron stars
whose masses are around 2M�. The � hyperons appeared
earlier with the σ -cut potential comparing to the original TM1
interaction.

Therefore, with the constraints of finite nuclei and massive
neutron stars, the strengths fs in the σ -cut potential should
be between 0.55 and 0.60. Through including a simple loga-
rithmic interaction, the properties of finite nuclei and massive
neutron stars with hyperons can be both described reasonably.
However, the properties of nuclear matter at high density
need to be further investigated with more fundamental nuclear
many-body theories due to the lack of experimental constraints.
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