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Background: Neutron stars are astronomical systems with nucleons subjected to extreme conditions. Due to the
longer range Coulomb repulsion between protons, the system has structural inhomogeneities. Several interactions
tailored to reproduce nuclear matter plus a screened Coulomb term reproduce these inhomogeneities known as
nuclear pasta. These structural inhomogeneities, located in the crusts of neutron stars, can also arise in expanding
systems depending on the thermodynamic conditions (temperature, proton fraction, etc.) and the expansion
velocity.
Purpose: We aim to find the dynamics of the fragment formation for expanding systems simulated according to
the little big bang model. This expansion resembles the evolution of merging neutron stars.
Method: We study the dynamics of the nucleons with semiclassical molecular dynamics models. Starting
with an equilibrium configuration, we expand the system homogeneously until we arrive at an asymptotic
configuration (i.e., very low final densities). We study, with four different cluster recognition algorithms, the
fragment distribution throughout this expansion and the dynamics of the cluster formation.
Results: Studying the topology of the equilibrium states, before the expansion, we reproduced the known pasta
phases plus a novel phase we called pregnocchi, consisting of proton aggregates embedded in a neutron sea. We
have identified different fragmentation regimes, depending on the initial temperature and fragment velocity. In
particular, for the already mentioned pregnocchi, a neutron cloud surrounds the clusters during the early stages
of the expansion, resulting in systems that give rise to configurations compatible with the emergence of the r

process.
Conclusions: We showed that a proper identification of the cluster distribution is highly dependent on the cluster
recognition algorithm chosen, and found that the early cluster recognition algorithm (ECRA) was the most stable
one. This approach allowed us to identify the dynamics of the fragment formation. These calculations pave the
way to a comparison between Earth experiments and neutron star studies.
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I. INTRODUCTION

Neutron-rich matter is present in several astronomical ob-
jects in the universe, for example: neutron stars, proto-neutron
stars, and core-collapse supernovae. The supernova explosion
of a massive star, combined with gravitational collapse, com-
presses the core up to densities of atomic nuclei. This gives rise
to a system known as a proto-neutron star, which eventually
ends up in a neutron star.

The neutron-rich environment also gives rise to the possi-
bility of a rapid neutron capture, the r process, that consists
of the rapid capture of neutrons. The r process is fundamental
to understand the abundance of heavy elements, and several
places have been candidates for it to happen. Supernovae have
been prime candidates for a long time, but recent observations
and models hint that also neutron star mergers can yield the
r process [1–3]. The compression of neutron star matter as
a possible source for r-process nuclei was first discussed
in Ref. [4]. According to hydrodynamic models [5], these
have typical velocity gradients of η̇ = 10−21 c/fm � η̇ � 4 ×
10−20 c/fm [6].

The original works of Ravenhall et al. [7] and Hashimoto
et al. [8] used a compressible liquid drop model to study
neutron-rich matter, and have shown that the states now known

as the pasta phases—lasagna, spaghetti, and gnocchi—are
solutions to the ground state of neutron star matter. The study of
neutron-rich matter has since been approached with different
models, which show that nuclear pasta arises due to the
interplay between nuclear and Coulomb forces in an infinite
medium. We classify the different approaches in two large
groups: mean field and microscopic.

Mean field works include the liquid drop model by Lattimer
et al. [9] and the Thomas-Fermi model by Williams and
Koonin [10], among others [11–18]. Microscopic models
include quantum molecular dynamics, used by Maruyama et al.
[19,20] and by Watanabe et al. [21], the simple semiclassical
potential (SSP) by Horowitz et al. [22], and classical molecular
dynamics, used in our previous works [23].

In some recent studies, phases different from the typical
nuclear pasta were found. The work by Nakazato et al.
[16], inspired by polymer systems, found also gyroid and
double-diamond structures, with a compressible liquid drop
model. Dorso et al. [23] and Berry et al. [24] obtained pasta
phases different from those already mentioned with molecular
dynamics, studying mostly their characterization at very low
temperatures. In our previous work [25] we have shown that
these new pasta phases had an opacity peak (i.e., a local
maximum in the opacity) in the characteristic wavelength of
the Urca neutrinos for symmetrical neutron star matter.

2469-9985/2018/97(1)/015803(10) 015803-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.97.015803&domain=pdf&date_stamp=2018-01-18
https://doi.org/10.1103/PhysRevC.97.015803


P. N. ALCAIN AND C. O. DORSO PHYSICAL REVIEW C 97, 015803 (2018)

Among the advantages of classical and semiclassical mod-
els are the accessibility of position and momentum of all par-
ticles at all times, which allows the calculation of correlations
of all orders. Moreover, no specific structure is hard-coded
in the model, as happens with most mean field models. This
enables the study of the structure of the nuclear medium
from a particle point of view. Many models exist with this
goal, including quantum molecular dynamics [19], the simple
semiclassical potential [22], and classical molecular dynamics
[26]. In these models the Pauli repulsion between nucleons of
equal isospin is hard-coded in the interaction. On the other
hand, a specific Pauli potential developed in [27] was used in
the Quasi Classical Nuclear Matter (QCNM) [28] and later in
Ref. [29].

The relative inaccessibility of these astronomical objects
means a restriction in the observables available. One of them,
studied extensively in the recent years, is the neutrino opacity
and the mean free path [22,30,31]. In this work, we study
another possible observable from the neutron-rich matter: the
result of the fragmentation of neutron-rich matter, related to
the already mentione r process. Multifragmentation in nuclear
systems has been studied before [32,33], but mostly with
nuclear matter (without Coulomb interaction). In a recent work
by Caplan et al. [34], expanding neutron star matter has been
studied as a possible explanation for nucleosynthesis in neutron
star mergers.

In Sec. II we introduce the model used in this work, which
includes the potential parametrization (II A) and the Coulomb
interaction (II B). Section III describes the different cluster
recognition algorithms used in this work, and Sec. IV explains
how we simulate the expansion of the system. Finally, we draw
conclusions in Sec. VI. In the Appendix we perform a detailed
analysis on the stability of one of the cluster recognition
algorithms.

II. THE MODEL

A. Classical molecular dynamics

In this work, we study fragmentation of neutron star matter
under pasta-like conditions with a model similar to the classical
molecular dynamics (CMD) model. CMD has been used in
several heavy-ion reaction studies to help understand exper-
imental data [35], identify phase-transition signals and other
critical phenomena [36–40], and explore the caloric curve [41]
and isoscaling [42,43]. CMD uses two two-body potentials to
describe the interaction of nucleons; they are a combination of
Yukawa potentials:

V CMD
np (r) = vr exp(−μrr)/r − va exp(−μar)/r,

V CMD
nn (r) = v0 exp(−μ0r)/r,

where Vnp is the potential between a neutron and a proton
and Vnn is the repulsive interaction between either nn or
pp. The cutoff radius is rc = 5.4 fm and for r > rc both
potentials are set to zero. The Yukawa parameters μr , μa ,
and μ0 were determined to yield an equilibrium density of
ρ0 = 0.16 fm−3, a binding energy E(ρ0) = 16 MeV/nucleon,
and a compressibility of 250 MeV.

FIG. 1. Potential energy of the proton-neutron interaction of
different models: SSP, CMD, and new medium.

Based on this model, we developed a new set of parameters
that yield the same values for ρ0, E(ρ0), and compressibility,
which we called new medium. We show in Fig. 1 an example
that compares the proton-neutron potential for the different
models and the one developed for this work: SSP, CMD and
new medium.

To simulate an infinite medium, we used this potential with
N = 5500 particles under periodic boundary conditions, with
different proton fractions (i.e., with 0.2 < x < 0.4, x = Z/A)
in cubical boxes with sizes adjusted to have densities ρ =
0.05 fm−3 and ρ = 0.08 fm−3. These simulations were done
with LAMMPS [44], using its GPU package [45].

1. Ground state nuclei

To study nuclei, liquid-like spherical drops with the right
number of protons and neutrons are constructed, confined in
a steep spherical potential, and then brought to the ground
state by cooling them slowly from a rather high temperature
until they reach a self-contained state. Removing the confining
potential, the system is further cooled down to T = 0.1 MeV,
a temperature much lower than the typical values for binding
energy (Eb ≈ 8 MeV). To compare the different microscopic
models used throughout the literature with the new medium
model, we show in Fig. 2 the binding energies of ground-state
nuclei obtained with CMD, SSP, and new medium.

Even though qualitatively the binding energy has for all
three models the same qualitative behavior, with a maximum
binding energy near iron, we mention that in these results
binding energy for the SSP model differs from the binding
energy found in the original work that defined the model
[22]. To our best knowledge our calculations performed with
two independently developed programs (which give the same
results) are correct, and differences might be due to the local
minima found during the cool-down. Because the binding
energy we found in this work is higher (i.e., lower total energy)
than those reported by the original SSP work, we believe that
the result reported here is closer to the actual ground state of
the SSP mode.
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FIG. 2. Binding energies of ground-state nuclei obtained with
CMD, SSP, and new medium models. Note that the new medium
model yields results much closer to the experimental ones.

B. Coulomb interaction in the model

Since a neutralizing electron gas embeds the nucleons in
the neutron star crust, the Coulomb forces among protons are
screened. We model this screening effect with the Thomas-
Fermi approximation, used with various nuclear models
[19,23,30]. According to this approximation, protons interact
via a Yukawa-like potential, with a screening length λ:

VTF(r) = q2 e−r/λ

r
. (1)

Theoretical estimates for the screening length λ are λ ∼
100 fm [46], but we set the screening length to λ = 20 fm.
This choice was based on previous studies [47], where we
have shown that this value is enough to adequately reproduce
the expected length scale of density fluctuations for this model,
while larger screening lengths would result in computational
difficulty. We analyze the opacity to neutrinos of the structures
for different proton fractions and densities.

III. CLUSTER RECOGNITION

In typical configurations we have not only the structure
known as nuclear pasta, but also a nucleon gas that surrounds
the nuclear pasta. In order to properly characterize the pasta
phases, we must know which particles belong to the pasta
phases and which belong to this gas. To do so, we have to
find the clusters that are formed during the simulation.

One of the algorithms to identify cluster formation is the
minimum spanning tree (MST). In the MST algorithm, two
particles belong to the same cluster {CMST

n } if the relative
distance of the particles is less than a cutoff distance rcut:

i ∈ CMST
n ⇔ ∃j ∈ Cn | rij < rcut.

Based on the MST algorithm, and taking into account that
typically the neutron-rich matter structure is set by the proton
backbone, we developed MSTpC, an algorithm that calculates
the MST cluster of protons alone and finds the cloud of neutrons
that lay within rc of each proton cluster. The MST cluster

definition works correctly for systems with no kinetic energy,
and it is based in the attractive tail of the nuclear interaction.
However, if the particles have nonzero relative momenta, we
can have a situation of two particles that are closer than the
cutoff radius, but with a large relative kinetic energy.

The problem of fragment recognition in nuclear physics
has undergone strong development in recent years, especially
related to the analysis of numerical simulations of intermediate
energy heavy ion collisions. In this case, it is quite clear
that the asymptotic state of the system is a very dilute set of
fragments with a collective expansion mode and composed of
cold fragments. In the asymptotic state, fragments will be far
away from each other, and therefore application of the above
mentioned MST algorithm yields an accurate description of
the fragmentation. However, if one is interested in the analysis
of the time evolution of the fragment structure, it is clear
that the MST will not provide information because during the
expansion nearby particles may have very different momenta,
which are not considered in the MST definition. Therefore, two
particles that are very close to each other—within range of the
attractive potential—but with high relative momentum can be
recognized as a bound pair according to MST. This unwanted
behavior can be partially solved using the MSTE algorithm, in
which two particles belong to the same cluster {CMSTE

n } if they
are energy bound:

i ∈ CMSTE
n ⇔ ∃j ∈ CMSTE

n : Vij + Kij � 0.

This is an approximate solution to our problem, but it shows
signs of instability even in some simple cases (see the Ap-
pendix).

One of the most sophisticated methods to find the energeti-
cally bound clusters is the early cluster recognition algorithm
(ECRA) [48]. In this algorithm, the particles are partitioned in
different disjoint clusters CECRA

n , with the total energy in each
cluster

εn =
∑
i∈Cn

KCM
i +

∑
i,j∈Cn

Vij ,

where KCM
i is the kinetic energy relative to the center of mass

of the cluster. The set of clusters {CECRA
n } then is the one that

minimizes the sum of all the cluster energies Epartition = ∑
n εn.

As mentioned above, expanding systems have the property
that the asymptotic state is easy to calculate, so the efficiency
of other recognition algorithms apart from MST can be easily
tested. Moreover, the quality of the recognition algorithm
can be weighted by considering how early in the evolution
of the expanding system it is able to identify the clusters
corresponding to the asymptotic state. In this sense, the ECRA
algorithm has shown that it is able to recognize fragments very
early in the evolution, providing a new view of the dynamics
of the fragment formation; i.e., fragments are early formed in
exploding systems. The ECRA algorithm can be easily used for
small systems [49], but, being a combinatorial optimization, it
cannot be used in large systems.

To find approximate solutions, the originally proposed
method is similar to simulated annealing [48]. Another choice
was developed by Puente [50], and it introduces a binary fusion
model. In this model, the initial configuration is with all clusters
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FIG. 3. Schematic representation of 2D clusters, recognized only
in the cell and not through the periodic walls, labeled as N, S, W, E.
The clusters inside the cell are labeled from 1 to 6.

being monomers (one particle per cluster). With this starting
point, E0

partition = 0 the steps that follow are

(1) Explore all potential mergers of two clusters and record
the resulting Ei+1

partition from each potential merger.

(2) Pick the merger that results in the lowest Ei+1
partition.

(3) If Ei+1
partition < Ei

partition, perform the merge and go back
to step 1; otherwise, stop iteration.

All of these algorithms for cluster recognition should give
the same results for the asymptotic state.

A. Infinite clusters

In Ref. [51] we developed an algorithm for the recognition
of infinite clusters across the boundaries. We explain here in
detail the implementation for MST clusters in two dimensions
(2D), with the MSTE and 3D extension being straightforward.
In Fig. 3 we see a schematic representation of 2D clusters
recognized in a periodic cell, labeled from 1 to 6 (note that
these clusters do not connect yet through the periodic walls).

In order to find the connections of these clusters through
the boundaries, we draw a labeled graph of the clusters, where
we connect clusters depending on whether they connect or
not through a wall, and we label such a connection using the
wall label. For example, we begin with cluster 1. It connects
with cluster 2 going out through the E wall, therefore we add
a 1 → 2 connection labeled as E. Symmetrically, we add a
2 → 1 connection labeled as W. Now we examine the pair
1–3. It connects going out through the S wall, so we add 1 → 3
labeled as S and 3 → 1 labeled as N. Cluster 1 does not connect
with 4, 5, or 6, therefore those are the only connections we have.
Once we have done that, we get the graph in Fig. 4.

We now wonder whether these subgraphs represent an
infinite cluster or not. In order to have an infinite clusters,
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FIG. 4. Graph of the clusters with connections labeled by the wall
of the boundary they connect through. The graph can be divided
in two subgraphs that do not connect: 1–2–3–4 and 5–6. Each of
these subgraphs is a cluster when periodic boundary conditions are
considered.

we need to have a loop (the opposite is not true: having a
loop is not enough to have an infinite cluster, as we can see
in subgraph 5–6), so we first identify loops and mark them
as candidates for infinite clusters. Every connection adds to a
loop (since the graph connections are back and forth), but we
know from inspecting Fig. 4 that the cluster 1–2–3 is infinite.
Finding out what makes, in the graph, the cluster 1–2–3 infinite
is key to identifying infinite clusters. And the key feature of
cluster 1–2–3 is that its loop 1–2–3–1 can be traversed through
the walls E–E–S, while loops like 5–6 can be traversed only
through E–W. Now, in order for the cluster to be infinite, we
need it to extend infinitely in (at least) one direction. So once
we have the list of walls of the loop, we create a magnitude I
associated with each loop that is created as follows: beginning
with I = 0, we add a value Mi if there is (at least one) i wall.
The values are ME = 1, MW = −1, MN = 2, MS = −2. If I
is nonzero, then the loop is infinite. For example, for the loop
E–E–S, we have E and S walls, so I = ME + MS = −1 and
the loop is infinite. For the loop E–W, I = ME + MW = 0,
and the loop is finite.

IV. EXPANSION

In order to expand the neutron-rich matter that simulates an
infinite system with periodic boundary conditions, we follow
the microscopic big bang method, as explained by Holian and
Grady in Ref. [52] and used for the expansion of a infinite
system [53]. It consists of an expansion of the simulation box
at a constant isotropic rate:

L(t) = L0 (1 + η̇ t), (2)

where L is the length of the simulation box in every direction
and L0 is the initial length. With only this box resizing, the
system would expand dynamically. To simulate an expansion,
we need to also give the particles an extra radial velocity that
matches that of the box in the edges of the simulation:

v = v0 + η̇ r0. (3)

Since we are working with periodic boundary conditions,
when a particle crosses a boundary, we must take into account
the original expansion, so we change not only the particle
position but also the velocity. For example, if the particle
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FIG. 5. Snapshots of configurations for different parametrizations of the nuclear interaction, all with the same thermodynamic conditions:
x = 0.1, ρ = 0.05 fm−3, and T = 0.1 MeV. The qualitative differences between the CMD medium potential and the other two parametrizations
(new medium and SSP) are evident. We call the structures shown in new medium and SSP models pregnocchi. Note that neutrons are represented
by points to avoid hindering the visualization of the proton structure.

crosses the left-hand boundary of the periodic box, the velocity
of the image particle v

†
i on the right-hand boundary must be

modified as v
†
i = vi + L0 η̇. This prescription for an expansion

is mathematically equivalent to Hubble’s law in astrophysics
[33]. It is of interest to note that the expansion with this
prescription is adiabatic: from time zero onward, no more
energy is added to the system.

V. RESULTS

A. Configuration dependence with the potential

Different models for the interaction yield different equa-
tions of state and, consequently, different configurations. For
comparison, we show in Fig. 5 different snapshots for the
three models we studied: CMD medium, new medium, and
SSP. These snapshots are near ground states, with very low
temperature (T = 0.1 MeV), density ρ = 0.05 fm−3, and a
proton fraction of x = 0.1. The differences are very notice-
able: while the CMD medium potential has no identifiable

structure, the new medium and SSP potentials clearly show
agglomerations of protons (due to the binding interaction with
neutrons) embedded in a neutron sea. This structure is what we
call pregnocchi. This is the first time such a structure has been
identified, and it is also a very interesting qualitative difference
observed among parametrizations of the equation of state.

To compare the potentials in a different configuration,
we show in Fig. 6 different snapshots for the three models
we studied: CMD medium, new medium, and SSP. These
snapshots are near ground states, with very low temperature
(T = 0.1 MeV), density ρ = 0.05 fm−3, and a proton fraction
of x = 0.4.

In order to attain the real ground state of the system, we
need to avoid being locked in local minima. This is why a
slow cool-down is needed in these type of systems, which we
achieve by carefully changing the parameters in a Nose-Hoover
thermostat. We start from a relatively high temperature that
can avoid local minima (we showed in previous works that
this temperature should be larger than T ≈ 0.8 MeV [25]) and
then slowly cool it down.

FIG. 6. Snapshots of configurations for different parametrizations of the nuclear interaction, all with the same thermodynamic conditions:
x = 0.4, ρ = 0.05 fm−3, and T = 0.1 MeV. The qualitative differences between the CMD medium potential and the other two parametrizations
(new medium and SSP) are evident. While the CMD potential shows a jungle gym structure, both new medium and SSP show lasagna structures
that are slightly different from each other.
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FIG. 7. Asymptotic mass distribution for x = 0.1, ρ =
0.05 fm−3, and T = 0.8 MeV and two different expansion velocities:
fast η̇ = 0.01 c/fm and slow η̇ = 0.0001 c/fm.

B. Asymptotic mass distribution

When the system expands, the structure breaks down into
finite fragments. For long enough times, these fragments
remain stable (since they do not interact with each other). We
will refer to these as the asymptotic fragments.

We expanded several initial configurations with the new
medium model to find their asymptotic mass distributions.
For the first example, we show in Fig. 7 the asymptotic
mass distribution (calculated with the MSTE algorithm) for
x = 0.1, ρ = 0.05 fm−3, and T = 0.8 MeV for two expansion
velocities: fast (η̇ = 0.01 c/fm) and slow (η̇ = 0.0001 c/fm).
Please note that these expansion rates are high in comparison
to the expansion in a neutron star merger according to the
hydrodynamic model mentioned, but they are meaningful to
study the different fragmentation regimes. We can see here that
the slow expansion allows the existence of fragments with mass
of up to 60 (20 of which are protons) while the fast expansion
produces smaller fragments of up to 20 (6 protons). This is an
expected behavior, since the faster expansion, the larger the
excitation energy. Therefore, a faster expansion is supposed
to break clusters that would otherwise be stable. A similar
behavior can be seen in Fig. 8, where we expand the system for
x = 0.4, ρ = 0.05 fm,−3 and T = 0.1 MeV for the same fast
and slow expansion velocities. Another relevant characteristic
of the asymptotic mass distribution—not shown in the figures
due to scale limitations—is that the fast expansion has a non
negligible fraction of lone neutrons (about 4%), while the slow
expansion hardly presents any (0.1%).

C. Fragment formation

We now turn to the analysis of some examples of the system
evolution in time, showing when and how these fragments
are formed. We take first the expansion of the system with
x = 0.4, ρ = 0.05 fm−3 and T = 0.5 MeV. We show in the
first two columns of Fig. 9 the initial and the asymptotic
states with the slow and the fast expansions. While the initial
condition is an infinite cluster, in the asymptotic regime we

FIG. 8. Asymptotic mass distribution for x = 0.4, ρ =
0.05 fm−3, and T = 0.1 MeV and two different expansion velocities:
fast η̇ = 0.01 c/fm and slow η̇ = 0.0001 c/fm.

have a fragment distribution with many finite clusters. It
is interesting to note that the fast expansion resembles a
mechanical fracture, in which the fragments are formed within
each sheet of the lasagna, while the slow expansion looks more
like a thermal expansion in which the asymptotic system loses
any resemblance to the original structure. The clusters break
into many fragments because their large size cannot withstand
the energy associated with the expansion of the system.

A very interesting scenario is the expansion of the system
with low proton fraction: x = 0.1, ρ = 0.05 fm−3, and T =
0.1 MeV. In the third column of Fig. 9 we show both the
initial condition and the asymptotic configuration for η̇ =
0.0001 c/fm.

Unlike the previous scenario, there is a clear proton back-
bone of the clusters already existing, immersed in a neutron
sea. It can be visually identified when we draw the protons
with a much larger size than neutrons, as in this set of figures.
As the system expands, it is modified. This raises the question,
does the cluster distribution change substantially? The answer
to this question requires a deep analysis of the time evolution
of the cluster distribution, and we no longer can rely on a visual
inspection; we need to use the cluster recognition algorithms.
Such an analysis has been performed for finite systems for
example in Refs. [49,54]. In Fig. 10 we show the initial and final
configurations with the MSTE algorithm. Note that the cluster
distribution changes radically in both aspects: the size and the
proton fraction. The proton fraction change is to be expected,
since, as the system expands, fewer neutrons are within the
range of the proton cluster. However, this effect alone does not
explain the change of size: while the initial condition shows a
cluster of up to 80 protons, the asymptotic condition’s largest
cluster has about 30 protons. Did a cluster break down while
the system was expanding?

To analyze this, we study the MST distribution of protons
alone, shown in Fig. 11. According to this figure, we see that
the cluster distribution of protons did not change substantially
(only one proton cluster broke down) and effectively the largest
cluster has 32 protons. Does the more theoretically sound
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FIG. 9. Three different expansions of neutron star matter: lasagna (fast expansion): x = 0.4, η̇ = 0.01 c/fm, T = 0.8 MeV; lasagna (slow
expansion): x = 0.4, η̇ = 0.0001 c/fm, T = 0.8 MeV; pregnocchi: x = 0.1, η̇ = 0.0001 c/fm, T = 0.1 MeV.

ECRA algorithm yield good results? In Fig. 12 we show that
actually the ECRA BFM algorithm did yield good results,
and identifies the preclusters properly, even finding the proton
cluster that broke down.

With these three algorithms in mind, we built three different
cluster recognition tools: MSTE, ECRA, and MSTpC. MSTE
and ECRA are the regular algorithms, while MSTpC is the

FIG. 10. Initial and asymptotic mass distributions for a system
with x = 0.1, ρ = 0.05 fm−3 and T = 0.1 MeV, for a slow expansion
(η̇ = 0.0001 c/fm), with the MSTE cluster recognition.

proton MST algorithm with the cloud of neutrons that are
near each MST cluster. In Fig. 13 we show the evolution of
the size of the largest fragment for the early stages of the
evolution for the three clusters: MSTE, MSTpC, and ECRA.
The figure shows that the ECRA fragment remains relatively
stable and stabilizes quickly, while the other two algorithms
yield fragments that are always larger and stabilize more

FIG. 11. Initial and asymptotic mass distributions for a system
with x = 0.1, ρ = 0.05 fm−3, and T = 0.1 MeV, for a slow expansion
(η̇ = 0.0001 c/fm), with the proton-MST cluster recognition.
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FIG. 12. Initial and asymptotic mass distributions for a system
with x = 0.1, ρ = 0.05 fm−3, and T = 0.1 MeV, for a slow expansion
(η̇ = 0.0001 c/fm), with the ECRA cluster recognition. In comparing
with Fig. 11, notice the difference in the y scale.

slowly. It is also interesting to note that the MSTpC fragment
starts with about 100 more neutrons than the corresponding
ECRA fragment, which means that the ECRA fragment is in
a very neutron-rich environment. This kind of situation makes
the r process more likely to happen.

On the other hand, in the expansion of the lasagna structure,
none of the algorithms for fragment recognition identify
clusters very early on the evolution (see Fig. 14). At this
stage, there is a very large fragment, which is actually infinite.
Nevertheless, the ECRA analysis shows that this fragment
breaks down early into many different fragments and, as a
result, the mass of the largest fragment decreases drastically
with time. It is interesting to notice that, unlike the pregnocchi,
in this case the MSTpC algorithm is the one that takes the

FIG. 13. Mass of the largest cluster for MSTE, MSTpC, and
ECRA for the early stages of the evolution, for the pregnocchi
configuration. We can see that the ECRA fragment remains relatively
stable and stabilizes quickly, while the other two algorithms yield
fragments that are always larger and stabilize more slowly.

FIG. 14. Mass of the largest cluster for MSTE, MSTpC, and
ECRA, for the early stages of the evolution, for the lasagna con-
figuration. Note that, as in the previous case, the ECRA algorithm
recognizes very early in the expansion the fracture of the clusters. In
the asymptotic regime (for very large times, not shown in the figure)
all three algorithms yield the same result.

longest to identify that the infinite cluster breaks down. This
shows us that the ECRA algorithm is also more versatile
to study the early fragment formation. It is also of interest
(not shown) that the proton fraction x of these fragments is
relatively stable for the ECRA algorithm, while the other two
yield a proton fraction that decreases monotonically with time.

VI. DISCUSSION AND CONCLUDING REMARKS

We studied, with molecular dynamics, structural properties
of the crust of a neutron star through three different potentials.
These potentials involve a nuclear term tailored to reproduce
binding energies and compressibilities of nuclear matter plus
a screened Coulomb interaction. To analyze the structures
formed, we used four different cluster recognition algorithms:
MST, MSTE, MSTpC, and ECRA-BFM. With these algo-
rithms we found that, of the three potentials, two of them
(new medium and SSP) developed a newly found structure for
low proton fractions that we called pregnocchi. This structure
consists of proton aggregates formed by the mediation of
the attractive Vnp term of the potential that withstood the
expansion.

We also analyzed the expansion of the infinite neutron-rich
matter described in terms of the little big bang model. We
showed that in general the proper identification of the structure
is highly dependent on the algorithm chosen, with ECRA
and MSTpC being the most suitable to find the structures
and ECRA the most stable one. This approach, combined
with different cluster algorithms, allowed us to identify the
dynamics of the fragment formation. The asymptotic state
showed a high dependence on the rate of expansion, both in the
mass histogram and the spatial distribution of the fragments;
for fast enough rates, the expansion was similar to a mechanical
fracture, where the spatial distribution was heavily correlated
with the original. However, for slower rates, the expansion
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was a thermal expansion in which the asymptotic state was
relatively homogeneous. The clusters formed in the slower
expansion were much larger than those formed in the fast
expansion. A thorough analysis of the clusters’ formation
dynamics showed that they were formed early in the expansion.
In particular, the novel structure that we have called pregnocchi
is quite relevant, because according to ECRA analysis these
preexistent aggregates evolve in time embedded in a neutron
cloud, giving rise to configurations in which the r proccess
might set in.

APPENDIX: STABILITY OF MSTE CLUSTERS

A simple example can be studied to see whether MSTE
clusters are always stable. Consider an interaction

Vij (r) =
{−V0 if r � a,

0 if r > a.
(A1)

Now we study a set of particles of mass m with positions
ri = i a (with i ∈ Z) so that every particle is at a distance

a from its nearest neighbors. If the velocity is vi = i v, each
particle will be energetically bound with its neighbors if v �√

2 V0/m. For 2n + 1 particles, with −n � i � n, the kinetic
energy of the system will be

KCM =
n∑

i=−n

1

2
m i2v2 (A2)

= n3

3
m v2 + O(n2). (A3)

The potential energy, however, is

VCM =
n∑

i=−n

−iV0 (A4)

= −2 n2 V0. (A5)

It is clear then that for large n, no matter the value of v,
the system will be unstable even though the MSTE algorithm
recognizes it as a single cluster.
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