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In this work a study of the fractional momentum loss (Sloss) as a function of the characteristic path length (L)
and the Bjorken energy density times the equilibration time (εBjτ0) for heavy-ion collisions at different

√
sNN is

presented. The study has been conducted using inclusive charged particles from intermediate to large transverse
momentum (5 < pT < 20 GeV/c). Within uncertainties and for all the transverse momentum values which were
explored, the fractional momentum loss is found to increase linearly with (εBjτ0)3/8L. For identified hadrons,
albeit a smaller slope of Sloss vs. (εBjτ0)3/8L is observed for (anti)protons at pT = 5 GeV/c, Sloss is also found
to grow linearly with L. The behavior of data could provide important information aimed at understanding the
parton energy loss mechanism in heavy-ion collisions and some insight into the expected effect for small systems.

DOI: 10.1103/PhysRevC.97.014910

I. INTRODUCTION

Ultrarelativistic heavy-ion collisions allow the study of a
new form of matter featured by deconfinement. In

√
sNN =

200 GeV Au-Au collisions, experiments at the Relativistic
Heavy Ion Collider (RHIC) claimed the discovery of a quark-
gluon plasma (QGP) which behaved like a perfect fluid and
not as the expected gas [1–4]. This strongly interacting quark-
gluon plasma was characterized by a strong collective flow
and jet quenching [5,6]. These results were later confirmed
and further extended in

√
sNN = 2.76 TeV Pb-Pb collisions at

the Large Hadron Collider (LHC) [7].
The study of the propagation of a hard probe through the

medium offers the possibility to determine the properties of
the QGP. Experimentally, the medium effects are extracted
by comparing measurements on pp and A-A collisions, for
example, particle production at large transverse momentum
(pT ) in A-A (d2NAA/dydpT ) to that in pp (d2Npp/dydpT ).
Commonly, the nuclear modification factor is used to quantify
the changes:

RAA = d2NAA/dydpT

〈Ncoll〉d2Npp/dydpT

, (1)

where 〈Ncoll〉, usually obtained using Glauber simulations [8],
is the average number of binary collisions occurring within
the same A-A interaction. Clearly, in the absence of medium
effects, i.e., superposition of nucleon-nucleon collisions, RAA
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would be one. Several measurements of RAA for different√
sNN [9–13] support the formation of a dense partonic

medium in heavy-nuclei collisions where hard partons lose
energy via a combination of both elastic and inelastic collisions
with the constituents of QGP [14]. However, in this work we
used the inclusive charged particle suppression data to get an
alternative estimate of the jet-quenching effects: the fractional
momentum loss proposed by the PHENIX Collaboration [15].
This because there are some effects which can affect our
interpretation of energy loss from RAA measurements. For
instance, while energy loss increases with increasing

√
sNN

which would tend to decrease RAA, the pp production cross
section of high-pT particles is as follows:

d2σpp(pT )

dydpT

∝ 1

pn
T

. (2)

Therefore, a countervailing effect on RAA is expected since the
power n decreases with increasing

√
sNN .

As discussed in Ref. [16], at large transverse momenta,
yields are mainly suppressed by means of medium-induced
gluon radiation accompanying multiple scattering. To model
energy-loss effects, the authors proposed to convolute the vac-
uum (pp) production cross section of the particle with energy
pT + ε with the distribution D(ε) that describes specifically
the additional energy loss ε due to medium-induced gluon
radiation in the final state. Thus, the minimum bias (centrality
integrated) heavy-ion production cross section reads:

d2σAA(pT )

dydpT

∝
∫ ∞

0
dεD(ε)

d2σpp(pT + ε)

dydpT

, (3)

where ε is characterized by the scale ωc = q̂L2/2 being q̂ the
transport coefficient which controls the medium dependence
of the energy loss and L the medium length. The quenching
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effect can be modelled by the substitution:

d2σAA(pT )

dydpT

= d2σpp(pT + δpT
)

dydpT

. (4)

Taking into account the interplay between the energy loss and
the pp cross section fall-off, the pT dependent expression for
the shift is as follows:

δpT
≈ (pT ωc)1/2. (5)

Considering ωc = q̂L2/2 and that the ideal estimate from
pQCD calculations yields to q̂ ∝ ε3/4 [17], with ε the energy
density of the system. One would expect:

δpT
≈ p

1/2
T ε3/8L. (6)

Clearly, δpT
does not equal the mean medium-induced energy

loss, �E ∝ L2. It has been shown that δpT
can be related with

the fractional momentum loss [18] and that a linear relation
between fractional momentum loss and ε3/8L is required in
order to simultaneously describe the azimuthal anisotropies
and RAA at high pT [19]. Moreover, a recent work has also
exploited these ideas in order to explain scaling properties of
RAA [20].

Inspired by recent data-driven studies, where the parton
energy loss has been separately studied as a function of the
Bjorken energy density [21] times the formation time (εBjτ0)
[15] and a characteristic path length [19,22], in the present
work other possibilities are explored. Namely, based on the
preceding discussion the fractional momentum loss is studied
as a function of εBjτ0 and L, where for the estimation of
the characteristic path length the different geometry for the
trajectories have been taken into account. To this end, the ideas
presented in Refs. [6,23] were implemented. Namely, energy
density distributions estimated with Glauber simulations [8]
were considered as the distributions of the scattering centers.
This allows us to test the previously discussed energy loss
model [16] by means of the fractional momentum loss for
several transverse-momentum values and for the top energy
reached at the LHC,

√
sNN = 5.02 TeV [24].

TABLE I. The inelastic nucleon-nucleon cross section for the
different systems considered in this work.

System
√

sNN (GeV) σ inel
NN (mb)

Au-Au 62.4 [15] 36.0
Au-Au 200 [15] 42.3
Cu-Cu 200 [15] 42.3
Pb-Pb 2760 [25] 64.0
Pb-Pb 5020 [24] 70.0

The paper is organized as follows: Sec. II describes how
the different quantities, path length, Bjorken energy density,
and fractional momentum loss, were extracted from the data.
The results and discussions are displayed in Sec. III and final
remarks are presented in Sec. IV.

II. CALCULATION OF PATH LENGTH, BJORKEN
ENERGY DENSITY, AND FRACTIONAL

MOMENTUM LOSS

Table I shows the different data and the inelastic nucleon-
nucleon cross sections which were used to extract the quantities
listed below.

A. Characteristic path length

For each colliding system (see Table I), the nuclear overlap
area was estimated from the number of participants (Npart) dis-
tribution obtained from Glauber simulations [8]. The scattering
centers were randomly generated following such a distribution
which is denser in the middle and decreasing toward the
edge. Some examples are shown in Fig. 1, which displays the
distributions of the location of the scattering centers assumed
for central (0–5%), semicentral (20–30%), and peripheral
(70–80%) Pb-Pb collisions at

√
sNN = 2.76 TeV. Then, for

each production center, the direction was determined by
randomly sampling the azimuthal angle using a uniform
distribution between 0 and 2π rad. With this information
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FIG. 1. Number of participants distributions obtained from Glauber simulations for Pb-Pb collisions at
√

sNN = 2.76 TeV. Results for 0–5%
(left), 20–30% (middle), and 70–80% (right) are displayed.
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the distance from the scattering center to the edge of the
area was calculated. The rms of the distance distribution was
considered as the characteristic path length of the system (L).
For instance, in the case of

√
sNN = 2.76 TeV Pb-Pb collisions,

the characteristic path length ranged from 1.73 to 3.13 fm
going from the most peripheral to the most central collisions,
respectively. It is important to recall that the inclusion of more
realistic models of initial conditions is not expected to modify
the average geometrical properties [27].

B. Energy density

The Bjorken energy density [21] is defined as

εBj = 1

τ0AT

〈
dET

dy

〉
, (7)

where τ0 is the proper time when the QGP is equilibrated, AT

is the transverse area of the system, and 〈 dET

dy
〉 is the mean

transverse energy per unit rapidity. As done by the PHENIX
Collaboration, the transverse area was approximated using σx

and σy as the rms of the distributions of the x and y positions of
the participant nucleons in the transverse plane, respectively.
Moreover, since τ0 is model dependent, εBjτ0 is used instead
of εBj. For heavy-ion collisions at

√
sNN = 62.4 GeV and 200

GeV, the εBjτ0 values reported in Ref. [15] were used. Energy
density values for

√
sNN = 2.76 TeV Pb-Pb are also available;

however, we used our own estimates and they were found to
be consistent to those published in Ref. [15].

Since no transverse energy data are available for the
top LHC energy (

√
sNN = 5.02 TeV), the corresponding

values were extrapolated using the fact that, within 25%,
〈dET /dη〉/〈Nch/dη〉 vs. 〈Npart〉 is nearly energy independent.
This has been reported by the ALICE Collaboration, where
such a scaling holds for measurements at RHIC and run I LHC
energies [28]. Due to this assumption, 15% was assigned
as systematic uncertainty to dET /dη for Pb-Pb collisions
at

√
sNN = 5.02 TeV. In order to convert from pseudorapid-

ity to rapidity, a factor that compensates the corresponding
phase space difference is calculated. For

√
sNN = 5.02 TeV it

amounts to 1.09 with a systematic uncertainty of 3% like in√
sNN = 2.76 TeV [15].

C. Fractional momentum loss

The fractional momentum loss (Sloss) of large-transverse-
momentum hadrons has been explored by the PHENIX Col-
laboration [15]. Such a quantity is defined as

Sloss ≡ δpT

pT
pp

= pT
pp − pT

A−A

pT
pp

, (8)

where pT
A−A is the pT of the A-A measurement and pT

pp is
that of the pp measurement scaled by the average number of
binary collisions 〈Ncoll〉 of the corresponding A-A centrality
class at the same yield of the A-A measurement. The quantity
is calculated as a function of pT

pp and can be related to
the original partonic momentum. Therefore, Sloss can be used
to measure the parton energy loss, which should reflect the
average fractional energy loss of the initial partons.

The calculation of Sloss is as follows. The inclusive charged-
particle pT spectrum in pp collisions is scaled by the 〈Ncoll〉
value corresponding to the centrality selection of the A-A mea-
surement. Then, a power-law function is fitted to the scaled pp
spectrum. Finally, the p

pp
T corresponding to the scaled pp yield

which equals the A-A yield, at the point of interest (pA−A
T ), is

found using the fit to interpolate between scaled pp points.
The systematic uncertainties were estimated as follows. The

pp (A-A) yield was moved up (down) to the corresponding
edges of the systematic uncertainties, and this gives the maxi-
mum deviation between both transverse-momentum spectra,
which can be used to quantify the maximum effect on the
extraction of Sloss. For the most central Pb-Pb collisions at√

sNN = 5.02 TeV the systematic uncertainties were ∼17%,
∼5%, and ∼6% for pT

pp = 5, 10, and 15 GeV/c, respectively.

III. RESULTS AND DISCUSSION

At the LHC, it has been observed that the effects attributed to
flow and new hadronization mechanisms like recombination, if
any, are only relevant for transverse momenta below 10 GeV/c
[25,29]. Therefore, previous data-driven studies of path-length
dependence of parton energy loss obtained using the elliptic
flow coefficient (v2) measurements could only provide results
for pT > 10 GeV/c [19], because, for high pT , v2 is expected
to be entirely attributed to jet quenching, reflecting the az-
imuthal asymmetry of the path length [22]. However, for jet
quenching phenomenology it is also important to explore the
intermediate pT (5−10 GeV/c), even if the aforementioned
effects (e.g., flow) are present. Since the present work does
not rely on v2 measurements, Sloss can be studied starting from
pT

pp = 5 GeV/c.
Figure 2 shows the fractional momentum loss as a function

of εBjτ0 for three different p
pp
T values: 5 GeV/c (left), 10

GeV/c (middle), and 15 GeV/c (right). For pT larger than
10 GeV/c the fractional momentum loss increases linearly
with energy density. However, the rise of Sloss with εBjτ0

seems to be steeper at RHIC than at LHC energies. For
transverse momenta of 5 GeV/c, Sloss ∝ εBjτ0 is not valid
anymore. Therefore, the universality of Sloss vs. εBjτ0 reported
in Ref. [15] is hard to argue. It is worth noticing that the
PHENIX Collaboration reported Sloss in logarithmic scale, and
therefore the differences (which are pointed out here) were not
obvious.

Now the present study explores potential scaling properties
of Sloss with energy density and path length. For this, Fig. 3
shows the dependence of Sloss with (εBjτ0)3/4L2. The phe-
nomenological motivation of using this variable was already
discussed in the Introduction. In contrast with the previous
case, the increase of Sloss is not linear. Moreover, as highlighted
in Ref. [19], a weak point of this representation is that the
extrapolation to (εBjτ0)3/4L2 = 0 does not give a parton energy
loss equal to zero. However, the data from the different energies
follow the same trend, which in principle can be attributed to
the quadratic path length which was introduced.

The top panel of Fig. 4 shows the (εBjτ0)3/8L dependence
of the fractional momentum loss. Within uncertainties, Sloss

increases linearly with (εBjτ0)3/8L for all the pT
pp values

which were explored. Moreover, the functional form of
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FIG. 2. Fractional momentum loss (Sloss) as a function of εBjτ0. Results for three values of transverse momentum measured in pp collisions
are displayed: ppp = 5 GeV/c (left), 10 GeV/c (middle), and 15 GeV/c (right). Data from Pb-Pb at

√
sNN = 2.76 [26] and 5.02 TeV [24],

Au-Au at 62.4 and 200 GeV, and Cu-Cu at
√

sNN = 200 GeV [15] are used for the extraction of the quantities. Systematic uncertainties are
displayed as boxes around the data points.

Sloss[(εBjτ0)3/8L] seems to be the same for all the systems
which are considered. This is the first time in which an universal
scaling of Sloss vs. (εBjτ0)3/8L is observed for a broad interval
of energies ranking from 62.4 to 5020 GeV. It is important
to mention that recent studies combining RAA and vn at high
pT in realistic hydrodynamics plus jet quenching simulations
seem to favor a linear path-length dependence of energy loss
[30,31]. Another important observation is that Sloss exhibits
an overall decrease going from p

pp
T = 10 to p

pp
T = 15 GeV/c

which amounts to ∼20%. This is consistent with the expected
behavior at high pT : Sloss(∼δpT

/pT ) ∝ 1/
√

pT , which is in
agreement with the observation that RAA tends to unity at very
high pT [24].

It is worth noting that for pT
pp = 5 GeV/c a subtle change

in the slope is observed at (εBjτ0)3/8L ∼ 4 GeV3/8fm1/4, be-
cause there other medium effects like flow could be relevant.
Actually, only for the corresponding centrality class (0–40%)
was the average transverse momentum for different particle

species found to scale with the hadron mass [32]. Moreover,
it is well known that at intermediate pT (2−10 GeV/c) the
baryon-to-meson ratio in heavy-ion collisions is higher than
that in pp collisions [25,29]. In order to study the particle
species dependence of Sloss, the bottom panel of Fig. 4 shows
the charged pion, kaon, and (anti)proton Sloss as a function of
(εBjτ0)3/8L for Pb-Pb collisions at

√
sNN = 2.76 TeV. Within

uncertainties, for pT
pp � 10 GeV/c the functional form of

Sloss is the same for the different identified particles and
consistent with that measured for inclusive charged particles,
while, for pT

pp = 5 GeV/c, the functional form of Sloss is only
the same for inclusive charged particles, pions, and kaons.
Albeit the slope of the increase is significantly reduced for
(anti)protons, Sloss is still observed to increase linearly with
(εBjτ0)3/8L. Therefore, the change in the particle composition
at pT < 10 GeV/c for 0–40% Pb-Pb collisions could cause
the subtle change in the slope at (εBjτ0)3/8L ∼ 4 GeV3/8/fm1/4

observed in the top panel of Fig. 4.

)1/2fm3/4 (GeV2L3/4)0τBj∈(

lo
ss

S

20 40 60

0

0.1

0.2

0.3 c = 5 GeV/
T

ppp

20 40 60

=5020 GeVNNsPb-Pb,
=2760 GeVNNsPb-Pb,
=200 GeVNNsCu-Cu,
=200 GeVNNsAu-Au,
=62.4 GeVNNsAu-Au,

c = 10 GeV/
T

ppp

20 40 60

c = 15 GeV/
T

ppp

FIG. 3. Fractional momentum loss (Sloss) as a function of (τ0εBj)3/4L2. Results for three values of transverse momentum measured in pp

collisions are displayed: ppp = 5 GeV/c (left), 10 GeV/c (middle), and 15 GeV/c (right). Data from Pb-Pb at
√

sNN = 2.76 [26] and 5.0 TeV
[24], Au-Au at 62.4 and 200 GeV, and Cu-Cu at

√
sNN = 200 GeV [15] are used for the extraction of the quantities. Systematic uncertainties

are displayed as boxes around the data points.
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FIG. 4. Fractional momentum loss (Sloss) as a function of (τ0εBj)3/8L. Results for three values of transverse momentum measured in pp

collisions are displayed: ppp = 5 GeV/c (left), 10 GeV/c (middle), and 15 GeV/c (right). Data from Pb-Pb at
√

sNN = 2.76 [25,26] and 5.0
TeV [24], Au-Au at 62.4 and 200 GeV, and Cu-Cu at

√
sNN = 200 GeV [15] are used for the extraction of the quantities. Systematic uncertainties

are displayed as boxes around the data points. Results for inclusive charged particles measured at different
√

sNN are displayed in the top panel.
The bottom panel shows the results for charged pions, kaons, and (anti)protons in Pb-Pb collisions at

√
sNN = 2.76 TeV.

Last, it is important to point out that assuming εBjτ0

between 0.2 and 1.2 GeV/fm2 as calculated in the string
percolation model for p-Pb collisions at 5.02 TeV [33]
or εBjτ0 ∼ 0.641 GeV/fm2, which has been extracted from
minimum-bias pp collisions at

√
s = 7 and 8 TeV [34]. One

would expect jet quenching in p-Pb collisions, albeit the size
of the effect would be rather small for pT

pp > 10 GeV/c
(0 < Sloss < 0.05) compared with the large one predicted for
pp collisions by some models [35]. However, within the
current systematic uncertainties reported for p-Pb collisions
at

√
sNN = 5.02 TeV, it is hard to draw a conclusion based on

data [24,36,37]. The results suggest the importance of studying
how different QGP-related observables evolve as a function of
quantities like energy density, which is crucial to understand
the similarities between pp and AA collisions [38].

IV. CONCLUSIONS

The inclusive charged-particle production in heavy-ion
collisions at

√
sNN = 62.4 and 200 GeV (2.76 and 5.02 TeV)

measured by experiments at the RHIC (LHC) were used to
extract the fractional momentum loss (Sloss) and the Bjorken

energy density. Using Monte Carlo Glauber simulations, a
characteristic path length was estimated for the different col-
lision centralities and for each colliding system. Surprisingly,
for all the transverse-momentum values which were explored,
5 < pT < 20 GeV/c, Sloss was found to increase linearly
with (εBjτ0)3/8L being τ0 the equilibration time. Moreover,
a universal functional form was found to describe the data
from the different colliding systems which were analyzed. In
contrast, this universal (linear) behavior is not observed if the
scaling variable (εBjτ0)3/8L is replaced by εBjτ0 [(εBjτ0)3/4L2].
The linear increase of Sloss is also observed for identified
charged particles (pions, kaons, and protons) even for pT

pp =
5 GeV/c. The behavior of data could provide additional
constraints to phenomenological models of jet quenching not
only for heavy-ion collisions but also in the jet-quenching
searches in small collisions systems.
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